Application of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral imagery to mineral and lithologic mapping in southern West Greenland

Remote sensing data acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were used for mineral and lithologic mapping at the Sarfartoq carbonatite complex area in southern West Greenland. The geology of the study area consists of carbonatites, fenites, hydrothermal...

Full description

Bibliographic Details
Published in:Journal of Hyperspectral Remote Sensing
Main Author: Bedini, Enton
Format: Article in Journal/Newspaper
Language:English
Published: UFPE 2018
Subjects:
Online Access:https://periodicos.ufpe.br/revistas/jhrs/article/view/237716
https://doi.org/10.29150/jhrs.v8.2.p47-59
id ftunifpernambojs:oai:oai.periodicos.ufpe.br:article/237716
record_format openpolar
institution Open Polar
collection Portal de Periódicos - UFPE (Universidade Federal de Pernambuco)
op_collection_id ftunifpernambojs
language English
topic Earth Science
remote sensing
ASTER
mineral
carbonatite
Greenland
spellingShingle Earth Science
remote sensing
ASTER
mineral
carbonatite
Greenland
Bedini, Enton
Application of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral imagery to mineral and lithologic mapping in southern West Greenland
topic_facet Earth Science
remote sensing
ASTER
mineral
carbonatite
Greenland
description Remote sensing data acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were used for mineral and lithologic mapping at the Sarfartoq carbonatite complex area in southern West Greenland. The geology of the study area consists of carbonatites, fenites, hydrothermal alteration zones, gneisses, alluvial deposits etc. The Adaptive Coherence Estimator algorithm was used to analyze the remote sensing data. The reference spectra were selected from the imagery. The mapping results show the distribution of carbonatite, hydrothermally altered zones, fenite, and sericite. In addition, lichen and tundra green vegetation were also mapped. Due to the moderate spatial resolution of ASTER SWIR bands, it was not possible to detect and map the rock units in some parts of the study area. The study shows the possibilities and limitations of the use of the ASTER multispectral imagery for geological studies in the Arctic regions of West Greenland. The paper is the first reported study on the use of ASTER data for mineral and lithologic mapping in the Arctic regions of West Greenland.
format Article in Journal/Newspaper
author Bedini, Enton
author_facet Bedini, Enton
author_sort Bedini, Enton
title Application of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral imagery to mineral and lithologic mapping in southern West Greenland
title_short Application of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral imagery to mineral and lithologic mapping in southern West Greenland
title_full Application of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral imagery to mineral and lithologic mapping in southern West Greenland
title_fullStr Application of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral imagery to mineral and lithologic mapping in southern West Greenland
title_full_unstemmed Application of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral imagery to mineral and lithologic mapping in southern West Greenland
title_sort application of advanced spaceborne thermal emission and reflection radiometer (aster) multispectral imagery to mineral and lithologic mapping in southern west greenland
publisher UFPE
publishDate 2018
url https://periodicos.ufpe.br/revistas/jhrs/article/view/237716
https://doi.org/10.29150/jhrs.v8.2.p47-59
geographic Arctic
Greenland
geographic_facet Arctic
Greenland
genre Arctic
Greenland
Sarfartoq
Tundra
Geological Survey of Denmark and Greenland Bulletin
genre_facet Arctic
Greenland
Sarfartoq
Tundra
Geological Survey of Denmark and Greenland Bulletin
op_source Journal of Hyperspectral Remote Sensing; v. 8, n. 2 (2018): Journal of Hyperspectral Remote Sensing; 47-59
2237-2202
op_relation https://periodicos.ufpe.br/revistas/jhrs/article/view/237716/30167
Abrams, M., Tsu, H., Hulley, G., Iwao, K., Pieri, D., Cudahy, T., & Kargel, J. (2015). The advanced spaceborne thermal emission and reflection radiometer (ASTER) after fifteen years: review of global products. International Journal of Applied Earth Observation and Geoinformation, 38, 292–301. Ager, C.M., & Milton, N.M. (1987). Spectral reflectance of lichens and their effects on the reflectance of rock substrates. Geophysics, 52, 898–906. Allaart, J.H. (1982). Geological Map of Greenland 1:500 000. Sheet 2, Frederikshåb Isblink – Søndre Strømfjord. Geological Survey of Greenland. Copenhagen, Denmark. Bedini, E., & Rasmussen, T.M. (2018). Use of airborne hyperspectral and gamma-ray spectroscopy data for mineral exploration at the Sarfartoq carbonatite complex, southern West Greenland. Geosciences Journal, 22, 641-651. Bedini, E. (2017). The use of hyperspectral remote sensing for mineral exploration: a review. Journal of Hyperspectral Remote Sensing, 7, 189-211. Bedini, E. (2012). Mapping alteration minerals at Malmbjerg molybdenum deposit, central East Greenland, by Kohonen self-organizing maps and matched filter analysis of HyMap data. International Journal of Remote Sensing, 33, 939-961. Bedini, E. (2011). Mineral mapping in the Kap Simpson complex, central East Greenland using HyMap and ASTER remote sensing data. Advances in Space Research, 47, 60–73. Bedini, E. & Tukiainen, T. (2009). Using spectral mixture analysis of hyperspectral remote sensing data to map lithology of the Sarfartoq carbonatite complex, southern West Greenland. Geological Survey of Denmark and Greenland Bulletin, 17, 69-72. Bedini, E. (2009). Mapping lithology of the Sarfartoq carbonatite complex, southern West Greenland, using HyMap imaging spectrometer data. Remote Sensing of Environment, 113, 1208–1219. Boardman, J.W., & Kruse, F.A. (2011). Analysis of Imaging Spectrometer Data Using n Dimensional Geometry and a Mixture-Tuned Matched Filtering Approach. IEEE Transactions on Geoscience and Remote Sensing, 49, 4138–4152. Clark R.N. (1999). Spectroscopy of rocks and minerals, and principles of spectroscopy. In: Remote Sensing for the Earth Sciences (ed. Rencz, A. N.), John Wiley, New York, vol. 3, pp. 3–58. Conradsen, K., & Harpøth, O. (1984). Use of Landsat Multispectral Scanner data for detection and reconnaissance mapping of iron oxide staining in mineral exploration, central East Greenland. Economic Geology, 79, 1229–1244. Crosta, A.P., De Souza Filho, C.R., Azevedo, F., & Brodie, C. (2003). Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. International Journal of Remote Sensing, 24, 4233–4240. Di Tommaso, I., & Rubinstein, N. (2007). Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina. Ore Geology Reviews, 32, 275–290. Druecker, M., & Simpson, R.G. (2011). Advanced technical report on the Sarfartoq project West Greenland. Prepared for Hudson Resources Inc. 108 p. Gaffey, S.J. (1986). Spectral reflectance of-carbonate minerals in the visible and near infrared (0.35-2.55 microns): calcite, aragonite, and dolomite. American Mineralogist, 71, 151–162. Guha, A., Singh, V. K., Parveen, R., Kumar, K. V., Jeyaseelan, A. T., & Rao, E.D. (2013). Analysis of ASTER data for mapping bauxite rich pockets within high altitude lateritic bauxite, Jharkhand, India. International Journal of Applied Earth Observation and Geoinformation, 21, 184–194. Hunt G.R. (1982). Spectroscopic properties of rocks and minerals. In Handbook of Physical Properties of Rocks (ed. Carmichael, R. S.), CRC Press, pp. 295–385. Jones, A.P., Genge, M., & Carmody, L. (2013). Carbonate melts and carbonatites. Reviews in Mineralogy & Geochemistry, 75, 289–322. Knipling, E.B. (1970). Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote Sensing of Environment, 1, 155–159. Kumar, C., Shetty, A., Raval, S., Sharma, R., & Ray, P.C. (2015). Lithological Discrimination and Mapping using ASTER SWIR Data in the Udaipur area of Rajasthan, India. Procedia Earth and Planetary Science, 11, 180–188. Manolakis, D., Lockwood, R., & Cooley, T. (2016). Hyperspectral Imaging Remote Sensing: Physics, Sensors, and Algorithms. 706 p. Cambridge University Press. Mars, J. C., & Rowan, L. C. (2011). ASTER spectral analysis and lithologic mapping of the Khanneshin carbonatite volcano, Afghanistan. Geosphere, 7, 276–289. Ninomiya, Y., & Fu, B., (2016). Regional lithological mapping using ASTER-TIR data: case study for the Tibetan Plateau and the surrounding area. Geosciences, 6, 39. Obata, K., Tsuchida, S., & Iwao, K. (2015). Inter-Band Radiometric Comparison and Calibration of ASTER Visible and Near-Infrared Bands. Remote Sensing, 7, 15140–15160. Pour, A.B., Hashim, M., Park, Y., & Hong, J.K. (2017). Mapping alteration mineral zones and lithological units in Antarctic regions using spectral bands of ASTER remote sensing data. Geocarto International, 1–26. Pour, A.B., & Hashim, M. (2012). Identifying areas of high economic-potential copper mineralization using ASTER data in the Urumieh–Dokhtar Volcanic Belt, Iran. Advances in Space Research, 49, 753–769. Rajendran, S., & Nasir, S. (2015). Mapping of high pressure metamorphics in the As Sifah region, NE Oman using ASTER data. Advances in Space Research, 55, 1134–1157. Rasmussen, T.M., Thorning, L., Riisager, P., & Tukiainen, T. (2013). Airborne geophysical data from Greenland. Geology and Ore, Geological Survey of Denmark and Greenland, 22, 12 p. Rees, W.G., Tutubalina, O.V., & Golubeva, E.I. (2004). Reflectance spectra of subarctic lichens between 400 and 2400 nm. Remote Sensing of Environment, 90, 281–292. Rivard, B., & Arvidson, R.E. (1992). Utility of imaging spectrometry for lithologic mapping in Greenland. Photogrammetric Engineering & Remote Sensing, 58, 945–949. Rockwell, B.W., & Hofstra, A.H. (2008). Identification of quartz and carbonate minerals across northern Nevada using ASTER thermal infrared emissivity data—Implications for geologic mapping and mineral resource investigations in well-studied and frontier areas. Geosphere, 4, 218–246. Rowan, L.C., Mars, J.C., & Simpson, C.J. (2005). Lithologic mapping of the Mordor, NT, Australia ultramafic complex by using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Remote sensing of Environment, 99, 105–126. Rowan, L. C., & Mars, J. C. (2003). Lithologic mapping in the Mountain Pass, California area using advanced spaceborne thermal emission and reflection radiometer (ASTER) data. Remote sensing of Environment, 84, 350–366. Secher, K., Heaman, L. M., Nielsen, T. F. D., Jensen, S. M., Schjøth, F., & Creaser, R. A. (2009). Timing of kimberlite, carbonatite, and ultramafic lamprophyre emplacement in the alkaline province located 64–67 N in southern West Greenland. Lithos, 112, 400–406. Secher, K. (1986). Exploration of the Sarfartoq carbonatite complex southern West Greenland. Rapport Grønlands Geologiske Undersøgelse, 128, 89–101. Secher, K., & Larsen, L.M. (1980). Geology and mineralogy of Sarfartoq carbonatite complex, southern West Greenland. Lithos, 13, 199–212. Sieg, B., Drees, B., & Daniëls, F. J. (2006). Vegetation and altitudinal zonation in continental West Greenland. Meddelelser om Grønland Bioscience 57. 93 p. Son, Y.S., Kang, M.K., & Yoon, W.J. (2014). Lithological and mineralogical survey of the Oyu Tolgoi region, Southeastern Gobi, Mongolia using ASTER reflectance and emissivity data. International Journal of Applied Earth Observation and Geoinformation, 26, 205–216. Sørensen, E.V., & Guarnieri, P. (2018). Remote geological mapping using 3D photogrammetry: an example from Karrat, West Greenland. Geological Survey of Denmark and Greenland Bulletin, 41, 63–66. Tangestani, M. H., Mazhari, N., Agar, B., & Moore, F. (2008). Evaluating Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data for alteration zone enhancement in a semi‐arid area, northern Shahr‐e‐Babak, SE Iran. International Journal of Remote Sensing, 29, 2833–2850. Tayebi, M.H., Tangestani, M.H., Vincent, R.K., & Neal, D. (2014). Spectral properties and ASTER-based alteration mapping of Masahim volcano facies, SE Iran. Journal of Volcanology and Geothermal Research, 287, 40–50. Tukiainen, T., & Thomassen, B. (2010). Application of airborne hyperspectral data to mineral exploration in North-East Greenland. Geological Survey of Denmark and Greenland Bulletin, 20, 71–74. Tukiainen, T. & Thorning, L., 2005, Detection of kimberlitic rocks in West Greenland using airborne hyperspectral data: the Hyper-Green 2002 project. Geological Survey of Denmark and Greenland Bulletin, 7, 69–72. Winter J.D. (2001). An introduction to Igneous and Matamorphic Petrology. Prentice-Hall Inc. Yamaguchi, Y., Kahle, A., Tsu, H., Kawakami, T., & Pniel, M. (1998). Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). IEEE Transactions in Geoscience and Remote Sensing, 36, 1062–1071. Yamaguchi, Y., Fujisada, H., Kahle, A.B., Tsu, H., Kato, M., Watanabe, H., Sato, I., & Kudoh, M. (2001). ASTER instrument performance, operation status, and application to Earth sciences. In Geoscience and Remote Sensing Symposium, 2001. IGARSS'01. IEEE 2001 International (Vol. 3, pp. 1215–1216). IEEE.
https://periodicos.ufpe.br/revistas/jhrs/article/view/237716
doi:10.29150/jhrs.v8.2.p47-59
op_rights Direitos autorais 2018 Journal of Hyperspectral Remote Sensing - ISSN: 2237-2202
http://creativecommons.org/licenses/by-nc-nd/4.0
op_doi https://doi.org/10.29150/jhrs.v8.2.p47-59
container_title Journal of Hyperspectral Remote Sensing
container_volume 8
container_issue 2
container_start_page 47
_version_ 1768382816765083648
spelling ftunifpernambojs:oai:oai.periodicos.ufpe.br:article/237716 2023-06-11T04:09:06+02:00 Application of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral imagery to mineral and lithologic mapping in southern West Greenland Bedini, Enton 2018-10-03 application/pdf https://periodicos.ufpe.br/revistas/jhrs/article/view/237716 https://doi.org/10.29150/jhrs.v8.2.p47-59 eng eng UFPE https://periodicos.ufpe.br/revistas/jhrs/article/view/237716/30167 Abrams, M., Tsu, H., Hulley, G., Iwao, K., Pieri, D., Cudahy, T., & Kargel, J. (2015). The advanced spaceborne thermal emission and reflection radiometer (ASTER) after fifteen years: review of global products. International Journal of Applied Earth Observation and Geoinformation, 38, 292–301. Ager, C.M., & Milton, N.M. (1987). Spectral reflectance of lichens and their effects on the reflectance of rock substrates. Geophysics, 52, 898–906. Allaart, J.H. (1982). Geological Map of Greenland 1:500 000. Sheet 2, Frederikshåb Isblink – Søndre Strømfjord. Geological Survey of Greenland. Copenhagen, Denmark. Bedini, E., & Rasmussen, T.M. (2018). Use of airborne hyperspectral and gamma-ray spectroscopy data for mineral exploration at the Sarfartoq carbonatite complex, southern West Greenland. Geosciences Journal, 22, 641-651. Bedini, E. (2017). The use of hyperspectral remote sensing for mineral exploration: a review. Journal of Hyperspectral Remote Sensing, 7, 189-211. Bedini, E. (2012). Mapping alteration minerals at Malmbjerg molybdenum deposit, central East Greenland, by Kohonen self-organizing maps and matched filter analysis of HyMap data. International Journal of Remote Sensing, 33, 939-961. Bedini, E. (2011). Mineral mapping in the Kap Simpson complex, central East Greenland using HyMap and ASTER remote sensing data. Advances in Space Research, 47, 60–73. Bedini, E. & Tukiainen, T. (2009). Using spectral mixture analysis of hyperspectral remote sensing data to map lithology of the Sarfartoq carbonatite complex, southern West Greenland. Geological Survey of Denmark and Greenland Bulletin, 17, 69-72. Bedini, E. (2009). Mapping lithology of the Sarfartoq carbonatite complex, southern West Greenland, using HyMap imaging spectrometer data. Remote Sensing of Environment, 113, 1208–1219. Boardman, J.W., & Kruse, F.A. (2011). Analysis of Imaging Spectrometer Data Using n Dimensional Geometry and a Mixture-Tuned Matched Filtering Approach. IEEE Transactions on Geoscience and Remote Sensing, 49, 4138–4152. Clark R.N. (1999). Spectroscopy of rocks and minerals, and principles of spectroscopy. In: Remote Sensing for the Earth Sciences (ed. Rencz, A. N.), John Wiley, New York, vol. 3, pp. 3–58. Conradsen, K., & Harpøth, O. (1984). Use of Landsat Multispectral Scanner data for detection and reconnaissance mapping of iron oxide staining in mineral exploration, central East Greenland. Economic Geology, 79, 1229–1244. Crosta, A.P., De Souza Filho, C.R., Azevedo, F., & Brodie, C. (2003). Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. International Journal of Remote Sensing, 24, 4233–4240. Di Tommaso, I., & Rubinstein, N. (2007). Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina. Ore Geology Reviews, 32, 275–290. Druecker, M., & Simpson, R.G. (2011). Advanced technical report on the Sarfartoq project West Greenland. Prepared for Hudson Resources Inc. 108 p. Gaffey, S.J. (1986). Spectral reflectance of-carbonate minerals in the visible and near infrared (0.35-2.55 microns): calcite, aragonite, and dolomite. American Mineralogist, 71, 151–162. Guha, A., Singh, V. K., Parveen, R., Kumar, K. V., Jeyaseelan, A. T., & Rao, E.D. (2013). Analysis of ASTER data for mapping bauxite rich pockets within high altitude lateritic bauxite, Jharkhand, India. International Journal of Applied Earth Observation and Geoinformation, 21, 184–194. Hunt G.R. (1982). Spectroscopic properties of rocks and minerals. In Handbook of Physical Properties of Rocks (ed. Carmichael, R. S.), CRC Press, pp. 295–385. Jones, A.P., Genge, M., & Carmody, L. (2013). Carbonate melts and carbonatites. Reviews in Mineralogy & Geochemistry, 75, 289–322. Knipling, E.B. (1970). Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote Sensing of Environment, 1, 155–159. Kumar, C., Shetty, A., Raval, S., Sharma, R., & Ray, P.C. (2015). Lithological Discrimination and Mapping using ASTER SWIR Data in the Udaipur area of Rajasthan, India. Procedia Earth and Planetary Science, 11, 180–188. Manolakis, D., Lockwood, R., & Cooley, T. (2016). Hyperspectral Imaging Remote Sensing: Physics, Sensors, and Algorithms. 706 p. Cambridge University Press. Mars, J. C., & Rowan, L. C. (2011). ASTER spectral analysis and lithologic mapping of the Khanneshin carbonatite volcano, Afghanistan. Geosphere, 7, 276–289. Ninomiya, Y., & Fu, B., (2016). Regional lithological mapping using ASTER-TIR data: case study for the Tibetan Plateau and the surrounding area. Geosciences, 6, 39. Obata, K., Tsuchida, S., & Iwao, K. (2015). Inter-Band Radiometric Comparison and Calibration of ASTER Visible and Near-Infrared Bands. Remote Sensing, 7, 15140–15160. Pour, A.B., Hashim, M., Park, Y., & Hong, J.K. (2017). Mapping alteration mineral zones and lithological units in Antarctic regions using spectral bands of ASTER remote sensing data. Geocarto International, 1–26. Pour, A.B., & Hashim, M. (2012). Identifying areas of high economic-potential copper mineralization using ASTER data in the Urumieh–Dokhtar Volcanic Belt, Iran. Advances in Space Research, 49, 753–769. Rajendran, S., & Nasir, S. (2015). Mapping of high pressure metamorphics in the As Sifah region, NE Oman using ASTER data. Advances in Space Research, 55, 1134–1157. Rasmussen, T.M., Thorning, L., Riisager, P., & Tukiainen, T. (2013). Airborne geophysical data from Greenland. Geology and Ore, Geological Survey of Denmark and Greenland, 22, 12 p. Rees, W.G., Tutubalina, O.V., & Golubeva, E.I. (2004). Reflectance spectra of subarctic lichens between 400 and 2400 nm. Remote Sensing of Environment, 90, 281–292. Rivard, B., & Arvidson, R.E. (1992). Utility of imaging spectrometry for lithologic mapping in Greenland. Photogrammetric Engineering & Remote Sensing, 58, 945–949. Rockwell, B.W., & Hofstra, A.H. (2008). Identification of quartz and carbonate minerals across northern Nevada using ASTER thermal infrared emissivity data—Implications for geologic mapping and mineral resource investigations in well-studied and frontier areas. Geosphere, 4, 218–246. Rowan, L.C., Mars, J.C., & Simpson, C.J. (2005). Lithologic mapping of the Mordor, NT, Australia ultramafic complex by using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Remote sensing of Environment, 99, 105–126. Rowan, L. C., & Mars, J. C. (2003). Lithologic mapping in the Mountain Pass, California area using advanced spaceborne thermal emission and reflection radiometer (ASTER) data. Remote sensing of Environment, 84, 350–366. Secher, K., Heaman, L. M., Nielsen, T. F. D., Jensen, S. M., Schjøth, F., & Creaser, R. A. (2009). Timing of kimberlite, carbonatite, and ultramafic lamprophyre emplacement in the alkaline province located 64–67 N in southern West Greenland. Lithos, 112, 400–406. Secher, K. (1986). Exploration of the Sarfartoq carbonatite complex southern West Greenland. Rapport Grønlands Geologiske Undersøgelse, 128, 89–101. Secher, K., & Larsen, L.M. (1980). Geology and mineralogy of Sarfartoq carbonatite complex, southern West Greenland. Lithos, 13, 199–212. Sieg, B., Drees, B., & Daniëls, F. J. (2006). Vegetation and altitudinal zonation in continental West Greenland. Meddelelser om Grønland Bioscience 57. 93 p. Son, Y.S., Kang, M.K., & Yoon, W.J. (2014). Lithological and mineralogical survey of the Oyu Tolgoi region, Southeastern Gobi, Mongolia using ASTER reflectance and emissivity data. International Journal of Applied Earth Observation and Geoinformation, 26, 205–216. Sørensen, E.V., & Guarnieri, P. (2018). Remote geological mapping using 3D photogrammetry: an example from Karrat, West Greenland. Geological Survey of Denmark and Greenland Bulletin, 41, 63–66. Tangestani, M. H., Mazhari, N., Agar, B., & Moore, F. (2008). Evaluating Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data for alteration zone enhancement in a semi‐arid area, northern Shahr‐e‐Babak, SE Iran. International Journal of Remote Sensing, 29, 2833–2850. Tayebi, M.H., Tangestani, M.H., Vincent, R.K., & Neal, D. (2014). Spectral properties and ASTER-based alteration mapping of Masahim volcano facies, SE Iran. Journal of Volcanology and Geothermal Research, 287, 40–50. Tukiainen, T., & Thomassen, B. (2010). Application of airborne hyperspectral data to mineral exploration in North-East Greenland. Geological Survey of Denmark and Greenland Bulletin, 20, 71–74. Tukiainen, T. & Thorning, L., 2005, Detection of kimberlitic rocks in West Greenland using airborne hyperspectral data: the Hyper-Green 2002 project. Geological Survey of Denmark and Greenland Bulletin, 7, 69–72. Winter J.D. (2001). An introduction to Igneous and Matamorphic Petrology. Prentice-Hall Inc. Yamaguchi, Y., Kahle, A., Tsu, H., Kawakami, T., & Pniel, M. (1998). Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). IEEE Transactions in Geoscience and Remote Sensing, 36, 1062–1071. Yamaguchi, Y., Fujisada, H., Kahle, A.B., Tsu, H., Kato, M., Watanabe, H., Sato, I., & Kudoh, M. (2001). ASTER instrument performance, operation status, and application to Earth sciences. In Geoscience and Remote Sensing Symposium, 2001. IGARSS'01. IEEE 2001 International (Vol. 3, pp. 1215–1216). IEEE. https://periodicos.ufpe.br/revistas/jhrs/article/view/237716 doi:10.29150/jhrs.v8.2.p47-59 Direitos autorais 2018 Journal of Hyperspectral Remote Sensing - ISSN: 2237-2202 http://creativecommons.org/licenses/by-nc-nd/4.0 Journal of Hyperspectral Remote Sensing; v. 8, n. 2 (2018): Journal of Hyperspectral Remote Sensing; 47-59 2237-2202 Earth Science remote sensing ASTER mineral carbonatite Greenland info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2018 ftunifpernambojs https://doi.org/10.29150/jhrs.v8.2.p47-59 2023-04-18T10:55:54Z Remote sensing data acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were used for mineral and lithologic mapping at the Sarfartoq carbonatite complex area in southern West Greenland. The geology of the study area consists of carbonatites, fenites, hydrothermal alteration zones, gneisses, alluvial deposits etc. The Adaptive Coherence Estimator algorithm was used to analyze the remote sensing data. The reference spectra were selected from the imagery. The mapping results show the distribution of carbonatite, hydrothermally altered zones, fenite, and sericite. In addition, lichen and tundra green vegetation were also mapped. Due to the moderate spatial resolution of ASTER SWIR bands, it was not possible to detect and map the rock units in some parts of the study area. The study shows the possibilities and limitations of the use of the ASTER multispectral imagery for geological studies in the Arctic regions of West Greenland. The paper is the first reported study on the use of ASTER data for mineral and lithologic mapping in the Arctic regions of West Greenland. Article in Journal/Newspaper Arctic Greenland Sarfartoq Tundra Geological Survey of Denmark and Greenland Bulletin Portal de Periódicos - UFPE (Universidade Federal de Pernambuco) Arctic Greenland Journal of Hyperspectral Remote Sensing 8 2 47