A seismic study of the Krafla volcanic system, Iceland

Following a major crustal rifting episode centred on the Krafla volcanic system in Northeast Iceland, the local seismicity was monitored for three months using a dense network of single component seismometers. Initial earthquake locations were computed for 489 local events using a one-dimensional ve...

Full description

Bibliographic Details
Main Author: Arnott, Stuart K.
Format: Thesis
Language:unknown
Published: 1990
Subjects:
Online Access:http://etheses.dur.ac.uk/6526/
http://etheses.dur.ac.uk/6526/1/6526_3829.PDF
id ftunidurhamethes:oai:etheses.dur.ac.uk:6526
record_format openpolar
spelling ftunidurhamethes:oai:etheses.dur.ac.uk:6526 2023-05-15T16:49:12+02:00 A seismic study of the Krafla volcanic system, Iceland Arnott, Stuart K. 1990 application/pdf http://etheses.dur.ac.uk/6526/ http://etheses.dur.ac.uk/6526/1/6526_3829.PDF unknown oai:etheses.dur.ac.uk:6526 http://etheses.dur.ac.uk/6526/1/6526_3829.PDF Arnott, Stuart K. (1990) A seismic study of the Krafla volcanic system, Iceland. Doctoral thesis, Durham University. http://etheses.dur.ac.uk/6526/ Thesis NonPeerReviewed 1990 ftunidurhamethes 2022-09-23T14:14:12Z Following a major crustal rifting episode centred on the Krafla volcanic system in Northeast Iceland, the local seismicity was monitored for three months using a dense network of single component seismometers. Initial earthquake locations were computed for 489 local events using a one-dimensional velocity model derived from seismic refraction data. Activity was concentrated in clusters beneath a geothermal area within the Krafla caldera and below the Bjarnarflag geothermal well field to the south, and in a narrow linear zone coincident with a site of recent dyke injection. Events of magnitudes -2.4 to 2.1 were located. The b-value for the entire dataset is 0.77±0.10, and is lower for events at Bjarnarflag than for events in the dyke injection zone. Seismicity was continuous. A simultaneous inversion of 1771 P-wave arrival times was carried out to calculate the 3-d velocity structure and refine hypocentral locations. The derivative weight sum was used to identify the well-resolved volume. High velocity bodies at depth beneath the rim of the caldera are high density intrusives, probably gabbros. Volumes of low velocity coincide with zones of geothermal exploitation within the caldera and beneath Bjarnarflag, and result from intense fracturing and hydrothermal alteration. After relocation through the three-dimensional velocity structure, the spatial distribution of hypocentres is more focussed and considerably shallower than before. This led to a closer correlation between zones of seismicity and detailed features within the source volumes, such as geothermal reservoirs, fault surfaces and zones of known recent magmatic intrusion. Focal mechanisms were determined using P-wave polarity data for 153 of the best located earth quakes, of which 139 have double couple solutions. Fourteen events were non-double couple, 4 of which could be solved as either opening or closing tensile cracks assuming small circle nodal lines. The biasing effect of using incorrect hypocentres and an over-simplified velocity structure were ... Thesis Iceland Durham University: Durham e-Theses Bjarnarflag ENVELOPE(-16.867,-16.867,65.633,65.633) Krafla ENVELOPE(-16.747,-16.747,65.713,65.713)
institution Open Polar
collection Durham University: Durham e-Theses
op_collection_id ftunidurhamethes
language unknown
description Following a major crustal rifting episode centred on the Krafla volcanic system in Northeast Iceland, the local seismicity was monitored for three months using a dense network of single component seismometers. Initial earthquake locations were computed for 489 local events using a one-dimensional velocity model derived from seismic refraction data. Activity was concentrated in clusters beneath a geothermal area within the Krafla caldera and below the Bjarnarflag geothermal well field to the south, and in a narrow linear zone coincident with a site of recent dyke injection. Events of magnitudes -2.4 to 2.1 were located. The b-value for the entire dataset is 0.77±0.10, and is lower for events at Bjarnarflag than for events in the dyke injection zone. Seismicity was continuous. A simultaneous inversion of 1771 P-wave arrival times was carried out to calculate the 3-d velocity structure and refine hypocentral locations. The derivative weight sum was used to identify the well-resolved volume. High velocity bodies at depth beneath the rim of the caldera are high density intrusives, probably gabbros. Volumes of low velocity coincide with zones of geothermal exploitation within the caldera and beneath Bjarnarflag, and result from intense fracturing and hydrothermal alteration. After relocation through the three-dimensional velocity structure, the spatial distribution of hypocentres is more focussed and considerably shallower than before. This led to a closer correlation between zones of seismicity and detailed features within the source volumes, such as geothermal reservoirs, fault surfaces and zones of known recent magmatic intrusion. Focal mechanisms were determined using P-wave polarity data for 153 of the best located earth quakes, of which 139 have double couple solutions. Fourteen events were non-double couple, 4 of which could be solved as either opening or closing tensile cracks assuming small circle nodal lines. The biasing effect of using incorrect hypocentres and an over-simplified velocity structure were ...
format Thesis
author Arnott, Stuart K.
spellingShingle Arnott, Stuart K.
A seismic study of the Krafla volcanic system, Iceland
author_facet Arnott, Stuart K.
author_sort Arnott, Stuart K.
title A seismic study of the Krafla volcanic system, Iceland
title_short A seismic study of the Krafla volcanic system, Iceland
title_full A seismic study of the Krafla volcanic system, Iceland
title_fullStr A seismic study of the Krafla volcanic system, Iceland
title_full_unstemmed A seismic study of the Krafla volcanic system, Iceland
title_sort seismic study of the krafla volcanic system, iceland
publishDate 1990
url http://etheses.dur.ac.uk/6526/
http://etheses.dur.ac.uk/6526/1/6526_3829.PDF
long_lat ENVELOPE(-16.867,-16.867,65.633,65.633)
ENVELOPE(-16.747,-16.747,65.713,65.713)
geographic Bjarnarflag
Krafla
geographic_facet Bjarnarflag
Krafla
genre Iceland
genre_facet Iceland
op_relation oai:etheses.dur.ac.uk:6526
http://etheses.dur.ac.uk/6526/1/6526_3829.PDF
Arnott, Stuart K. (1990) A seismic study of the Krafla volcanic system, Iceland. Doctoral thesis, Durham University.
http://etheses.dur.ac.uk/6526/
_version_ 1766039347862175744