Ice stream dynamics and pro-glacial lake evolution along the north-western margin of the Laurentide Ice Sheet.

Ice streams drain ice sheets rapidly and are key regulators of their mass balance in both palaeo and contemporary settings. Present day ice streams can be identified, and their short-term activity monitored, by measuring the surface velocity of ice sheets. However, in order to understand their long-...

Full description

Bibliographic Details
Main Author: BROWN, VICTORIA,HELEN
Format: Thesis
Language:unknown
Published: 2012
Subjects:
Online Access:http://etheses.dur.ac.uk/5917/
http://etheses.dur.ac.uk/5917/1/Brown_V_Thesiscorrected.pdf
http://etheses.dur.ac.uk/5917/2/Final_map.pdf
id ftunidurhamethes:oai:etheses.dur.ac.uk:5917
record_format openpolar
spelling ftunidurhamethes:oai:etheses.dur.ac.uk:5917 2023-05-15T16:40:14+02:00 Ice stream dynamics and pro-glacial lake evolution along the north-western margin of the Laurentide Ice Sheet. BROWN, VICTORIA,HELEN 2012 application/pdf http://etheses.dur.ac.uk/5917/ http://etheses.dur.ac.uk/5917/1/Brown_V_Thesiscorrected.pdf http://etheses.dur.ac.uk/5917/2/Final_map.pdf unknown oai:etheses.dur.ac.uk:5917 http://etheses.dur.ac.uk/5917/1/Brown_V_Thesiscorrected.pdf http://etheses.dur.ac.uk/5917/2/Final_map.pdf BROWN, VICTORIA,HELEN (2012) Ice stream dynamics and pro-glacial lake evolution along the north-western margin of the Laurentide Ice Sheet. Doctoral thesis, Durham University. http://etheses.dur.ac.uk/5917/ Ice stream Laurentide pro-glacial lake geomorphology Thesis NonPeerReviewed 2012 ftunidurhamethes 2022-09-23T14:13:55Z Ice streams drain ice sheets rapidly and are key regulators of their mass balance in both palaeo and contemporary settings. Present day ice streams can be identified, and their short-term activity monitored, by measuring the surface velocity of ice sheets. However, in order to understand their long-term behaviour, reconstructions of their activity in palaeo-ice sheets are necessary. Numerous palaeo-ice streams have been identified in the Laurentide Ice Sheet (LIS) and this has considerably refined our understanding of its dynamic behaviour and links to the ocean-climate system. In the north-west sector of the LIS, ice streaming has been hypothesised but detailed mapping of the area has not been carried out and so our understanding of palaeo-ice streaming is limited compared to other areas. This thesis presents a new ice sheet reconstruction of the north-west sector of the LIS that incorporates ice stream activity and pro-glacial lake evolution. Mapping and analysis was carried out using a range of remote sensing imagery and Digital Elevation Models (DEMs), which enabled widespread, rapid and systematic coverage of the 800,000 km2 study area. More than 95,000 bedforms have been mapped, including glacial lineations, eskers, moraines and palaeo-channels. These data permit the identification and classification of 272 flow-sets which have been dated using an existing 14C database and relative cross-cutting relationships. Flow-sets are used to construct a robust and self-consistent ice sheet reconstruction, incorporating the activity of ice streams at a temporal resolution of up to 250-500 years. The reconstruction reveals major changes in ice sheet configuration during Late Wisconsinan deglaciation and indicates that margin retreat was complex and dominated by the dynamic spatial and temporal evolution of seven ice stream systems. These ice streams were not synchronous but a peak in their activity occurred between 15 and 13 ka. Their location and behaviour was influenced by the availability of soft sediments, but ... Thesis Ice Sheet Durham University: Durham e-Theses Glacial Lake ENVELOPE(-129.463,-129.463,58.259,58.259)
institution Open Polar
collection Durham University: Durham e-Theses
op_collection_id ftunidurhamethes
language unknown
topic Ice stream
Laurentide
pro-glacial lake
geomorphology
spellingShingle Ice stream
Laurentide
pro-glacial lake
geomorphology
BROWN, VICTORIA,HELEN
Ice stream dynamics and pro-glacial lake evolution along the north-western margin of the Laurentide Ice Sheet.
topic_facet Ice stream
Laurentide
pro-glacial lake
geomorphology
description Ice streams drain ice sheets rapidly and are key regulators of their mass balance in both palaeo and contemporary settings. Present day ice streams can be identified, and their short-term activity monitored, by measuring the surface velocity of ice sheets. However, in order to understand their long-term behaviour, reconstructions of their activity in palaeo-ice sheets are necessary. Numerous palaeo-ice streams have been identified in the Laurentide Ice Sheet (LIS) and this has considerably refined our understanding of its dynamic behaviour and links to the ocean-climate system. In the north-west sector of the LIS, ice streaming has been hypothesised but detailed mapping of the area has not been carried out and so our understanding of palaeo-ice streaming is limited compared to other areas. This thesis presents a new ice sheet reconstruction of the north-west sector of the LIS that incorporates ice stream activity and pro-glacial lake evolution. Mapping and analysis was carried out using a range of remote sensing imagery and Digital Elevation Models (DEMs), which enabled widespread, rapid and systematic coverage of the 800,000 km2 study area. More than 95,000 bedforms have been mapped, including glacial lineations, eskers, moraines and palaeo-channels. These data permit the identification and classification of 272 flow-sets which have been dated using an existing 14C database and relative cross-cutting relationships. Flow-sets are used to construct a robust and self-consistent ice sheet reconstruction, incorporating the activity of ice streams at a temporal resolution of up to 250-500 years. The reconstruction reveals major changes in ice sheet configuration during Late Wisconsinan deglaciation and indicates that margin retreat was complex and dominated by the dynamic spatial and temporal evolution of seven ice stream systems. These ice streams were not synchronous but a peak in their activity occurred between 15 and 13 ka. Their location and behaviour was influenced by the availability of soft sediments, but ...
format Thesis
author BROWN, VICTORIA,HELEN
author_facet BROWN, VICTORIA,HELEN
author_sort BROWN, VICTORIA,HELEN
title Ice stream dynamics and pro-glacial lake evolution along the north-western margin of the Laurentide Ice Sheet.
title_short Ice stream dynamics and pro-glacial lake evolution along the north-western margin of the Laurentide Ice Sheet.
title_full Ice stream dynamics and pro-glacial lake evolution along the north-western margin of the Laurentide Ice Sheet.
title_fullStr Ice stream dynamics and pro-glacial lake evolution along the north-western margin of the Laurentide Ice Sheet.
title_full_unstemmed Ice stream dynamics and pro-glacial lake evolution along the north-western margin of the Laurentide Ice Sheet.
title_sort ice stream dynamics and pro-glacial lake evolution along the north-western margin of the laurentide ice sheet.
publishDate 2012
url http://etheses.dur.ac.uk/5917/
http://etheses.dur.ac.uk/5917/1/Brown_V_Thesiscorrected.pdf
http://etheses.dur.ac.uk/5917/2/Final_map.pdf
long_lat ENVELOPE(-129.463,-129.463,58.259,58.259)
geographic Glacial Lake
geographic_facet Glacial Lake
genre Ice Sheet
genre_facet Ice Sheet
op_relation oai:etheses.dur.ac.uk:5917
http://etheses.dur.ac.uk/5917/1/Brown_V_Thesiscorrected.pdf
http://etheses.dur.ac.uk/5917/2/Final_map.pdf
BROWN, VICTORIA,HELEN (2012) Ice stream dynamics and pro-glacial lake evolution along the north-western margin of the Laurentide Ice Sheet. Doctoral thesis, Durham University.
http://etheses.dur.ac.uk/5917/
_version_ 1766030607930884096