Enzyme activity in bicontinuous microemulsions

The thesis deals with enzymatic catalysis in bicontinuous microemulsions, which consist of a dynamic network of oil and water domains separated by a monolayer of surfactant molecules, i.e. the interfacial layer. Hence, a microemulsion with the composition buffer – n-octane – nonionic surfactant was...

Full description

Bibliographic Details
Main Author: STEUDLE, ANNE,KATHARINA
Format: Thesis
Language:unknown
Published: 2015
Subjects:
Online Access:http://etheses.dur.ac.uk/11178/
http://etheses.dur.ac.uk/11178/1/Thesis.pdf
id ftunidurhamethes:oai:etheses.dur.ac.uk:11178
record_format openpolar
spelling ftunidurhamethes:oai:etheses.dur.ac.uk:11178 2023-05-15T14:02:04+02:00 Enzyme activity in bicontinuous microemulsions STEUDLE, ANNE,KATHARINA 2015 application/pdf http://etheses.dur.ac.uk/11178/ http://etheses.dur.ac.uk/11178/1/Thesis.pdf unknown oai:etheses.dur.ac.uk:11178 http://etheses.dur.ac.uk/11178/1/Thesis.pdf STEUDLE, ANNE,KATHARINA (2015) Enzyme activity in bicontinuous microemulsions. Doctoral thesis, Durham University. http://etheses.dur.ac.uk/11178/ Thesis NonPeerReviewed 2015 ftunidurhamethes 2022-09-23T14:16:26Z The thesis deals with enzymatic catalysis in bicontinuous microemulsions, which consist of a dynamic network of oil and water domains separated by a monolayer of surfactant molecules, i.e. the interfacial layer. Hence, a microemulsion with the composition buffer – n-octane – nonionic surfactant was tested as a reaction medium for enzyme-catalysed reactions with the emphasis on the conversion of hydrophobic substrates, which are difficult to convert in aqueous buffer solutions. The first part of the thesis focuses on the activity of the lipase B from Candida antarctica (CalB) in bicontinuous microemulsions. First, the optimum reaction conditions determined by temperature, pH and ionic strength were evaluated. Second, it was found that CalB concentrations which showed fast adsorption at an oil-water interface also displayed fast reaction rates. Additionally, no saturation was found for substrate concentrations up to 40 mM of p-nitrophenyl laurate, which according to Michaelis-Menten suggests a Km >> 40 mM. Third, the composition of the interfacial layer had a distinct influence on CalB activity, e.g. the presence of sugar surfactants (b-C10G1) or phospholipids (DOPC) enhanced or decreased CalB activity, respectively. The second part of the thesis describes the activity of the squalene-hopene cyclase from Alicyclobacillus acidocaldarius (Aac SHC) converting its natural substrate squalene in bicontinuous microemulsions. The Aac SHC activity studies revealed a linear dependence on enzyme concentration and a hyperbolic curve for the substrate concentration, with a saturation of Aac SHC at substrate concentrations above 20 mM. The composition of the interfacial layer was found to have neither a significant influence on the activity nor on the conformation of Aac SHC. In summary, good turnover rates were achieved for interfacially-active enzymes (CalB) due to enhanced enzyme-substrate contact at the interfacial layer. For water-soluble enzymes (Aac SHC), a distinctly enhanced selectivity was discovered, although ... Thesis Antarc* Antarctica Durham University: Durham e-Theses
institution Open Polar
collection Durham University: Durham e-Theses
op_collection_id ftunidurhamethes
language unknown
description The thesis deals with enzymatic catalysis in bicontinuous microemulsions, which consist of a dynamic network of oil and water domains separated by a monolayer of surfactant molecules, i.e. the interfacial layer. Hence, a microemulsion with the composition buffer – n-octane – nonionic surfactant was tested as a reaction medium for enzyme-catalysed reactions with the emphasis on the conversion of hydrophobic substrates, which are difficult to convert in aqueous buffer solutions. The first part of the thesis focuses on the activity of the lipase B from Candida antarctica (CalB) in bicontinuous microemulsions. First, the optimum reaction conditions determined by temperature, pH and ionic strength were evaluated. Second, it was found that CalB concentrations which showed fast adsorption at an oil-water interface also displayed fast reaction rates. Additionally, no saturation was found for substrate concentrations up to 40 mM of p-nitrophenyl laurate, which according to Michaelis-Menten suggests a Km >> 40 mM. Third, the composition of the interfacial layer had a distinct influence on CalB activity, e.g. the presence of sugar surfactants (b-C10G1) or phospholipids (DOPC) enhanced or decreased CalB activity, respectively. The second part of the thesis describes the activity of the squalene-hopene cyclase from Alicyclobacillus acidocaldarius (Aac SHC) converting its natural substrate squalene in bicontinuous microemulsions. The Aac SHC activity studies revealed a linear dependence on enzyme concentration and a hyperbolic curve for the substrate concentration, with a saturation of Aac SHC at substrate concentrations above 20 mM. The composition of the interfacial layer was found to have neither a significant influence on the activity nor on the conformation of Aac SHC. In summary, good turnover rates were achieved for interfacially-active enzymes (CalB) due to enhanced enzyme-substrate contact at the interfacial layer. For water-soluble enzymes (Aac SHC), a distinctly enhanced selectivity was discovered, although ...
format Thesis
author STEUDLE, ANNE,KATHARINA
spellingShingle STEUDLE, ANNE,KATHARINA
Enzyme activity in bicontinuous microemulsions
author_facet STEUDLE, ANNE,KATHARINA
author_sort STEUDLE, ANNE,KATHARINA
title Enzyme activity in bicontinuous microemulsions
title_short Enzyme activity in bicontinuous microemulsions
title_full Enzyme activity in bicontinuous microemulsions
title_fullStr Enzyme activity in bicontinuous microemulsions
title_full_unstemmed Enzyme activity in bicontinuous microemulsions
title_sort enzyme activity in bicontinuous microemulsions
publishDate 2015
url http://etheses.dur.ac.uk/11178/
http://etheses.dur.ac.uk/11178/1/Thesis.pdf
genre Antarc*
Antarctica
genre_facet Antarc*
Antarctica
op_relation oai:etheses.dur.ac.uk:11178
http://etheses.dur.ac.uk/11178/1/Thesis.pdf
STEUDLE, ANNE,KATHARINA (2015) Enzyme activity in bicontinuous microemulsions. Doctoral thesis, Durham University.
http://etheses.dur.ac.uk/11178/
_version_ 1766272158611275776