Integrated remote sensing and wavelet analyses for screening short-term teleconnection patterns in northeast America

Global sea surface temperature (SST) anomalies have an inherent effect on vegetation dynamics and precipitation processes throughout the continental United States (U.S.). SST variations have been correlated with precipitation patterns via ocean-atmospheric interactions known as climate teleconnectio...

Full description

Bibliographic Details
Format: Text
Language:English
Published: STARS 2013
Subjects:
Online Access:https://stars.library.ucf.edu/facultybib2010/4441
id ftunicentralflor:oai:stars.library.ucf.edu:facultybib2010-5440
record_format openpolar
spelling ftunicentralflor:oai:stars.library.ucf.edu:facultybib2010-5440 2023-05-15T17:32:57+02:00 Integrated remote sensing and wavelet analyses for screening short-term teleconnection patterns in northeast America 2013-01-01T08:00:00Z https://stars.library.ucf.edu/facultybib2010/4441 English eng STARS https://stars.library.ucf.edu/facultybib2010/4441 Faculty Bibliography 2010s Climate change Hydrometeorology Precipitation Sea surface temperature Teleconnection patterns Vegetation cover SEA-SURFACE TEMPERATURE NINO-SOUTHERN-OSCILLATION ATLANTIC-OCEAN CLIMATE NOISE NEW-ENGLAND VARIABILITY VEGETATION ANOMALIES COHERENCE Engineering Civil Geosciences Multidisciplinary Water Resources text 2013 ftunicentralflor 2021-12-21T08:56:41Z Global sea surface temperature (SST) anomalies have an inherent effect on vegetation dynamics and precipitation processes throughout the continental United States (U.S.). SST variations have been correlated with precipitation patterns via ocean-atmospheric interactions known as climate teleconnections. Prior research has demonstrated that understanding excitation mechanisms of the teleconnection patterns can be instrumental for climate prediction across a wide region at sub-continental scales, yet these studies tend to have large uncertainties in estimates by assuming linearity when examining teleconnection signals. The co-existence of non-stationary and nonlinear signals embedded in SST anomalies makes the identification of the teleconnection patterns difficult at the local scale. This study explores the short-term (10-year) frequencies (i.e., interannual and seasonal) embedded in the non-stationary teleconnection signals between SST at the North Atlantic and North Pacific oceans and the responses of terrestrial greenness and precipitation along multiple pristine sites in northeast U.S., including (I) White Mountain National Forest - Pemigewasset Wilderness, (2) Green Mountain National Forest - Lye Brook Wilderness, and (3) Adirondack State Park - Siamese Ponds Wilderness. Each site was selected to avoid anthropogenic influences that may otherwise mask climate teleconnection signals. Lagged pixel-wise linear teleconnection analysis based on remote sensing satellite images across anomalous global SST datasets found significant correlation regions between SST and these terrestrial sites. With the aid of wavelet analyses including continuous wavelet transform, cross-wavelet analysis, and wavelet coherency analysis, nonlinear and non-stationary signals exhibit salient covariations at biennial and triennial frequencies between terrestrial responses and SST anomalies across oceanic regions in agreement with the El Nino Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO) signals. Multiple regression analysis of the combined ocean indices explained up to 50% of the greenness and 42% of the precipitation in the study sites. These identified short-term signals in association with some hydrometeorological forcing processes of circumglobal teleconnection can improve the understanding and projection of the climate change impacts at local scales and harness the interannual periodicity information for future precipitation and greenness projections. (C) 2013 Elsevier B.V. All rights reserved. Text North Atlantic North Atlantic oscillation University of Central Florida (UCF): STARS (Showcase of Text, Archives, Research & Scholarship) Green Mountain ENVELOPE(-135.921,-135.921,61.833,61.833) Pacific
institution Open Polar
collection University of Central Florida (UCF): STARS (Showcase of Text, Archives, Research & Scholarship)
op_collection_id ftunicentralflor
language English
topic Climate change
Hydrometeorology
Precipitation
Sea surface
temperature
Teleconnection patterns
Vegetation cover
SEA-SURFACE TEMPERATURE
NINO-SOUTHERN-OSCILLATION
ATLANTIC-OCEAN
CLIMATE NOISE
NEW-ENGLAND
VARIABILITY
VEGETATION
ANOMALIES
COHERENCE
Engineering
Civil
Geosciences
Multidisciplinary
Water Resources
spellingShingle Climate change
Hydrometeorology
Precipitation
Sea surface
temperature
Teleconnection patterns
Vegetation cover
SEA-SURFACE TEMPERATURE
NINO-SOUTHERN-OSCILLATION
ATLANTIC-OCEAN
CLIMATE NOISE
NEW-ENGLAND
VARIABILITY
VEGETATION
ANOMALIES
COHERENCE
Engineering
Civil
Geosciences
Multidisciplinary
Water Resources
Integrated remote sensing and wavelet analyses for screening short-term teleconnection patterns in northeast America
topic_facet Climate change
Hydrometeorology
Precipitation
Sea surface
temperature
Teleconnection patterns
Vegetation cover
SEA-SURFACE TEMPERATURE
NINO-SOUTHERN-OSCILLATION
ATLANTIC-OCEAN
CLIMATE NOISE
NEW-ENGLAND
VARIABILITY
VEGETATION
ANOMALIES
COHERENCE
Engineering
Civil
Geosciences
Multidisciplinary
Water Resources
description Global sea surface temperature (SST) anomalies have an inherent effect on vegetation dynamics and precipitation processes throughout the continental United States (U.S.). SST variations have been correlated with precipitation patterns via ocean-atmospheric interactions known as climate teleconnections. Prior research has demonstrated that understanding excitation mechanisms of the teleconnection patterns can be instrumental for climate prediction across a wide region at sub-continental scales, yet these studies tend to have large uncertainties in estimates by assuming linearity when examining teleconnection signals. The co-existence of non-stationary and nonlinear signals embedded in SST anomalies makes the identification of the teleconnection patterns difficult at the local scale. This study explores the short-term (10-year) frequencies (i.e., interannual and seasonal) embedded in the non-stationary teleconnection signals between SST at the North Atlantic and North Pacific oceans and the responses of terrestrial greenness and precipitation along multiple pristine sites in northeast U.S., including (I) White Mountain National Forest - Pemigewasset Wilderness, (2) Green Mountain National Forest - Lye Brook Wilderness, and (3) Adirondack State Park - Siamese Ponds Wilderness. Each site was selected to avoid anthropogenic influences that may otherwise mask climate teleconnection signals. Lagged pixel-wise linear teleconnection analysis based on remote sensing satellite images across anomalous global SST datasets found significant correlation regions between SST and these terrestrial sites. With the aid of wavelet analyses including continuous wavelet transform, cross-wavelet analysis, and wavelet coherency analysis, nonlinear and non-stationary signals exhibit salient covariations at biennial and triennial frequencies between terrestrial responses and SST anomalies across oceanic regions in agreement with the El Nino Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO) signals. Multiple regression analysis of the combined ocean indices explained up to 50% of the greenness and 42% of the precipitation in the study sites. These identified short-term signals in association with some hydrometeorological forcing processes of circumglobal teleconnection can improve the understanding and projection of the climate change impacts at local scales and harness the interannual periodicity information for future precipitation and greenness projections. (C) 2013 Elsevier B.V. All rights reserved.
format Text
title Integrated remote sensing and wavelet analyses for screening short-term teleconnection patterns in northeast America
title_short Integrated remote sensing and wavelet analyses for screening short-term teleconnection patterns in northeast America
title_full Integrated remote sensing and wavelet analyses for screening short-term teleconnection patterns in northeast America
title_fullStr Integrated remote sensing and wavelet analyses for screening short-term teleconnection patterns in northeast America
title_full_unstemmed Integrated remote sensing and wavelet analyses for screening short-term teleconnection patterns in northeast America
title_sort integrated remote sensing and wavelet analyses for screening short-term teleconnection patterns in northeast america
publisher STARS
publishDate 2013
url https://stars.library.ucf.edu/facultybib2010/4441
long_lat ENVELOPE(-135.921,-135.921,61.833,61.833)
geographic Green Mountain
Pacific
geographic_facet Green Mountain
Pacific
genre North Atlantic
North Atlantic oscillation
genre_facet North Atlantic
North Atlantic oscillation
op_source Faculty Bibliography 2010s
op_relation https://stars.library.ucf.edu/facultybib2010/4441
_version_ 1766131275082498048