110 years of temperature observations at Orcadas Antarctic Station: Multidecadal variability

There is growing evidence of significant changes in components of the Antarctic climate system, an important issue given the influence Antarctica has on global climate. It is important to infer to what extent these regional changes could be attributed to human-induced processes and to what extent to...

Full description

Bibliographic Details
Main Authors: Zitto, M.E., Barrucand, M.G., Piotrkowski, R., Canziani, P.O.
Format: Journal/Newspaper
Language:unknown
Subjects:
Online Access:https://hdl.handle.net/20.500.12110/paper_08998418_v36_n2_p809_Zitto
id ftunibueairesbd:todo:paper_08998418_v36_n2_p809_Zitto
record_format openpolar
spelling ftunibueairesbd:todo:paper_08998418_v36_n2_p809_Zitto 2023-10-29T02:31:03+01:00 110 years of temperature observations at Orcadas Antarctic Station: Multidecadal variability Zitto, M.E. Barrucand, M.G. Piotrkowski, R. Canziani, P.O. https://hdl.handle.net/20.500.12110/paper_08998418_v36_n2_p809_Zitto unknown http://hdl.handle.net/20.500.12110/paper_08998418_v36_n2_p809_Zitto info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar Antarctica Climate change Multidecadal variability Surface temperature Temperature trend Wavelet transform Atmospheric temperature Isotopes Mathematical transformations Piecewise linear techniques Surface properties Wavelet transforms Meteorological observation Oxygen isotope records Seasonal surface temperature Surface temperatures Temperature observations Temperature trends cooling decadal variation global climate regional climate Argentina JOUR ftunibueairesbd https://doi.org/20.500.12110/paper_08998418_v36_n2_p809_Zitto 2023-10-05T01:30:56Z There is growing evidence of significant changes in components of the Antarctic climate system, an important issue given the influence Antarctica has on global climate. It is important to infer to what extent these regional changes could be attributed to human-induced processes and to what extent to natural variability. Standard methods such as linear trend estimates or piecewise linear trends can be inadequate because they may result in erratic, non-systematic results, particularly if different scales of variability are present in each record and various records are to be compared. The Orcadas Antarctic Station (Argentina), with daily surface meteorological observations since April 1903, provides Antarctica's longest observational record. This study analyses the Orcadas seasonal surface temperature variability. Multidecadal variability and short-term trends are studied to provide an improved assessment of climate evolution and necessary information for the determination of mechanisms driving regional/local change. A combined method using wavelet transform (WT), non-linear statistical model approaches and derivative of fits is developed. This methodology is also applied for validation and comparison to the Gomez ice core oxygen isotope record for the 1857-2006 and 1903-2006 time intervals. Significant quasi 50-year and quasi 20-year variability bands were obtained, both for the quarterly and seasonal Orcadas temperature records, with warming (cooling) periods detected between 1903-1912, 1927-1961 and 1972-2004 (1912-1927 and 1962-1972). If seasons are considered, the only one with a fairly sustained warming is summer, where actual cooling is observed only at the beginning, prior to the early 1930s. Quasi 50-year variability was also detected in the Gomez record. Long periods are obtained in the model fits, longer than the time series, which varied with window length. Although not representing variability cycles, they could represent the best fit of the non-linear, non oscillating asymptotic stationary component ... Journal/Newspaper Antarc* Antarctic Antarctica ice core Biblioteca Digital FCEN-UBA (Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires)
institution Open Polar
collection Biblioteca Digital FCEN-UBA (Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires)
op_collection_id ftunibueairesbd
language unknown
topic Antarctica
Climate change
Multidecadal variability
Surface temperature
Temperature trend
Wavelet transform
Atmospheric temperature
Isotopes
Mathematical transformations
Piecewise linear techniques
Surface properties
Wavelet transforms
Meteorological observation
Oxygen isotope records
Seasonal surface temperature
Surface temperatures
Temperature observations
Temperature trends
cooling
decadal variation
global climate
regional climate
Argentina
spellingShingle Antarctica
Climate change
Multidecadal variability
Surface temperature
Temperature trend
Wavelet transform
Atmospheric temperature
Isotopes
Mathematical transformations
Piecewise linear techniques
Surface properties
Wavelet transforms
Meteorological observation
Oxygen isotope records
Seasonal surface temperature
Surface temperatures
Temperature observations
Temperature trends
cooling
decadal variation
global climate
regional climate
Argentina
Zitto, M.E.
Barrucand, M.G.
Piotrkowski, R.
Canziani, P.O.
110 years of temperature observations at Orcadas Antarctic Station: Multidecadal variability
topic_facet Antarctica
Climate change
Multidecadal variability
Surface temperature
Temperature trend
Wavelet transform
Atmospheric temperature
Isotopes
Mathematical transformations
Piecewise linear techniques
Surface properties
Wavelet transforms
Meteorological observation
Oxygen isotope records
Seasonal surface temperature
Surface temperatures
Temperature observations
Temperature trends
cooling
decadal variation
global climate
regional climate
Argentina
description There is growing evidence of significant changes in components of the Antarctic climate system, an important issue given the influence Antarctica has on global climate. It is important to infer to what extent these regional changes could be attributed to human-induced processes and to what extent to natural variability. Standard methods such as linear trend estimates or piecewise linear trends can be inadequate because they may result in erratic, non-systematic results, particularly if different scales of variability are present in each record and various records are to be compared. The Orcadas Antarctic Station (Argentina), with daily surface meteorological observations since April 1903, provides Antarctica's longest observational record. This study analyses the Orcadas seasonal surface temperature variability. Multidecadal variability and short-term trends are studied to provide an improved assessment of climate evolution and necessary information for the determination of mechanisms driving regional/local change. A combined method using wavelet transform (WT), non-linear statistical model approaches and derivative of fits is developed. This methodology is also applied for validation and comparison to the Gomez ice core oxygen isotope record for the 1857-2006 and 1903-2006 time intervals. Significant quasi 50-year and quasi 20-year variability bands were obtained, both for the quarterly and seasonal Orcadas temperature records, with warming (cooling) periods detected between 1903-1912, 1927-1961 and 1972-2004 (1912-1927 and 1962-1972). If seasons are considered, the only one with a fairly sustained warming is summer, where actual cooling is observed only at the beginning, prior to the early 1930s. Quasi 50-year variability was also detected in the Gomez record. Long periods are obtained in the model fits, longer than the time series, which varied with window length. Although not representing variability cycles, they could represent the best fit of the non-linear, non oscillating asymptotic stationary component ...
format Journal/Newspaper
author Zitto, M.E.
Barrucand, M.G.
Piotrkowski, R.
Canziani, P.O.
author_facet Zitto, M.E.
Barrucand, M.G.
Piotrkowski, R.
Canziani, P.O.
author_sort Zitto, M.E.
title 110 years of temperature observations at Orcadas Antarctic Station: Multidecadal variability
title_short 110 years of temperature observations at Orcadas Antarctic Station: Multidecadal variability
title_full 110 years of temperature observations at Orcadas Antarctic Station: Multidecadal variability
title_fullStr 110 years of temperature observations at Orcadas Antarctic Station: Multidecadal variability
title_full_unstemmed 110 years of temperature observations at Orcadas Antarctic Station: Multidecadal variability
title_sort 110 years of temperature observations at orcadas antarctic station: multidecadal variability
url https://hdl.handle.net/20.500.12110/paper_08998418_v36_n2_p809_Zitto
genre Antarc*
Antarctic
Antarctica
ice core
genre_facet Antarc*
Antarctic
Antarctica
ice core
op_relation http://hdl.handle.net/20.500.12110/paper_08998418_v36_n2_p809_Zitto
op_rights info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
op_doi https://doi.org/20.500.12110/paper_08998418_v36_n2_p809_Zitto
_version_ 1781065142769811456