Nonbaryonic dark matter and scalar field coupled with a transversal interaction plus decoupled radiation

We analyze a universe filled with interacting dark matter, a scalar field accommodated as dark radiation along with dark energy plus a decoupled radiation term within the framework of the spatially flat Friedmann-Robertson-Walker (FRW) spacetime. We work in a three-dimensional internal space spanned...

Full description

Bibliographic Details
Main Authors: Chimento, Luis Pascual, Richarte, Martín Gustavo
Language:unknown
Published: 2013
Subjects:
Online Access:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14346044_v73_n7_p1_Chimento
https://hdl.handle.net/20.500.12110/paper_14346044_v73_n7_p1_Chimento
Description
Summary:We analyze a universe filled with interacting dark matter, a scalar field accommodated as dark radiation along with dark energy plus a decoupled radiation term within the framework of the spatially flat Friedmann-Robertson-Walker (FRW) spacetime. We work in a three-dimensional internal space spanned by the interaction vector and use a transversal interaction Qt for solving the source equation in order to find all the interacting component energy densities. We asymptotically reconstruct the scalar field and potential from an early radiation era to the late dominate dark energy one, passing through an intermediate epoch dominated by dark matter. We apply the χ2 method to the updated observational Hubble data for constraining the cosmic parameters, contrast with the Union 2 sample of supernovae, and analyze the amount of dark energy in the radiation era. It turns out that our model fulfills the severe bound of Ωφ{symbol}(z≃1100)<0.018 at 2σ level, is consistent with the recent analysis that includes cosmic microwave background anisotropy measurements from the Atacama Cosmology Telescope and the South Pole Telescope along with the future constraints achievable by Planck and CMBPol experiments, and satisfies the stringent bound Ωφ{symbol}(z≃1010)<0.04 at 2σ level in the big-bang nucleosynthesis epoch. © 2013 Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica. Fil:Chimento, L.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Richarte, M.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.