Arctic sea ice data assimilation combining an ensemble Kalman filter with a novel Lagrangian sea ice model for the winter 2019–2020

Advanced data assimilation (DA) methods, widely used in geophysical and climate studies to merge observations with numerical models, can improve state estimates and consequent forecasts. We interface the deterministic ensemble Kalman filter (DEnKF) to the Lagrangian neXt generation Sea Ice Model, ne...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Cheng, Sukun, Chen, Yumeng, Aydoğdu, Ali, Bertino, Laurent, Carrassi, Alberto, Rampal, Pierre, Jones, Christopher K. R. T.
Format: Article in Journal/Newspaper
Language:English
Published: 2023
Subjects:
Online Access:https://hdl.handle.net/11585/924055
https://doi.org/10.5194/tc-17-1735-2023
https://tc.copernicus.org/articles/17/1735/2023/
id ftunibolognairis:oai:cris.unibo.it:11585/924055
record_format openpolar
spelling ftunibolognairis:oai:cris.unibo.it:11585/924055 2024-02-11T10:00:43+01:00 Arctic sea ice data assimilation combining an ensemble Kalman filter with a novel Lagrangian sea ice model for the winter 2019–2020 Cheng, Sukun Chen, Yumeng Aydoğdu, Ali Bertino, Laurent Carrassi, Alberto Rampal, Pierre Jones, Christopher K. R. T. Cheng, Sukun Chen, Yumeng Aydoğdu, Ali Bertino, Laurent Carrassi, Alberto Rampal, Pierre Jones, Christopher K. R. T. 2023 ELETTRONICO https://hdl.handle.net/11585/924055 https://doi.org/10.5194/tc-17-1735-2023 https://tc.copernicus.org/articles/17/1735/2023/ eng eng info:eu-repo/semantics/altIdentifier/wos/WOS:000978359600001 volume:17 issue:4 firstpage:1735 lastpage:1754 numberofpages:20 journal:THE CRYOSPHERE https://hdl.handle.net/11585/924055 doi:10.5194/tc-17-1735-2023 info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85158154690 https://tc.copernicus.org/articles/17/1735/2023/ info:eu-repo/semantics/openAccess Data Assimilation Sea Ice info:eu-repo/semantics/article 2023 ftunibolognairis https://doi.org/10.5194/tc-17-1735-2023 2024-01-24T17:35:57Z Advanced data assimilation (DA) methods, widely used in geophysical and climate studies to merge observations with numerical models, can improve state estimates and consequent forecasts. We interface the deterministic ensemble Kalman filter (DEnKF) to the Lagrangian neXt generation Sea Ice Model, neXtSIM. The ensemble is generated by perturbing the atmospheric and oceanic forcing throughout the simulations and randomly initialized ice cohesion. Our ensemble–DA system assimilates sea ice concentration (SIC) from the Ocean and Sea Ice Satellite Application Facility (OSI-SAF) and sea ice thickness (SIT) from the merged CryoSat-2 and SMOS datasets (CS2SMOS). Because neXtSIM is computationally solved on a time-dependent evolving mesh, it is a challenging application for ensemble–DA. As a solution, we perform the DEnKF analysis on a fixed and regular reference mesh, on which model variables are interpolated before the DA and then back to each member's mesh after the DA. We evaluate the impact of assimilating different types of sea ice observations on the model's forecast skills of the Arctic sea ice by comparing satellite observations and a free-run ensemble in an Arctic winter period, 2019–2020. Significant improvements in modeled SIT indicate the importance of assimilating weekly CS2SMOS SIT, while the improvements of SIC and ice extent are moderate but benefit from daily ingestion of the OSI-SAF SIC. For most of the winter, the correlation between SIT and SIC is weaker, which results in little cross-inference between the two variables in the assimilation step. Overall, the ensemble–DA system based on the stand-alone sea ice model demonstrates the feasibility of winter Arctic sea ice prediction with good computational efficiency. These results open the path toward operational implementation and the extension to multi-year assimilation. Article in Journal/Newspaper Arctic Sea ice IRIS Università degli Studi di Bologna (CRIS - Current Research Information System) Arctic The Cryosphere 17 4 1735 1754
institution Open Polar
collection IRIS Università degli Studi di Bologna (CRIS - Current Research Information System)
op_collection_id ftunibolognairis
language English
topic Data Assimilation
Sea Ice
spellingShingle Data Assimilation
Sea Ice
Cheng, Sukun
Chen, Yumeng
Aydoğdu, Ali
Bertino, Laurent
Carrassi, Alberto
Rampal, Pierre
Jones, Christopher K. R. T.
Arctic sea ice data assimilation combining an ensemble Kalman filter with a novel Lagrangian sea ice model for the winter 2019–2020
topic_facet Data Assimilation
Sea Ice
description Advanced data assimilation (DA) methods, widely used in geophysical and climate studies to merge observations with numerical models, can improve state estimates and consequent forecasts. We interface the deterministic ensemble Kalman filter (DEnKF) to the Lagrangian neXt generation Sea Ice Model, neXtSIM. The ensemble is generated by perturbing the atmospheric and oceanic forcing throughout the simulations and randomly initialized ice cohesion. Our ensemble–DA system assimilates sea ice concentration (SIC) from the Ocean and Sea Ice Satellite Application Facility (OSI-SAF) and sea ice thickness (SIT) from the merged CryoSat-2 and SMOS datasets (CS2SMOS). Because neXtSIM is computationally solved on a time-dependent evolving mesh, it is a challenging application for ensemble–DA. As a solution, we perform the DEnKF analysis on a fixed and regular reference mesh, on which model variables are interpolated before the DA and then back to each member's mesh after the DA. We evaluate the impact of assimilating different types of sea ice observations on the model's forecast skills of the Arctic sea ice by comparing satellite observations and a free-run ensemble in an Arctic winter period, 2019–2020. Significant improvements in modeled SIT indicate the importance of assimilating weekly CS2SMOS SIT, while the improvements of SIC and ice extent are moderate but benefit from daily ingestion of the OSI-SAF SIC. For most of the winter, the correlation between SIT and SIC is weaker, which results in little cross-inference between the two variables in the assimilation step. Overall, the ensemble–DA system based on the stand-alone sea ice model demonstrates the feasibility of winter Arctic sea ice prediction with good computational efficiency. These results open the path toward operational implementation and the extension to multi-year assimilation.
author2 Cheng, Sukun
Chen, Yumeng
Aydoğdu, Ali
Bertino, Laurent
Carrassi, Alberto
Rampal, Pierre
Jones, Christopher K. R. T.
format Article in Journal/Newspaper
author Cheng, Sukun
Chen, Yumeng
Aydoğdu, Ali
Bertino, Laurent
Carrassi, Alberto
Rampal, Pierre
Jones, Christopher K. R. T.
author_facet Cheng, Sukun
Chen, Yumeng
Aydoğdu, Ali
Bertino, Laurent
Carrassi, Alberto
Rampal, Pierre
Jones, Christopher K. R. T.
author_sort Cheng, Sukun
title Arctic sea ice data assimilation combining an ensemble Kalman filter with a novel Lagrangian sea ice model for the winter 2019–2020
title_short Arctic sea ice data assimilation combining an ensemble Kalman filter with a novel Lagrangian sea ice model for the winter 2019–2020
title_full Arctic sea ice data assimilation combining an ensemble Kalman filter with a novel Lagrangian sea ice model for the winter 2019–2020
title_fullStr Arctic sea ice data assimilation combining an ensemble Kalman filter with a novel Lagrangian sea ice model for the winter 2019–2020
title_full_unstemmed Arctic sea ice data assimilation combining an ensemble Kalman filter with a novel Lagrangian sea ice model for the winter 2019–2020
title_sort arctic sea ice data assimilation combining an ensemble kalman filter with a novel lagrangian sea ice model for the winter 2019–2020
publishDate 2023
url https://hdl.handle.net/11585/924055
https://doi.org/10.5194/tc-17-1735-2023
https://tc.copernicus.org/articles/17/1735/2023/
geographic Arctic
geographic_facet Arctic
genre Arctic
Sea ice
genre_facet Arctic
Sea ice
op_relation info:eu-repo/semantics/altIdentifier/wos/WOS:000978359600001
volume:17
issue:4
firstpage:1735
lastpage:1754
numberofpages:20
journal:THE CRYOSPHERE
https://hdl.handle.net/11585/924055
doi:10.5194/tc-17-1735-2023
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85158154690
https://tc.copernicus.org/articles/17/1735/2023/
op_rights info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.5194/tc-17-1735-2023
container_title The Cryosphere
container_volume 17
container_issue 4
container_start_page 1735
op_container_end_page 1754
_version_ 1790596419004923904