Tropical disturbances in the southeastern North Atlantic. State of the art and future prospects
This study analyzes tropical disturbances in a region usually not affected by these events, the southeastern North Atlantic. This is an extensive area between Macaronesia and the coasts of northwest Africa and the southwest of the Iberian Peninsula. In the context of climate change, a statistical an...
Published in: | Investigaciones Geográficas |
---|---|
Main Authors: | , , , , |
Other Authors: | |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Universidad de Alicante
2023
|
Subjects: | |
Online Access: | https://www.investigacionesgeograficas.com/article/view/22559 https://doi.org/10.14198/INGEO.22559 |
id |
ftunialicanteojs:oai:oai.revistes.ua.es:article/22559 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
Scientific Journals - University of Alicante |
op_collection_id |
ftunialicanteojs |
language |
English |
topic |
tropical cyclone tropical storm climate change climate risk ciclón tropical tormenta tropical cambio climático riesgo climático |
spellingShingle |
tropical cyclone tropical storm climate change climate risk ciclón tropical tormenta tropical cambio climático riesgo climático Dorta Antequera, Pedro Domínguez Hernández, Alba Díaz Pacheco, Jaime López Díez, Abel Martín Raya, Nerea Tropical disturbances in the southeastern North Atlantic. State of the art and future prospects |
topic_facet |
tropical cyclone tropical storm climate change climate risk ciclón tropical tormenta tropical cambio climático riesgo climático |
description |
This study analyzes tropical disturbances in a region usually not affected by these events, the southeastern North Atlantic. This is an extensive area between Macaronesia and the coasts of northwest Africa and the southwest of the Iberian Peninsula. In the context of climate change, a statistical analysis has been conducted of the main database of the National Hurricane Center for the Atlantic basin, as well as a bibliographical compilation, in order to analyze the temporal and spatial evolution of these phenomena. The starting hypothesis is to verify the existence of an increase in the risk of these situations in the region of study, through research that characterizes and charts these phenomena. The results indicate that, although with long periods of recurrence, some events with notable impacts had occurred before the first systematic records were kept. In addition, over the last fifty years, a much more reliable period from a scientific perspective, there has been an increase in their number, especially in recent decades. Furthermore, an approximate estimate is made of the population likely to be affected by tropical disturbances, which estimates that more than twenty million people are at risk. Se presenta un estudio sobre las perturbaciones tropicales en una región habitualmente no afectada por estos eventos, el Atlántico norte suroriental. Se trata de una extensa área entre la Macaronesia y las costas del noroeste de África y suroeste de la península ibérica. En el contexto del cambio climático se hace un análisis estadístico de la principal base de datos del National Hurricane Center para la cuenca atlántica, así como una recopilación bibliográfica, con el fin de analizar la evolución temporal y espacial de estos fenómenos. La hipótesis de partida es comprobar la existencia de un incremento en el riesgo de estas situaciones en la región de análisis, para lo que se elabora un estudio que las caracteriza y contabiliza. Los resultados señalan que, aunque con periodos de recurrencia largos, se han dado ... |
author2 |
research project MYRIAD-EU: Multi-hazard and sYstemic framework for enhancing Risk-Informed mAnagement and Decision-making in the EU |
format |
Article in Journal/Newspaper |
author |
Dorta Antequera, Pedro Domínguez Hernández, Alba Díaz Pacheco, Jaime López Díez, Abel Martín Raya, Nerea |
author_facet |
Dorta Antequera, Pedro Domínguez Hernández, Alba Díaz Pacheco, Jaime López Díez, Abel Martín Raya, Nerea |
author_sort |
Dorta Antequera, Pedro |
title |
Tropical disturbances in the southeastern North Atlantic. State of the art and future prospects |
title_short |
Tropical disturbances in the southeastern North Atlantic. State of the art and future prospects |
title_full |
Tropical disturbances in the southeastern North Atlantic. State of the art and future prospects |
title_fullStr |
Tropical disturbances in the southeastern North Atlantic. State of the art and future prospects |
title_full_unstemmed |
Tropical disturbances in the southeastern North Atlantic. State of the art and future prospects |
title_sort |
tropical disturbances in the southeastern north atlantic. state of the art and future prospects |
publisher |
Universidad de Alicante |
publishDate |
2023 |
url |
https://www.investigacionesgeograficas.com/article/view/22559 https://doi.org/10.14198/INGEO.22559 |
long_lat |
ENVELOPE(-61.216,-61.216,-62.589,-62.589) |
geographic |
Partida |
geographic_facet |
Partida |
genre |
North Atlantic |
genre_facet |
North Atlantic |
op_source |
Investigaciones Geográficas; Núm. 79; 33-50 1989-9890 |
op_relation |
https://www.investigacionesgeograficas.com/article/view/22559/pdf https://www.investigacionesgeograficas.com/article/downloadSuppFile/22559/17318 https://www.investigacionesgeograficas.com/article/downloadSuppFile/22559/17320 https://www.investigacionesgeograficas.com/article/downloadSuppFile/22559/17321 https://www.investigacionesgeograficas.com/article/downloadSuppFile/22559/17322 https://www.investigacionesgeograficas.com/article/downloadSuppFile/22559/17323 Baatsen, M., Haarsma, R.J., Van Delden, A.J., & de Vries, H. (2015). Severe Autumn storms in future Western Europe with a warmer Atlantic Ocean. Climate Dynamics 45, 949–964. https://doi.org/10.1007/s00382-014-2329-8 Bethencourt-González, J., & Dorta-Antequera, P. (2010). The Storm of November 1826 in the Canary Islands: possibly a tropical cyclone? Geographisca Annaler, 92 A(3), 329–337. https://doi.org/10.1111/j.1468-0459.2010.00398.x Bhatia, K., Vecchi, G., Murakami, H. Underwood, S., & Kossin, J. (2018). Projected Response of Tropical Cyclone Intensity and Intensification in a Global Climate Model. Journal od Climate, 31(20), 8231-8303. https://doi.org/10.1175/JCLI-D-17-0898.1 Burn, M., & Palmer, S. (2015). Atlantic hurricane activity during the last millennium. Scientific Reports, 5, 12838. https://doi.org/10.1038/srep12838 Capel-Molina, J.J (1988). Trayectorias de las gotas frías en el flanco sur europeo: Archipiélagos Ibéricos, Mediterráneo y Mar Negro. In A. Blanco (Coord), Avances sobre la investigación en Bioclimatología (pp. 489-505). C.S.I.C. Chenoweth, M., & Divine, D. (2008). A document-based 318-year record of tropical cyclones in the Lesser Antilles, 1690-2007, Geochemistry, Geophysics, Geosystems, 9(8). https://doi.org/10.1029/2008GC002066 Criado, C., Dorta, P., Bethencourt, J., Navarro, J.F., Romero, C., & García, C. (2013). Evidence of historic infilling of valleys in Lanzarote after the Timanfaya eruption (AD 1730-1736, Canary Islands, Spain). The Holocene, 23(12), 1786-1796. https://doi.org/10.1177%2F0959683613505342 Criado, C., Dorta, P., Casanova, H., González-Reimers, E., Arnay, M., & Soler, V. (2018). Debris flow triggering on Teide stratovolcano, Tenerife. A growing process?. Cuaternario y Geomorfología, 32(3-4), 23-38. http://dx.doi.org/10.17735/cyg.v32i3-4.67068 Domínguez-Castro, F., Trigo, R.M., & Vaquero, J.M. (2013). The first meteorological measurements in the Iberian Peninsula: evaluating the storm of November 1724. Climatic Change, 118, 443–455. https://doi.org/10.1007/s10584-012-0628-9 Dorta, P. (2007). Catálogo de riesgos climático en Canarias: amenazas y vulnerabilidad. Geographicalia, 51, 133-160. https://doi.org/10.26754/ojs_geoph/geoph.2007511118 Elsner, J., Kossin, J., & Jagger, T. (2008). The increasing intensity of the strongest tropical cyclones. Nature, 455, 92–95. https://doi.org/10.1038/nature07234 Emanuel, K. (2021). Atlantic tropical cyclones downscaled from climate reanalyses show increasing activity over past 150 years. Nature communications, 12, 7027. https://doi.org/10.1038/s41467-021-27364-8 Evans, J.L., & Guishard, M.P. (2009). Atlantic subtropical storms. Part I: Diagnosis Criteria and Composite Analysis. American Meteorological Society, 137, 2065-2080. https://doi.org/10.1175/2009MWR2468.1 Faccini, F., Luino, F., Paliaga, G., Roccati, A., & Turconi, L. (2021). Flash Flood Events along the West Mediterranean Coasts: Inundations of Urbanized Areas Conditioned by Anthropic Impacts. Land, 10(6), 620. https://doi.org/10.3390/land10060620 Fraile, P., & Fernández, M. (2016). Escenarios de subida de nivel medio del mar en los mareógrafos de las costas peninsulares de España en el año 2100. Estudios geográficos, 77(280), 57-79. https://doi.org/10.3989/estgeogr.201603 Fraile, P., & Ojeda, J. (2012). Evaluación de la peligrosidad asociada al aumento de la superficie inundable por la subida del nivel medio del mar en la costa entre Cádiz y Tarifa. Geofocus, 12, 329-348. Fraile, P., Sánchez, E., Fernández, M., Pita, Mª.F., & López, J.M. (2014). Estimación del comportamiento futuro del nivel del mar en las Islas Canarias a partir del análisis de registros recientes. Geographicalia, 66, 79-98. https://doi.org/10.26754/ojs_geoph/geoph.2014661066 Gobierno de Canarias (2020). Plan especial de Gestión del Riesgo de Inundación de la Demarcación Hidrográfica de Tenerife (PGRI). Gori, A., Lin, N., Xi, D., & Emanuel, K. (2022). Tropical cyclone climatology change greatly exacerbates US extreme rainfall–surge hazard. Nature Climate Change, 12, 171–178. https://doi.org/10.1038/s41558-021-01272-7 Guijarro, J.A., Conde, J., Campins, J., Picornell, Mª.A., & Orro, Mª.L. (2014). In S. Fernández, & F. Sánchez (Eds.), Cambio climático y cambio global (pp. 315-324). Asociación Española de Climatología. Haarsma, R., Hazeleger, W., Severijns, C., De Vries, H., Sterl, A., Bintaja, R., Van Olddenborgh, & van den Brink, H. (2013). More hurricanes to hit western Europe due to global warming. Geophyscal Research Letters, 40(9), 1783-1788. https://doi.org/10.1002/grl.50360 Hernández Ayala, J.J., & Méndez-Tejeda, R. (2020). Increasing frequency in off-season tropical cyclones and its relation to climate variability and change. Weather Climate Dynamics, 1(2), 745-757. https://doi.org/10.5194/wcd-1-745-2020 Instituto Nacional de Meteorología (2005). Consideraciones sobre el ciclón tropical “Vince”. http://www.aemet.es/es/conocermas/recursos_en_linea/publicaciones_y_estudios/estudios/detalles/Consideraciones_sobre_el_ciclon_tropical_Vince Intergovernmental Panel for Climate Change. (2021). Climate Change 2021: The Physical Science Basis. In V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (Eds.), Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change . Cambridge University Press. In Press Knutson, T. R., Chung, M. V., Vecchi, G., Sun, J., Hsieh, T-L., & Smith, A. J. P. (2021). Climate change is probably increasing the intensity of tropical cyclones. In C. Le Quéré, P. Liss, & P. Forster (Eds), Critical Issues in Climate Change Science. https://doi.org/10.5281/zenodo.4570334 Knutson, T., Camargo, S.J., Chan, J.C., Emanuel, K., Ho, C.H., Kossin, J., Mohapatra, M., Satoh, M., Sugi, M., Walsh, K., & Wu, L. (2019). Tropical Cyclones and Climate Change Assessment: Part I: Detection and Attribution. Bulletin of the American Meteorological Society, 100(10), 1987-2007. https://doi.org/10.1175/BAMS-D-18-0189.1 Knutson, T., Camargo, S.J., Chan, J.C., Emanuel, K., Ho, C.H., Kossin, J., Mohapatra, M., Satoh, M., Sugi, M., Walsh, K., & Wu, L. (2020). Tropical Cyclones and Climate Change Assessment: Part II: Projected Response to Anthropogenic Warming. Bulletin of the American Meteorological Society, 101(3), E303-E322. https://doi.org/10.1175/BAMS-D-18-0194.1 Knutson, T., McBride, J., Chan, J., Emanuel, K., Holland, G., Landssea, C, Held, I., Kossin, J.P., Srivastacva, A.K., & Sugi, M. (2010). Tropical cyclones and climate change. Nature Geoscience, 3, 157–163. https://doi.org/10.1038/ngeo779 Kossin, J., Emanuel, K., & Vecchi, G. (2014). The poleward migration of the location of tropical cyclone maximum intensity. Nature, 509, 349–352. https://doi.org/10.1038/nature13278 Kossin, J.P. (2008). Is the North Atlantic hurricane season getting longer?. Geophysical Research Letters, 35. https://doi.org/10.1029/2008GL036012 Kossin, J.P. (2018). A global slowdown of tropical-cyclone translation speed. Nature, 558, 104–107. https://doi.org/10.1038/s41586-018-0158-3 Kossin, J.P., Knapp, K.R., Olander, T.L., & Velden, C. (2020). Global increase in major tropical cyclone exceedance probability over the past four decades. PNAS, 117(22), 11975-11980. https://doi.org/10.1073/pnas.1920849117 Kossin, J.P., Knapp, K.R., Vimont, D.J., Murnane, R.J., & Harper, B.A. (2007). A globally consistent reanalysis of hurricane variability and trens. Geophysical Researh Letters, 34, L04815. https://doi.org/10.1029/2006GL028836 Kossin, J.P., Olande, T.L., & Knapp, K.R. (2013). Trend Analysis with a New Global Record of Tropical Cyclone Intensity. Journal of Climate, 26(24), 9960-9976. https://doi.org/10.1175/JCLI-D-13-00262.1 Kunkel, K.E., and Champion, S.M. (2019). An Assessment of Rainfall from Hurricanes Harvey and Florence Relative to Other Extremely Wet Storms in the United States. Geophysical Research Letters, 46, 13500-13506. https://doi.org/10.1029/2019GL085034 Liu, M., Vecchi, G.A., Smith, J.A., & Knutson, T.R. (2019). Causes of large projected increases in hurricane precipitation rates with global warming. npj Climate and Atmospheric Science, 2, 38. https://doi.org/10.1038/s41612-019-0095-3 Liu, M., Vecchi, G.A., Smith, J.A., & Murakami, H. (2017). The Present-Day Simulation and Twenty-First-Century Projection of the Climatology of Extratropical Transition in the North Atlantic. Journal of Climate, 30(8), 2739-2756. https://doi.org/10.1175/JCLI-D-16-0352.1 Llasat, M.C., Llasat-Botija, M., Prat, M.A., Porcú, F., Price, C., Mugnai, A., Lagouvardos, K, Kotrono, V., Katsanos, D., Mirchaelides, S., Yair, Y., Savvidou, K., & Nicolaides, K. (2010). High-impact floods and flash floods in Mediterranean countries: the FLASH preliminary database. Advances in Geosciences, 23, 47-55. https://doi.org/10.5194/adgeo-23-47-2010 López-Díez, A., Máyer, P., Díaz-Pacheco, J., & Dorta, P. (2019). Rainfall and flooding in coastal tourist areas of the Canary Islands (Spain). Atmosphere, 10(12), 809. https://doi.org/10.3390/atmos10120809 Mann, M.E., Steinman, B.A., Brouillette, D.J., & Miller, S.K. (2021). Multidecadal climate oscillations during the past millenium driven by volcanic forcing. Science, 371(6533), 1014-1019. https://doi.org/10.1126/science.abc5810 Martín-Esquivel, J.L., Bethencourt, J., & Cuevas-Agulló, E. (2012). Assessment of global warming on the island of Tenerife, Canary Islands (Spain). Trends in minimum, maximum and mean temperatures since 1944. Climatic Change, 114, 343-355. https://doi.org/10.1007/s10584-012-0407-7 Mauk, R.G., & Hobgood, J.S. (2012). Tropical Cyclone Formation in Environments with Cool SST and High Wind Shear over the Northeastern Atlantic Ocean. American Meteorological Society, 27(6), 1433-1448. https://doi.org/10.1175/WAF-D-11-00048.1 Máyer, P., & Marzol, Mª.V. (2014). La concentración pluviométrica diaria y las secuencias lluviosas en Canarias: factores de peligrosidad. Boletín de la Asociación Española de Geografía, 65, 231-247. https://doi.org/10.21138/bage.1751 Máyer, P., Marzol, Mª.V., & Parreño, J.M. (2017). Precipitation trends and a daily precipitation concentration index for the mid-Eastern Atlantic (Canary Islands, Spain). Cuadernos de Investigación Geográfica, 43(1), 255-268. https://doi.org/10.18172/cig.3095 |
op_rights |
Copyright (c) 2022 Pedro Dorta Antequera, Alba Domínguez Hernández, Jaime Díaz Pacheco, Abel López Díez, Nerea Martín Raya https://creativecommons.org/licenses/by/4.0 |
op_rightsnorm |
CC-BY |
op_doi |
https://doi.org/10.14198/INGEO.22559 https://doi.org/10.26754/ojs_geoph/geoph.2007511118 https://doi.org/10.1038/s41467-021-27364-8 https://doi.org/10.1038/s41586-018-0158-3 https://doi.org/10.1029/2019GL085034 |
container_title |
Investigaciones Geográficas |
_version_ |
1766130746345390080 |
spelling |
ftunialicanteojs:oai:oai.revistes.ua.es:article/22559 2023-05-15T17:32:34+02:00 Tropical disturbances in the southeastern North Atlantic. State of the art and future prospects Perturbaciones tropicales en el Atlántico norte suroriental. Estado de la cuestión y perspectivas de futuro Dorta Antequera, Pedro Domínguez Hernández, Alba Díaz Pacheco, Jaime López Díez, Abel Martín Raya, Nerea research project MYRIAD-EU: Multi-hazard and sYstemic framework for enhancing Risk-Informed mAnagement and Decision-making in the EU 2023-01-17 https://www.investigacionesgeograficas.com/article/view/22559 https://doi.org/10.14198/INGEO.22559 eng eng Universidad de Alicante https://www.investigacionesgeograficas.com/article/view/22559/pdf https://www.investigacionesgeograficas.com/article/downloadSuppFile/22559/17318 https://www.investigacionesgeograficas.com/article/downloadSuppFile/22559/17320 https://www.investigacionesgeograficas.com/article/downloadSuppFile/22559/17321 https://www.investigacionesgeograficas.com/article/downloadSuppFile/22559/17322 https://www.investigacionesgeograficas.com/article/downloadSuppFile/22559/17323 Baatsen, M., Haarsma, R.J., Van Delden, A.J., & de Vries, H. (2015). Severe Autumn storms in future Western Europe with a warmer Atlantic Ocean. Climate Dynamics 45, 949–964. https://doi.org/10.1007/s00382-014-2329-8 Bethencourt-González, J., & Dorta-Antequera, P. (2010). The Storm of November 1826 in the Canary Islands: possibly a tropical cyclone? Geographisca Annaler, 92 A(3), 329–337. https://doi.org/10.1111/j.1468-0459.2010.00398.x Bhatia, K., Vecchi, G., Murakami, H. Underwood, S., & Kossin, J. (2018). Projected Response of Tropical Cyclone Intensity and Intensification in a Global Climate Model. Journal od Climate, 31(20), 8231-8303. https://doi.org/10.1175/JCLI-D-17-0898.1 Burn, M., & Palmer, S. (2015). Atlantic hurricane activity during the last millennium. Scientific Reports, 5, 12838. https://doi.org/10.1038/srep12838 Capel-Molina, J.J (1988). Trayectorias de las gotas frías en el flanco sur europeo: Archipiélagos Ibéricos, Mediterráneo y Mar Negro. In A. Blanco (Coord), Avances sobre la investigación en Bioclimatología (pp. 489-505). C.S.I.C. Chenoweth, M., & Divine, D. (2008). A document-based 318-year record of tropical cyclones in the Lesser Antilles, 1690-2007, Geochemistry, Geophysics, Geosystems, 9(8). https://doi.org/10.1029/2008GC002066 Criado, C., Dorta, P., Bethencourt, J., Navarro, J.F., Romero, C., & García, C. (2013). Evidence of historic infilling of valleys in Lanzarote after the Timanfaya eruption (AD 1730-1736, Canary Islands, Spain). The Holocene, 23(12), 1786-1796. https://doi.org/10.1177%2F0959683613505342 Criado, C., Dorta, P., Casanova, H., González-Reimers, E., Arnay, M., & Soler, V. (2018). Debris flow triggering on Teide stratovolcano, Tenerife. A growing process?. Cuaternario y Geomorfología, 32(3-4), 23-38. http://dx.doi.org/10.17735/cyg.v32i3-4.67068 Domínguez-Castro, F., Trigo, R.M., & Vaquero, J.M. (2013). The first meteorological measurements in the Iberian Peninsula: evaluating the storm of November 1724. Climatic Change, 118, 443–455. https://doi.org/10.1007/s10584-012-0628-9 Dorta, P. (2007). Catálogo de riesgos climático en Canarias: amenazas y vulnerabilidad. Geographicalia, 51, 133-160. https://doi.org/10.26754/ojs_geoph/geoph.2007511118 Elsner, J., Kossin, J., & Jagger, T. (2008). The increasing intensity of the strongest tropical cyclones. Nature, 455, 92–95. https://doi.org/10.1038/nature07234 Emanuel, K. (2021). Atlantic tropical cyclones downscaled from climate reanalyses show increasing activity over past 150 years. Nature communications, 12, 7027. https://doi.org/10.1038/s41467-021-27364-8 Evans, J.L., & Guishard, M.P. (2009). Atlantic subtropical storms. Part I: Diagnosis Criteria and Composite Analysis. American Meteorological Society, 137, 2065-2080. https://doi.org/10.1175/2009MWR2468.1 Faccini, F., Luino, F., Paliaga, G., Roccati, A., & Turconi, L. (2021). Flash Flood Events along the West Mediterranean Coasts: Inundations of Urbanized Areas Conditioned by Anthropic Impacts. Land, 10(6), 620. https://doi.org/10.3390/land10060620 Fraile, P., & Fernández, M. (2016). Escenarios de subida de nivel medio del mar en los mareógrafos de las costas peninsulares de España en el año 2100. Estudios geográficos, 77(280), 57-79. https://doi.org/10.3989/estgeogr.201603 Fraile, P., & Ojeda, J. (2012). Evaluación de la peligrosidad asociada al aumento de la superficie inundable por la subida del nivel medio del mar en la costa entre Cádiz y Tarifa. Geofocus, 12, 329-348. Fraile, P., Sánchez, E., Fernández, M., Pita, Mª.F., & López, J.M. (2014). Estimación del comportamiento futuro del nivel del mar en las Islas Canarias a partir del análisis de registros recientes. Geographicalia, 66, 79-98. https://doi.org/10.26754/ojs_geoph/geoph.2014661066 Gobierno de Canarias (2020). Plan especial de Gestión del Riesgo de Inundación de la Demarcación Hidrográfica de Tenerife (PGRI). Gori, A., Lin, N., Xi, D., & Emanuel, K. (2022). Tropical cyclone climatology change greatly exacerbates US extreme rainfall–surge hazard. Nature Climate Change, 12, 171–178. https://doi.org/10.1038/s41558-021-01272-7 Guijarro, J.A., Conde, J., Campins, J., Picornell, Mª.A., & Orro, Mª.L. (2014). In S. Fernández, & F. Sánchez (Eds.), Cambio climático y cambio global (pp. 315-324). Asociación Española de Climatología. Haarsma, R., Hazeleger, W., Severijns, C., De Vries, H., Sterl, A., Bintaja, R., Van Olddenborgh, & van den Brink, H. (2013). More hurricanes to hit western Europe due to global warming. Geophyscal Research Letters, 40(9), 1783-1788. https://doi.org/10.1002/grl.50360 Hernández Ayala, J.J., & Méndez-Tejeda, R. (2020). Increasing frequency in off-season tropical cyclones and its relation to climate variability and change. Weather Climate Dynamics, 1(2), 745-757. https://doi.org/10.5194/wcd-1-745-2020 Instituto Nacional de Meteorología (2005). Consideraciones sobre el ciclón tropical “Vince”. http://www.aemet.es/es/conocermas/recursos_en_linea/publicaciones_y_estudios/estudios/detalles/Consideraciones_sobre_el_ciclon_tropical_Vince Intergovernmental Panel for Climate Change. (2021). Climate Change 2021: The Physical Science Basis. In V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (Eds.), Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change . Cambridge University Press. In Press Knutson, T. R., Chung, M. V., Vecchi, G., Sun, J., Hsieh, T-L., & Smith, A. J. P. (2021). Climate change is probably increasing the intensity of tropical cyclones. In C. Le Quéré, P. Liss, & P. Forster (Eds), Critical Issues in Climate Change Science. https://doi.org/10.5281/zenodo.4570334 Knutson, T., Camargo, S.J., Chan, J.C., Emanuel, K., Ho, C.H., Kossin, J., Mohapatra, M., Satoh, M., Sugi, M., Walsh, K., & Wu, L. (2019). Tropical Cyclones and Climate Change Assessment: Part I: Detection and Attribution. Bulletin of the American Meteorological Society, 100(10), 1987-2007. https://doi.org/10.1175/BAMS-D-18-0189.1 Knutson, T., Camargo, S.J., Chan, J.C., Emanuel, K., Ho, C.H., Kossin, J., Mohapatra, M., Satoh, M., Sugi, M., Walsh, K., & Wu, L. (2020). Tropical Cyclones and Climate Change Assessment: Part II: Projected Response to Anthropogenic Warming. Bulletin of the American Meteorological Society, 101(3), E303-E322. https://doi.org/10.1175/BAMS-D-18-0194.1 Knutson, T., McBride, J., Chan, J., Emanuel, K., Holland, G., Landssea, C, Held, I., Kossin, J.P., Srivastacva, A.K., & Sugi, M. (2010). Tropical cyclones and climate change. Nature Geoscience, 3, 157–163. https://doi.org/10.1038/ngeo779 Kossin, J., Emanuel, K., & Vecchi, G. (2014). The poleward migration of the location of tropical cyclone maximum intensity. Nature, 509, 349–352. https://doi.org/10.1038/nature13278 Kossin, J.P. (2008). Is the North Atlantic hurricane season getting longer?. Geophysical Research Letters, 35. https://doi.org/10.1029/2008GL036012 Kossin, J.P. (2018). A global slowdown of tropical-cyclone translation speed. Nature, 558, 104–107. https://doi.org/10.1038/s41586-018-0158-3 Kossin, J.P., Knapp, K.R., Olander, T.L., & Velden, C. (2020). Global increase in major tropical cyclone exceedance probability over the past four decades. PNAS, 117(22), 11975-11980. https://doi.org/10.1073/pnas.1920849117 Kossin, J.P., Knapp, K.R., Vimont, D.J., Murnane, R.J., & Harper, B.A. (2007). A globally consistent reanalysis of hurricane variability and trens. Geophysical Researh Letters, 34, L04815. https://doi.org/10.1029/2006GL028836 Kossin, J.P., Olande, T.L., & Knapp, K.R. (2013). Trend Analysis with a New Global Record of Tropical Cyclone Intensity. Journal of Climate, 26(24), 9960-9976. https://doi.org/10.1175/JCLI-D-13-00262.1 Kunkel, K.E., and Champion, S.M. (2019). An Assessment of Rainfall from Hurricanes Harvey and Florence Relative to Other Extremely Wet Storms in the United States. Geophysical Research Letters, 46, 13500-13506. https://doi.org/10.1029/2019GL085034 Liu, M., Vecchi, G.A., Smith, J.A., & Knutson, T.R. (2019). Causes of large projected increases in hurricane precipitation rates with global warming. npj Climate and Atmospheric Science, 2, 38. https://doi.org/10.1038/s41612-019-0095-3 Liu, M., Vecchi, G.A., Smith, J.A., & Murakami, H. (2017). The Present-Day Simulation and Twenty-First-Century Projection of the Climatology of Extratropical Transition in the North Atlantic. Journal of Climate, 30(8), 2739-2756. https://doi.org/10.1175/JCLI-D-16-0352.1 Llasat, M.C., Llasat-Botija, M., Prat, M.A., Porcú, F., Price, C., Mugnai, A., Lagouvardos, K, Kotrono, V., Katsanos, D., Mirchaelides, S., Yair, Y., Savvidou, K., & Nicolaides, K. (2010). High-impact floods and flash floods in Mediterranean countries: the FLASH preliminary database. Advances in Geosciences, 23, 47-55. https://doi.org/10.5194/adgeo-23-47-2010 López-Díez, A., Máyer, P., Díaz-Pacheco, J., & Dorta, P. (2019). Rainfall and flooding in coastal tourist areas of the Canary Islands (Spain). Atmosphere, 10(12), 809. https://doi.org/10.3390/atmos10120809 Mann, M.E., Steinman, B.A., Brouillette, D.J., & Miller, S.K. (2021). Multidecadal climate oscillations during the past millenium driven by volcanic forcing. Science, 371(6533), 1014-1019. https://doi.org/10.1126/science.abc5810 Martín-Esquivel, J.L., Bethencourt, J., & Cuevas-Agulló, E. (2012). Assessment of global warming on the island of Tenerife, Canary Islands (Spain). Trends in minimum, maximum and mean temperatures since 1944. Climatic Change, 114, 343-355. https://doi.org/10.1007/s10584-012-0407-7 Mauk, R.G., & Hobgood, J.S. (2012). Tropical Cyclone Formation in Environments with Cool SST and High Wind Shear over the Northeastern Atlantic Ocean. American Meteorological Society, 27(6), 1433-1448. https://doi.org/10.1175/WAF-D-11-00048.1 Máyer, P., & Marzol, Mª.V. (2014). La concentración pluviométrica diaria y las secuencias lluviosas en Canarias: factores de peligrosidad. Boletín de la Asociación Española de Geografía, 65, 231-247. https://doi.org/10.21138/bage.1751 Máyer, P., Marzol, Mª.V., & Parreño, J.M. (2017). Precipitation trends and a daily precipitation concentration index for the mid-Eastern Atlantic (Canary Islands, Spain). Cuadernos de Investigación Geográfica, 43(1), 255-268. https://doi.org/10.18172/cig.3095 Copyright (c) 2022 Pedro Dorta Antequera, Alba Domínguez Hernández, Jaime Díaz Pacheco, Abel López Díez, Nerea Martín Raya https://creativecommons.org/licenses/by/4.0 CC-BY Investigaciones Geográficas; Núm. 79; 33-50 1989-9890 tropical cyclone tropical storm climate change climate risk ciclón tropical tormenta tropical cambio climático riesgo climático info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2023 ftunialicanteojs https://doi.org/10.14198/INGEO.22559 https://doi.org/10.26754/ojs_geoph/geoph.2007511118 https://doi.org/10.1038/s41467-021-27364-8 https://doi.org/10.1038/s41586-018-0158-3 https://doi.org/10.1029/2019GL085034 2023-01-25T00:21:35Z This study analyzes tropical disturbances in a region usually not affected by these events, the southeastern North Atlantic. This is an extensive area between Macaronesia and the coasts of northwest Africa and the southwest of the Iberian Peninsula. In the context of climate change, a statistical analysis has been conducted of the main database of the National Hurricane Center for the Atlantic basin, as well as a bibliographical compilation, in order to analyze the temporal and spatial evolution of these phenomena. The starting hypothesis is to verify the existence of an increase in the risk of these situations in the region of study, through research that characterizes and charts these phenomena. The results indicate that, although with long periods of recurrence, some events with notable impacts had occurred before the first systematic records were kept. In addition, over the last fifty years, a much more reliable period from a scientific perspective, there has been an increase in their number, especially in recent decades. Furthermore, an approximate estimate is made of the population likely to be affected by tropical disturbances, which estimates that more than twenty million people are at risk. Se presenta un estudio sobre las perturbaciones tropicales en una región habitualmente no afectada por estos eventos, el Atlántico norte suroriental. Se trata de una extensa área entre la Macaronesia y las costas del noroeste de África y suroeste de la península ibérica. En el contexto del cambio climático se hace un análisis estadístico de la principal base de datos del National Hurricane Center para la cuenca atlántica, así como una recopilación bibliográfica, con el fin de analizar la evolución temporal y espacial de estos fenómenos. La hipótesis de partida es comprobar la existencia de un incremento en el riesgo de estas situaciones en la región de análisis, para lo que se elabora un estudio que las caracteriza y contabiliza. Los resultados señalan que, aunque con periodos de recurrencia largos, se han dado ... Article in Journal/Newspaper North Atlantic Scientific Journals - University of Alicante Partida ENVELOPE(-61.216,-61.216,-62.589,-62.589) Investigaciones Geográficas |