Influence of the North Atlantic Subtropical High on wet and dry sea-breeze events in North Carolina, United States

The sea-breeze (SB) is an important source of summertime precipitation in North Carolina (NC, southeast United States). However, not all SB events produce precipitation. A climatology of wet and dry SB events in NC is used to investigate the conditions that are conducive to precipitation associated...

Full description

Bibliographic Details
Published in:Investigaciones Geográficas
Main Authors: Luchetti, Nicholas T., Nieto Ferreira, Rosana, Rickenbach, Thomas M., Nissenbaum, Mark R., McAuliffe, Joel D.
Other Authors: Climate and Large-Scale Dynamics and the Physical and Dynamic Meteorology programs of the National Science Foundation’s Division of Atmospheric and Geospatial Sciences, Award AGS-1118141.
Format: Article in Journal/Newspaper
Language:English
Published: Universidad de Alicante 2017
Subjects:
Online Access:https://www.investigacionesgeograficas.com/article/view/2017-n68-influence-of-the-north-atlantic-subtropical-high-in-north-carolina
https://doi.org/10.14198/INGEO2017.68.01
id ftunialicanteojs:oai:oai.revistes.ua.es:article/10782
record_format openpolar
institution Open Polar
collection Scientific Journals - University of Alicante
op_collection_id ftunialicanteojs
language English
topic Sea breeze
precipitation
North Carolina
North Atlantic Subtropical High
wind direction
wind speed
Brisa marina
lluvia
Carolina del Norte
alta Subtropical del Atlántico Norte
vientos de escala sinóptica
spellingShingle Sea breeze
precipitation
North Carolina
North Atlantic Subtropical High
wind direction
wind speed
Brisa marina
lluvia
Carolina del Norte
alta Subtropical del Atlántico Norte
vientos de escala sinóptica
Luchetti, Nicholas T.
Nieto Ferreira, Rosana
Rickenbach, Thomas M.
Nissenbaum, Mark R.
McAuliffe, Joel D.
Influence of the North Atlantic Subtropical High on wet and dry sea-breeze events in North Carolina, United States
topic_facet Sea breeze
precipitation
North Carolina
North Atlantic Subtropical High
wind direction
wind speed
Brisa marina
lluvia
Carolina del Norte
alta Subtropical del Atlántico Norte
vientos de escala sinóptica
description The sea-breeze (SB) is an important source of summertime precipitation in North Carolina (NC, southeast United States). However, not all SB events produce precipitation. A climatology of wet and dry SB events in NC is used to investigate the conditions that are conducive to precipitation associated with the sea breeze.Radar imagery was used to detect 88 SB events that occurred along the NC coast between May-September of 2009-2012. The majority (85%) of SB events occurred during offshore flow (53%) or during flow that was parallel to the coast (22%). SB events were separated into dry (53%) and wet (47%) events and differences in the dynamic and thermodynamic parameters of the environment in which they formed were analyzed. Significant differences in dynamic and thermodynamic conditions were found. SB dry events occurred under stronger winds (6.00 ± 2.36 ms-1) than SB wet events (4.02 ± 2.16 ms-1). Moreover, during SB wet events larger values of convective available potential energy and lower values of convective inhibition were present, conditions that favor precipitation. Overall, the SB wet events accounted for 20-30% of the May-September precipitation along the NC coastal region. The position of the North Atlantic Subtropical High (NASH) controls both moisture availability and winds along the NC coast, thus providing a synoptic-scale control mechanism for SB precipitation. In particular, it was shown that when the NASH western ridge is located along the southeast coast of the United States, it causes a moist southwesterly flow along the NC coast that may favor the occurrence of SB wet events. La brisa marina (BM) es una importante fuente de precipitación de verano en Carolina del Norte (NC en su sigla en inglés), sudeste de Estados Unidos. Sin embargo, no todos los eventos de BM producen precipitación. En este trabajo se utiliza una climatología de eventos de BM lluviosos y secos en NC para investigar las condiciones que conducen a la precipitación.Se utilizaron imágenes de radar para detectar 88 eventos de ...
author2 Climate and Large-Scale Dynamics and the Physical and Dynamic Meteorology programs of the National Science Foundation’s Division of Atmospheric and Geospatial Sciences, Award AGS-1118141.
format Article in Journal/Newspaper
author Luchetti, Nicholas T.
Nieto Ferreira, Rosana
Rickenbach, Thomas M.
Nissenbaum, Mark R.
McAuliffe, Joel D.
author_facet Luchetti, Nicholas T.
Nieto Ferreira, Rosana
Rickenbach, Thomas M.
Nissenbaum, Mark R.
McAuliffe, Joel D.
author_sort Luchetti, Nicholas T.
title Influence of the North Atlantic Subtropical High on wet and dry sea-breeze events in North Carolina, United States
title_short Influence of the North Atlantic Subtropical High on wet and dry sea-breeze events in North Carolina, United States
title_full Influence of the North Atlantic Subtropical High on wet and dry sea-breeze events in North Carolina, United States
title_fullStr Influence of the North Atlantic Subtropical High on wet and dry sea-breeze events in North Carolina, United States
title_full_unstemmed Influence of the North Atlantic Subtropical High on wet and dry sea-breeze events in North Carolina, United States
title_sort influence of the north atlantic subtropical high on wet and dry sea-breeze events in north carolina, united states
publisher Universidad de Alicante
publishDate 2017
url https://www.investigacionesgeograficas.com/article/view/2017-n68-influence-of-the-north-atlantic-subtropical-high-in-north-carolina
https://doi.org/10.14198/INGEO2017.68.01
long_lat ENVELOPE(-59.650,-59.650,-62.417,-62.417)
ENVELOPE(-62.350,-62.350,-74.233,-74.233)
ENVELOPE(9.599,9.599,63.138,63.138)
ENVELOPE(-60.516,-60.516,-62.988,-62.988)
geographic Alta
Inglés
Nash
Sigla
Sudeste
geographic_facet Alta
Inglés
Nash
Sigla
Sudeste
genre North Atlantic
genre_facet North Atlantic
op_source Investigaciones Geográficas; Núm. 68; 9-25
1989-9890
op_relation https://www.investigacionesgeograficas.com/article/view/2017-n68-influence-of-the-north-atlantic-subtropical-high-in-north-carolina/pdf
Adams, E. (1997). Four ways to win the sea breeze game, Sailing World, March, 44-49.
Arritt, R. W. (1993). Effects of the large-scale flow on characteristic features of the sea breeze. Journal of Applied Meteorology, 32(1), 116-125. https://doi.org/10.1175/1520-0450(1993)032<0116:EOTLSF>2.0.CO;2
Atkins, N. T. & Wakimoto, R. M. (1997). Influence of the synoptic-scale flow on sea breezes observed during CaPE. Monthly Weather Review, 125(9), 2112-2130. https://doi.org/10.1175/1520-0493(1997)125<2112:IOTSSF>2.0.CO;2
Atlas, D. (1960). Radar detection of the sea breeze. J. Meteorology, 17, 244-258. https://doi.org/10.1175/1520-0469(1960)017<0244:RDOTSB>2.0.CO;2
Azorin-Molina, C. & Chen, D. (2009). A climatological study of the influence of synoptic-scale flows on sea breeze evolution in the Bay of Alicante (Spain). Theoretical and Applied Climatology, 96(3-4), 249-260. https://doi.org/10.1007/s00704-008-0028-2
Azorin-Molina, C., Tijm, S., Ebert, E. E., Vicente-Serrano, S.M. & Estrela M.J. (2015) High Resolution HIRLAM Simulations of the Role of Low-Level Sea-Breeze Convergence in Initiating Deep Moist Convection in the Eastern Iberian Peninsula. Boundary Layer Meteor. 154(1), 81-100. https://doi.org/10.1007/s10546-014-9961-z
Banta, R. M., Olivier, L. D. & Levinson, D. H. (1993). Evolution of the Monterey Bay sea-breeze layer as observed by pulsed Doppler lidar. Journal of the Atmospheric Sciences, 50(24), 3959-3982. https://doi.org/10.1175/1520-0469(1993)050<3959:EOTMBS>2.0.CO;2
Bechtold, P., Pinty, J. P. & Mascart, F. (1991). A numerical investigation of the influence of large-scale winds on sea-breeze-and inland-breeze-type circulations. Journal of Applied Meteorology, 30(9), 1268-1279. https://doi.org/10.1175/1520-0450(1991)030<1268:ANIOTI>2.0.CO;2
Boyles, R. (2006). Investigation of Mesoscale Precipitation Processes in the Carolinas Using a Radar- based Climatology. Doctoral Dissertation, Department of Marine, Earth and Atmospheric Sciences, North Carolina State University. Retrieved from http://www.lib.ncsu.edu/resolver/1840.16/3895
Carlson, G. S. (2009). Spatial and temporal patterns of summer season precipitation across the Carolina coastal region (Doctoral dissertation, The University of North Carolina, Chaper Hill).
Crosman, E. T. & Horel, J. D. (2010). Sea and lake breezes: a review of numerical studies. Boundary-Layer Meteorology, 137(1), 1-29. https://doi.org/10.1007/s10546-010-9517-9
Curtis, S. (2006). Developing a Climatology of the South’s ‘Other’ Storm Season: ENSO Impacts on Winter Extratropical Cyclogenesis. Southeastern Geographer, 46(2), 2006, 231-244. Project MUSE. https://doi.org/10.1353/sgo.2006.0021
Diem, J. (2006). Synoptic-scale controls of summer precipitation in the Southeastern United States. Journal of Climate, 19, 613-621. https://doi.org/10.1175/JCLI3645.1
Estoque, M.A. (1962). The sea breeze as a function of the prevailing synoptic situation. J. Atmos. Sci., 19, 244-250. https://doi.org/10.1175/1520-0469(1962)019<0244:TSBAAF>2.0.CO;2
Frysinger, J. A., Lindner, B. L. & Brueske, S. L. (2003). Statistical Sea-Breeze Prediction Algorithm for Charleston, South Carolina, Wea. Forecasting, 18, 614-625. https://doi.org/10.1175/1520-0434(2003)018<0614:ASSPAF>2.0.CO;2
Fuhrmann, C. M., Konrad, C. E., Kovach, M. M. & Perkins, D. J. (2011). The August 2007 heat wave in North Carolina: Meteorological factors and local variability. Physical Geography, 32(3), 217-240. http://www.tandfonline.com/doi/abs/10.2747/0272-3646.32.3.217
Gilliam, R. C., Raman, S. & Niyogi, D. D. S. (2004). Observational and numerical study on the influence of large-scale flow direction and coastline shape on sea-breeze evolution. Boundary-Layer Meteor., 111(2), 275-300. https://doi.org/10.1023/B:BOUN.0000016494.99539.5a
Gil Olcina, A. & Olcina Cantos, J. (2017). Tratado de climatología. Instituto Interuniversitario de Geografía, Publicacions Universitat D’Alacant.
Helmis, C. G., Papadopoulos, K. H., Kalogiros, J. A., Soilemes, A. T., & Asimakopoulos, D. N. (1995). Influence of background flow on evolution of Saronic Gulf sea breeze. Atmospheric Environment, 29(24), 3689-3701. https://doi.org/10.1016/1352-2310(95)00008-M
Huffman, G. J., Adler, R. F., Bolvin, D. T., Gu, G., Nelkin, E.J., Bowman, K.P., Hong, Y., (…) & Wolff, D. B. (2007). The TRMM multi-satellite precipitation analysis: quasi-global, multi-year, combined-sensor precipitation estimates at fine scale. J. Hydrometeor. 8(1): 38-55. https://doi.org/10.1007/978-90-481-2915-7_1
Hughes, C. (2011). The climatology of the Delaware Bay/sea breeze. (Masters of Science Thesis, University of Delaware).
Jacobs, N. A., Lackmann, G. M. & Raman, S. (2005). The combined effects of Gulf stream-induced baroclinicity and upper-level vorticity on U.S. East Coast extratropical cyclogenesis. Mon. Weather Rev., 133, 2494-2501. https://doi.org/10.1175/MWR2969.1
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., (…) & Joseph D. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77: 437-472. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
Kingsmill, D. E. (1995). Convection initiation associated with a sea-breeze front, a gust front and their collision. Mon. Wea. Rev., 123, 2913-2933. https://doi.org/10.1175/1520-0493(1995)123<2913:CIAWAS>2.0.CO;2
Koch, S. E. & Ray, C. A. (1997). Mesoanalysis of summertime convergence zones in central and eastern North Carolina. Wea. Forecasting, 12(1), 56-77. https://doi.org/10.1175/1520-0434(1997)012<0056:MOSCZI>2.0.CO;2
Larson, J., Zhou, Y. & Higgins, R. W. (2005). Characteristics of landfalling tropical cyclones in the United States and Mexico: Climatology and interannual variability. J. Climate, 18, 1247-1262. https://doi.org/10.1175/JCLI3317.1
Li, W., Li, L., Fu, R., Deng, Y. & Wang, H. (2011). Changes to the North Atlantic subtropical high and its role in the intensification of summer rainfall variability in the southeastern United States. J. Climate, 24(5), 1499-1506. https://doi.org/10.1175/2010JCLI3829.1
Li, L., Li, W. & Kushnir, Y. (2012). Variation of the North Atlantic subtropical high western ridge and its implication to Southeastern US summer precipitation. Climate Dynamics, 39(6), 1401-1412. https://doi.org/10.1007/s00382-011-1214-y
Lyons, W. A. & Olsson, L. E. (1973). Detailed Mesometeorological Studies of Air Pollution Dispersion in the Chicago Lake Breeze. Mon. Wea. Rev., 101(5), 387-403. https://doi.org/10.1175/1520-0493(1973)101<0387:DMSOAP>2.3.CO;2
Miller, S. T. K., Keim, B. D., Talbot, R. W. & Mao, H. (2003). Sea breeze: Structure, forecasting and impacts. Reviews of Geophysics, 41(3). https://doi.org/10.1029/2003RG000124
Naor, R., Potchter, O., Shafir, H. & Alpert, P. (2017). An observational study of the summer Mediterranean Sea breeze front penetration into the complex topography of the Jordan Rift Valley. Theor. and Appl. Climatol., 127 (1-2), 275-284. https://doi.org/10.1007/s00704-015-1635-3
National Climatic Data Center (NCEI) (2015). NEXRAD Data Inventory Search %7CNational Centers for Environmental Information. Retrieved from http://www.ncdc.noaa.gov/nexradinv/map.jsp
National Oceanic and Atmospheric Administration (NOAA), Weather and Climate Toolkit. (2015). Retrieved from https://www.ncdc.noaa.gov/wct/
Nieto-Ferreira, R., Hall L. & Rickenbach, T.M. (2013). A climatology of the structure, evolution and propagation of midlatitude cyclones in the Southeastern United States. J. Climate, 26, 8406-8421. https://doi.org/10.1175/JCLI-D-12-00657.1
Nieto-Ferreira, R., Hall, L. & Rickenbach, T. M. (2015). Midlatitude cyclones in the southeastern United States: frequency and structure differences by cyclogenesis region. Int. J. Climatol. https://doi.org/10.1002/joc.4247
North American Regional Reanalysis (2015). Retrieved from http://www.emc.ncep.noaa.gov/mmb/rreanl/narr.bams.Aug19.pdf
Parker, M. D & Ahijevych, D. A. (2007). Convective episodes in the east-central United States. Mon. Wea. Rev., 135, 3707-3727. https://doi.org/10.1175/2007MWR2098.1
Planchon, O., Damato F., Dubreuil V. & Gouery P. (2006). A method of identifying and locating sea-breeze fronts in north-eastern Brazil by remote sensing. Meteorol. Appl. 13, 225-234. https://doi.org/10.1017/S1350482706002283
Ray, C. A. (1995). Detection of summertime convergence zones in central and eastern North Carolina using the WSR-88D Doppler Radar. M.S. thesis, Dept. of Marine, Earth and Atmospheric Sciences, North Carolina State University, 193 pp. [Available from University Microfilm, 305 N. Zeeb Rd., Ann Arbor, MI 48106.].
Savijärvi, H. & Alestalo, M. (1988). The sea breeze over a lake or gulf as the function of the prevailing flow. Beitr. Phys. Atmos, 61(2), 98-104.
Shaw, W. J., Lundquist, J. K. & Schreck, S. J. (2009). Research needs for wind resource characterization. Bull. Amer. Meteor. Soc., 90(4), 535-538. https://doi.org/10.1175/2008BAMS2729.1
Shepherd, J. M., Grundstein, A. & Mote, T. (2007). Quantifying the contribution of tropical cyclones to extreme rainfall along the coastal southeastern United States. Geophys. Res. Letters, 34, L23810, https://doi.org/10.1029/2007GL031694
Simpson, J. E., Mansfield, D. & Milford, J. (1977). Inland penetration of sea-breeze fronts. Q. J. Roy. Met. Soc.,103:435, 47-76. https://doi.org/10.1002/qj.49710343504
Sims, A. P., & Raman, S. (2016). Interaction Between Two Distinct Mesoscale Circulations During Summer in the Coastal Region of Eastern USA, Boundary Layer Meteor., 160(1), 113-132. https://doi.org/10.1007/s10546-015-0125-6
State Climate Office of North Carolina (SCONCa). Retrieved 2017, from http://climate.ncsu.edu/climate/monthlyprecip.html.
State Climate Office of North Carolina (SCONCb). Retrieved 2017, from http://climate.ncsu.edu/climate/ncclimate.html.
Steele, C. J., Dorling, S. R., von Glasow, R. & Bacon, J. (2014). Modelling sea-breeze climatologies and interactions on coasts in the southern North Sea: implications for offshore wind energy. Q. J. Roy. Met. Soc., 141: 1821-1835. https://doi.org/10.1002/qj.2484
Wallace, J. M. & Hobbs, P. V. (2006). Atmospheric science: An introductory survey. Amsterdam: Elsevier Academic Press.
Wilson, J. W., Weckwerth, T. M., Vivekanandan, J., Wakimoto, R. M. & Russell, R. W. (1994). Boundary layer clear-air radar echoes: Origin of echoes and accuracy of derived winds. J. Atmospheric and Oceanic Technology, 11(5), 1184-1206. https://doi.org/10.1175/1520-0426(1994)011<1184:BLCARE>2.0.CO;2
op_rights Copyright (c) 2017 Nicholas T. Luchetti, Rosana Nieto Ferreira, Thomas M. Rickenbach, Mark R. Nissenbaum, Joel D. McAuliffe
https://creativecommons.org/licenses/by/4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.14198/INGEO2017.68.01
https://doi.org/10.1175/1520-0450(1993)032<0116:EOTLSF>2.0.CO;2
https://doi.org/10.1175/1520-0469(1960)017<0244:RDOTSB>2.0.CO;2
https://doi.org/10.1353/sgo.2006.0021
https://doi.org/10.1175/JCLI3645.1
htt
container_title Investigaciones Geográficas
container_issue 68
container_start_page 9
_version_ 1766128315247099904
spelling ftunialicanteojs:oai:oai.revistes.ua.es:article/10782 2023-05-15T17:31:01+02:00 Influence of the North Atlantic Subtropical High on wet and dry sea-breeze events in North Carolina, United States Influencia del Anticiclón del Atlántico Norte en la pluviosidad de la brisa marina en Carolina del Norte, Estados Unidos Luchetti, Nicholas T. Nieto Ferreira, Rosana Rickenbach, Thomas M. Nissenbaum, Mark R. McAuliffe, Joel D. Climate and Large-Scale Dynamics and the Physical and Dynamic Meteorology programs of the National Science Foundation’s Division of Atmospheric and Geospatial Sciences, Award AGS-1118141. 2017-12-18 https://www.investigacionesgeograficas.com/article/view/2017-n68-influence-of-the-north-atlantic-subtropical-high-in-north-carolina https://doi.org/10.14198/INGEO2017.68.01 eng eng Universidad de Alicante https://www.investigacionesgeograficas.com/article/view/2017-n68-influence-of-the-north-atlantic-subtropical-high-in-north-carolina/pdf Adams, E. (1997). Four ways to win the sea breeze game, Sailing World, March, 44-49. Arritt, R. W. (1993). Effects of the large-scale flow on characteristic features of the sea breeze. Journal of Applied Meteorology, 32(1), 116-125. https://doi.org/10.1175/1520-0450(1993)032<0116:EOTLSF>2.0.CO;2 Atkins, N. T. & Wakimoto, R. M. (1997). Influence of the synoptic-scale flow on sea breezes observed during CaPE. Monthly Weather Review, 125(9), 2112-2130. https://doi.org/10.1175/1520-0493(1997)125<2112:IOTSSF>2.0.CO;2 Atlas, D. (1960). Radar detection of the sea breeze. J. Meteorology, 17, 244-258. https://doi.org/10.1175/1520-0469(1960)017<0244:RDOTSB>2.0.CO;2 Azorin-Molina, C. & Chen, D. (2009). A climatological study of the influence of synoptic-scale flows on sea breeze evolution in the Bay of Alicante (Spain). Theoretical and Applied Climatology, 96(3-4), 249-260. https://doi.org/10.1007/s00704-008-0028-2 Azorin-Molina, C., Tijm, S., Ebert, E. E., Vicente-Serrano, S.M. & Estrela M.J. (2015) High Resolution HIRLAM Simulations of the Role of Low-Level Sea-Breeze Convergence in Initiating Deep Moist Convection in the Eastern Iberian Peninsula. Boundary Layer Meteor. 154(1), 81-100. https://doi.org/10.1007/s10546-014-9961-z Banta, R. M., Olivier, L. D. & Levinson, D. H. (1993). Evolution of the Monterey Bay sea-breeze layer as observed by pulsed Doppler lidar. Journal of the Atmospheric Sciences, 50(24), 3959-3982. https://doi.org/10.1175/1520-0469(1993)050<3959:EOTMBS>2.0.CO;2 Bechtold, P., Pinty, J. P. & Mascart, F. (1991). A numerical investigation of the influence of large-scale winds on sea-breeze-and inland-breeze-type circulations. Journal of Applied Meteorology, 30(9), 1268-1279. https://doi.org/10.1175/1520-0450(1991)030<1268:ANIOTI>2.0.CO;2 Boyles, R. (2006). Investigation of Mesoscale Precipitation Processes in the Carolinas Using a Radar- based Climatology. Doctoral Dissertation, Department of Marine, Earth and Atmospheric Sciences, North Carolina State University. Retrieved from http://www.lib.ncsu.edu/resolver/1840.16/3895 Carlson, G. S. (2009). Spatial and temporal patterns of summer season precipitation across the Carolina coastal region (Doctoral dissertation, The University of North Carolina, Chaper Hill). Crosman, E. T. & Horel, J. D. (2010). Sea and lake breezes: a review of numerical studies. Boundary-Layer Meteorology, 137(1), 1-29. https://doi.org/10.1007/s10546-010-9517-9 Curtis, S. (2006). Developing a Climatology of the South’s ‘Other’ Storm Season: ENSO Impacts on Winter Extratropical Cyclogenesis. Southeastern Geographer, 46(2), 2006, 231-244. Project MUSE. https://doi.org/10.1353/sgo.2006.0021 Diem, J. (2006). Synoptic-scale controls of summer precipitation in the Southeastern United States. Journal of Climate, 19, 613-621. https://doi.org/10.1175/JCLI3645.1 Estoque, M.A. (1962). The sea breeze as a function of the prevailing synoptic situation. J. Atmos. Sci., 19, 244-250. https://doi.org/10.1175/1520-0469(1962)019<0244:TSBAAF>2.0.CO;2 Frysinger, J. A., Lindner, B. L. & Brueske, S. L. (2003). Statistical Sea-Breeze Prediction Algorithm for Charleston, South Carolina, Wea. Forecasting, 18, 614-625. https://doi.org/10.1175/1520-0434(2003)018<0614:ASSPAF>2.0.CO;2 Fuhrmann, C. M., Konrad, C. E., Kovach, M. M. & Perkins, D. J. (2011). The August 2007 heat wave in North Carolina: Meteorological factors and local variability. Physical Geography, 32(3), 217-240. http://www.tandfonline.com/doi/abs/10.2747/0272-3646.32.3.217 Gilliam, R. C., Raman, S. & Niyogi, D. D. S. (2004). Observational and numerical study on the influence of large-scale flow direction and coastline shape on sea-breeze evolution. Boundary-Layer Meteor., 111(2), 275-300. https://doi.org/10.1023/B:BOUN.0000016494.99539.5a Gil Olcina, A. & Olcina Cantos, J. (2017). Tratado de climatología. Instituto Interuniversitario de Geografía, Publicacions Universitat D’Alacant. Helmis, C. G., Papadopoulos, K. H., Kalogiros, J. A., Soilemes, A. T., & Asimakopoulos, D. N. (1995). Influence of background flow on evolution of Saronic Gulf sea breeze. Atmospheric Environment, 29(24), 3689-3701. https://doi.org/10.1016/1352-2310(95)00008-M Huffman, G. J., Adler, R. F., Bolvin, D. T., Gu, G., Nelkin, E.J., Bowman, K.P., Hong, Y., (…) & Wolff, D. B. (2007). The TRMM multi-satellite precipitation analysis: quasi-global, multi-year, combined-sensor precipitation estimates at fine scale. J. Hydrometeor. 8(1): 38-55. https://doi.org/10.1007/978-90-481-2915-7_1 Hughes, C. (2011). The climatology of the Delaware Bay/sea breeze. (Masters of Science Thesis, University of Delaware). Jacobs, N. A., Lackmann, G. M. & Raman, S. (2005). The combined effects of Gulf stream-induced baroclinicity and upper-level vorticity on U.S. East Coast extratropical cyclogenesis. Mon. Weather Rev., 133, 2494-2501. https://doi.org/10.1175/MWR2969.1 Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., (…) & Joseph D. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77: 437-472. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 Kingsmill, D. E. (1995). Convection initiation associated with a sea-breeze front, a gust front and their collision. Mon. Wea. Rev., 123, 2913-2933. https://doi.org/10.1175/1520-0493(1995)123<2913:CIAWAS>2.0.CO;2 Koch, S. E. & Ray, C. A. (1997). Mesoanalysis of summertime convergence zones in central and eastern North Carolina. Wea. Forecasting, 12(1), 56-77. https://doi.org/10.1175/1520-0434(1997)012<0056:MOSCZI>2.0.CO;2 Larson, J., Zhou, Y. & Higgins, R. W. (2005). Characteristics of landfalling tropical cyclones in the United States and Mexico: Climatology and interannual variability. J. Climate, 18, 1247-1262. https://doi.org/10.1175/JCLI3317.1 Li, W., Li, L., Fu, R., Deng, Y. & Wang, H. (2011). Changes to the North Atlantic subtropical high and its role in the intensification of summer rainfall variability in the southeastern United States. J. Climate, 24(5), 1499-1506. https://doi.org/10.1175/2010JCLI3829.1 Li, L., Li, W. & Kushnir, Y. (2012). Variation of the North Atlantic subtropical high western ridge and its implication to Southeastern US summer precipitation. Climate Dynamics, 39(6), 1401-1412. https://doi.org/10.1007/s00382-011-1214-y Lyons, W. A. & Olsson, L. E. (1973). Detailed Mesometeorological Studies of Air Pollution Dispersion in the Chicago Lake Breeze. Mon. Wea. Rev., 101(5), 387-403. https://doi.org/10.1175/1520-0493(1973)101<0387:DMSOAP>2.3.CO;2 Miller, S. T. K., Keim, B. D., Talbot, R. W. & Mao, H. (2003). Sea breeze: Structure, forecasting and impacts. Reviews of Geophysics, 41(3). https://doi.org/10.1029/2003RG000124 Naor, R., Potchter, O., Shafir, H. & Alpert, P. (2017). An observational study of the summer Mediterranean Sea breeze front penetration into the complex topography of the Jordan Rift Valley. Theor. and Appl. Climatol., 127 (1-2), 275-284. https://doi.org/10.1007/s00704-015-1635-3 National Climatic Data Center (NCEI) (2015). NEXRAD Data Inventory Search %7CNational Centers for Environmental Information. Retrieved from http://www.ncdc.noaa.gov/nexradinv/map.jsp National Oceanic and Atmospheric Administration (NOAA), Weather and Climate Toolkit. (2015). Retrieved from https://www.ncdc.noaa.gov/wct/ Nieto-Ferreira, R., Hall L. & Rickenbach, T.M. (2013). A climatology of the structure, evolution and propagation of midlatitude cyclones in the Southeastern United States. J. Climate, 26, 8406-8421. https://doi.org/10.1175/JCLI-D-12-00657.1 Nieto-Ferreira, R., Hall, L. & Rickenbach, T. M. (2015). Midlatitude cyclones in the southeastern United States: frequency and structure differences by cyclogenesis region. Int. J. Climatol. https://doi.org/10.1002/joc.4247 North American Regional Reanalysis (2015). Retrieved from http://www.emc.ncep.noaa.gov/mmb/rreanl/narr.bams.Aug19.pdf Parker, M. D & Ahijevych, D. A. (2007). Convective episodes in the east-central United States. Mon. Wea. Rev., 135, 3707-3727. https://doi.org/10.1175/2007MWR2098.1 Planchon, O., Damato F., Dubreuil V. & Gouery P. (2006). A method of identifying and locating sea-breeze fronts in north-eastern Brazil by remote sensing. Meteorol. Appl. 13, 225-234. https://doi.org/10.1017/S1350482706002283 Ray, C. A. (1995). Detection of summertime convergence zones in central and eastern North Carolina using the WSR-88D Doppler Radar. M.S. thesis, Dept. of Marine, Earth and Atmospheric Sciences, North Carolina State University, 193 pp. [Available from University Microfilm, 305 N. Zeeb Rd., Ann Arbor, MI 48106.]. Savijärvi, H. & Alestalo, M. (1988). The sea breeze over a lake or gulf as the function of the prevailing flow. Beitr. Phys. Atmos, 61(2), 98-104. Shaw, W. J., Lundquist, J. K. & Schreck, S. J. (2009). Research needs for wind resource characterization. Bull. Amer. Meteor. Soc., 90(4), 535-538. https://doi.org/10.1175/2008BAMS2729.1 Shepherd, J. M., Grundstein, A. & Mote, T. (2007). Quantifying the contribution of tropical cyclones to extreme rainfall along the coastal southeastern United States. Geophys. Res. Letters, 34, L23810, https://doi.org/10.1029/2007GL031694 Simpson, J. E., Mansfield, D. & Milford, J. (1977). Inland penetration of sea-breeze fronts. Q. J. Roy. Met. Soc.,103:435, 47-76. https://doi.org/10.1002/qj.49710343504 Sims, A. P., & Raman, S. (2016). Interaction Between Two Distinct Mesoscale Circulations During Summer in the Coastal Region of Eastern USA, Boundary Layer Meteor., 160(1), 113-132. https://doi.org/10.1007/s10546-015-0125-6 State Climate Office of North Carolina (SCONCa). Retrieved 2017, from http://climate.ncsu.edu/climate/monthlyprecip.html. State Climate Office of North Carolina (SCONCb). Retrieved 2017, from http://climate.ncsu.edu/climate/ncclimate.html. Steele, C. J., Dorling, S. R., von Glasow, R. & Bacon, J. (2014). Modelling sea-breeze climatologies and interactions on coasts in the southern North Sea: implications for offshore wind energy. Q. J. Roy. Met. Soc., 141: 1821-1835. https://doi.org/10.1002/qj.2484 Wallace, J. M. & Hobbs, P. V. (2006). Atmospheric science: An introductory survey. Amsterdam: Elsevier Academic Press. Wilson, J. W., Weckwerth, T. M., Vivekanandan, J., Wakimoto, R. M. & Russell, R. W. (1994). Boundary layer clear-air radar echoes: Origin of echoes and accuracy of derived winds. J. Atmospheric and Oceanic Technology, 11(5), 1184-1206. https://doi.org/10.1175/1520-0426(1994)011<1184:BLCARE>2.0.CO;2 Copyright (c) 2017 Nicholas T. Luchetti, Rosana Nieto Ferreira, Thomas M. Rickenbach, Mark R. Nissenbaum, Joel D. McAuliffe https://creativecommons.org/licenses/by/4.0 CC-BY Investigaciones Geográficas; Núm. 68; 9-25 1989-9890 Sea breeze precipitation North Carolina North Atlantic Subtropical High wind direction wind speed Brisa marina lluvia Carolina del Norte alta Subtropical del Atlántico Norte vientos de escala sinóptica info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2017 ftunialicanteojs https://doi.org/10.14198/INGEO2017.68.01 https://doi.org/10.1175/1520-0450(1993)032<0116:EOTLSF>2.0.CO;2 https://doi.org/10.1175/1520-0469(1960)017<0244:RDOTSB>2.0.CO;2 https://doi.org/10.1353/sgo.2006.0021 https://doi.org/10.1175/JCLI3645.1 htt 2022-08-26T12:17:19Z The sea-breeze (SB) is an important source of summertime precipitation in North Carolina (NC, southeast United States). However, not all SB events produce precipitation. A climatology of wet and dry SB events in NC is used to investigate the conditions that are conducive to precipitation associated with the sea breeze.Radar imagery was used to detect 88 SB events that occurred along the NC coast between May-September of 2009-2012. The majority (85%) of SB events occurred during offshore flow (53%) or during flow that was parallel to the coast (22%). SB events were separated into dry (53%) and wet (47%) events and differences in the dynamic and thermodynamic parameters of the environment in which they formed were analyzed. Significant differences in dynamic and thermodynamic conditions were found. SB dry events occurred under stronger winds (6.00 ± 2.36 ms-1) than SB wet events (4.02 ± 2.16 ms-1). Moreover, during SB wet events larger values of convective available potential energy and lower values of convective inhibition were present, conditions that favor precipitation. Overall, the SB wet events accounted for 20-30% of the May-September precipitation along the NC coastal region. The position of the North Atlantic Subtropical High (NASH) controls both moisture availability and winds along the NC coast, thus providing a synoptic-scale control mechanism for SB precipitation. In particular, it was shown that when the NASH western ridge is located along the southeast coast of the United States, it causes a moist southwesterly flow along the NC coast that may favor the occurrence of SB wet events. La brisa marina (BM) es una importante fuente de precipitación de verano en Carolina del Norte (NC en su sigla en inglés), sudeste de Estados Unidos. Sin embargo, no todos los eventos de BM producen precipitación. En este trabajo se utiliza una climatología de eventos de BM lluviosos y secos en NC para investigar las condiciones que conducen a la precipitación.Se utilizaron imágenes de radar para detectar 88 eventos de ... Article in Journal/Newspaper North Atlantic Scientific Journals - University of Alicante Alta Inglés ENVELOPE(-59.650,-59.650,-62.417,-62.417) Nash ENVELOPE(-62.350,-62.350,-74.233,-74.233) Sigla ENVELOPE(9.599,9.599,63.138,63.138) Sudeste ENVELOPE(-60.516,-60.516,-62.988,-62.988) Investigaciones Geográficas 68 9