Cross-scale regulation of seasonal microclimate by vegetation and snow in the Arctic tundra

Climate warming is inducing widespread vegetation changes in Arctic tundra ecosystems, with the potential to alter carbon and nutrient dynamics between vegetation and soils. Yet, we lack a detailed understanding of how variation in vegetation and topography influences fine-scale temperatures (‘micro...

Full description

Bibliographic Details
Published in:Global Change Biology
Main Authors: Von Oppen, Jonathan, Assmann, Jakob Johann, Bjorkman, Anne D., Treier, Urs, Elberling, Bo, Nabe-Nielsen, Jacob, Normand, Signe
Format: Article in Journal/Newspaper
Language:English
Published: 2022
Subjects:
Online Access:https://pure.au.dk/portal/en/publications/ed103487-90d3-4eba-9046-6bb86c57155a
https://doi.org/10.1111/gcb.16426
https://pure.au.dk/ws/files/334712809/Global_Change_Biology_2022_Oppen.pdf
id ftuniaarhuspubl:oai:pure.atira.dk:publications/ed103487-90d3-4eba-9046-6bb86c57155a
record_format openpolar
spelling ftuniaarhuspubl:oai:pure.atira.dk:publications/ed103487-90d3-4eba-9046-6bb86c57155a 2024-04-14T08:05:20+00:00 Cross-scale regulation of seasonal microclimate by vegetation and snow in the Arctic tundra Von Oppen, Jonathan Assmann, Jakob Johann Bjorkman, Anne D. Treier, Urs Elberling, Bo Nabe-Nielsen, Jacob Normand, Signe 2022-12 application/pdf https://pure.au.dk/portal/en/publications/ed103487-90d3-4eba-9046-6bb86c57155a https://doi.org/10.1111/gcb.16426 https://pure.au.dk/ws/files/334712809/Global_Change_Biology_2022_Oppen.pdf eng eng https://pure.au.dk/portal/en/publications/ed103487-90d3-4eba-9046-6bb86c57155a info:eu-repo/semantics/openAccess Von Oppen , J , Assmann , J J , Bjorkman , A D , Treier , U , Elberling , B , Nabe-Nielsen , J & Normand , S 2022 , ' Cross-scale regulation of seasonal microclimate by vegetation and snow in the Arctic tundra ' , Global Change Biology , vol. 28 , no. 24 , pp. 7296-7312 . https://doi.org/10.1111/gcb.16426 Arctic tundra microclimate plant functional types shrub expansion snow cover soil temperature stratified random sampling temperature offset article 2022 ftuniaarhuspubl https://doi.org/10.1111/gcb.16426 2024-03-21T15:30:39Z Climate warming is inducing widespread vegetation changes in Arctic tundra ecosystems, with the potential to alter carbon and nutrient dynamics between vegetation and soils. Yet, we lack a detailed understanding of how variation in vegetation and topography influences fine-scale temperatures (‘microclimate’) that mediate these dynamics, and at what resolution vegetation needs to be sampled to capture these effects. We monitored microclimate at 90 plots across a tundra landscape in western Greenland. Our stratified random study design covered gradients of topography and vegetation, while nested plots (0.8 to 100 m2) enabled comparison across different sampling resolutions. We used Bayesian mixed-effect models to quantify the direct influence of plot-level topography, moisture and vegetation on soil, near-surface and canopy-level temperatures (-6; 2; and 15 cm). During the growing season, colder soils were predicted by shrub cover (-0.24 °C per 10% increase), bryophyte cover (-0.35 °C per 10% increase) and vegetation height (-0.17 °C per 1 cm increase). The same three factors also predicted the magnitude of differences between soil and above-ground temperatures, indicating warmer soils at low cover/height, but colder soils under closed/taller canopies. These findings were consistent across plot sizes, suggesting that spatial predictions of microclimate may be possible at the operational scales of satellite products. During winter, snow cover (+0.75 °C per 10 snow-covered days) was the key predictor of soil microclimate. Topography and moisture explained little variation in the measured temperatures. Our results underline the close connection of vegetation and snow with microclimate in the Arctic tundra, but also point to the need for more studies disentangling their complex interplay across tundra environments and seasons. Future shifts in vegetation cover and height will likely mediate the impact of atmospheric warming on the tundra soil environment, with potential implications for below-ground organisms and ... Article in Journal/Newspaper Arctic Arctic Greenland Tundra Aarhus University: Research Arctic Greenland Global Change Biology 28 24 7296 7312
institution Open Polar
collection Aarhus University: Research
op_collection_id ftuniaarhuspubl
language English
topic Arctic tundra
microclimate
plant functional types
shrub expansion
snow cover
soil temperature
stratified random sampling
temperature offset
spellingShingle Arctic tundra
microclimate
plant functional types
shrub expansion
snow cover
soil temperature
stratified random sampling
temperature offset
Von Oppen, Jonathan
Assmann, Jakob Johann
Bjorkman, Anne D.
Treier, Urs
Elberling, Bo
Nabe-Nielsen, Jacob
Normand, Signe
Cross-scale regulation of seasonal microclimate by vegetation and snow in the Arctic tundra
topic_facet Arctic tundra
microclimate
plant functional types
shrub expansion
snow cover
soil temperature
stratified random sampling
temperature offset
description Climate warming is inducing widespread vegetation changes in Arctic tundra ecosystems, with the potential to alter carbon and nutrient dynamics between vegetation and soils. Yet, we lack a detailed understanding of how variation in vegetation and topography influences fine-scale temperatures (‘microclimate’) that mediate these dynamics, and at what resolution vegetation needs to be sampled to capture these effects. We monitored microclimate at 90 plots across a tundra landscape in western Greenland. Our stratified random study design covered gradients of topography and vegetation, while nested plots (0.8 to 100 m2) enabled comparison across different sampling resolutions. We used Bayesian mixed-effect models to quantify the direct influence of plot-level topography, moisture and vegetation on soil, near-surface and canopy-level temperatures (-6; 2; and 15 cm). During the growing season, colder soils were predicted by shrub cover (-0.24 °C per 10% increase), bryophyte cover (-0.35 °C per 10% increase) and vegetation height (-0.17 °C per 1 cm increase). The same three factors also predicted the magnitude of differences between soil and above-ground temperatures, indicating warmer soils at low cover/height, but colder soils under closed/taller canopies. These findings were consistent across plot sizes, suggesting that spatial predictions of microclimate may be possible at the operational scales of satellite products. During winter, snow cover (+0.75 °C per 10 snow-covered days) was the key predictor of soil microclimate. Topography and moisture explained little variation in the measured temperatures. Our results underline the close connection of vegetation and snow with microclimate in the Arctic tundra, but also point to the need for more studies disentangling their complex interplay across tundra environments and seasons. Future shifts in vegetation cover and height will likely mediate the impact of atmospheric warming on the tundra soil environment, with potential implications for below-ground organisms and ...
format Article in Journal/Newspaper
author Von Oppen, Jonathan
Assmann, Jakob Johann
Bjorkman, Anne D.
Treier, Urs
Elberling, Bo
Nabe-Nielsen, Jacob
Normand, Signe
author_facet Von Oppen, Jonathan
Assmann, Jakob Johann
Bjorkman, Anne D.
Treier, Urs
Elberling, Bo
Nabe-Nielsen, Jacob
Normand, Signe
author_sort Von Oppen, Jonathan
title Cross-scale regulation of seasonal microclimate by vegetation and snow in the Arctic tundra
title_short Cross-scale regulation of seasonal microclimate by vegetation and snow in the Arctic tundra
title_full Cross-scale regulation of seasonal microclimate by vegetation and snow in the Arctic tundra
title_fullStr Cross-scale regulation of seasonal microclimate by vegetation and snow in the Arctic tundra
title_full_unstemmed Cross-scale regulation of seasonal microclimate by vegetation and snow in the Arctic tundra
title_sort cross-scale regulation of seasonal microclimate by vegetation and snow in the arctic tundra
publishDate 2022
url https://pure.au.dk/portal/en/publications/ed103487-90d3-4eba-9046-6bb86c57155a
https://doi.org/10.1111/gcb.16426
https://pure.au.dk/ws/files/334712809/Global_Change_Biology_2022_Oppen.pdf
geographic Arctic
Greenland
geographic_facet Arctic
Greenland
genre Arctic
Arctic
Greenland
Tundra
genre_facet Arctic
Arctic
Greenland
Tundra
op_source Von Oppen , J , Assmann , J J , Bjorkman , A D , Treier , U , Elberling , B , Nabe-Nielsen , J & Normand , S 2022 , ' Cross-scale regulation of seasonal microclimate by vegetation and snow in the Arctic tundra ' , Global Change Biology , vol. 28 , no. 24 , pp. 7296-7312 . https://doi.org/10.1111/gcb.16426
op_relation https://pure.au.dk/portal/en/publications/ed103487-90d3-4eba-9046-6bb86c57155a
op_rights info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.1111/gcb.16426
container_title Global Change Biology
container_volume 28
container_issue 24
container_start_page 7296
op_container_end_page 7312
_version_ 1796302091455561728