Dissolved organic nutrients dominate melting surface ice of the Dark Zone (Greenland Ice Sheet)

Glaciers and ice sheets host abundant and dynamic communities of microorganisms on the ice surface (supraglacial environments). Recently, it has been shown that Streptophyte glacier algae blooming on the surface ice of the south-western coast of the Greenland Ice Sheet are a significant contributor...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Authors: Holland, Alexandra, Williamson, Christopher, Sgouridis, Fotis, Tedstone, Andrew, McCutcheon, Jenine, Cook, Joseph, Poniecka, Ewa, Yallop, Marian, Tranter, Martyn, Anesio, Alexandre
Format: Article in Journal/Newspaper
Language:English
Published: 2019
Subjects:
Online Access:https://pure.au.dk/portal/da/publications/dissolved-organic-nutrients-dominate-melting-surface-ice-of-the-dark-zone-greenland-ice-sheet(c8dfdb9b-ff1f-44ea-9aa0-e02a184da50d).html
https://doi.org/10.5194/bg-16-3283-2019
id ftuniaarhuspubl:oai:pure.atira.dk:publications/c8dfdb9b-ff1f-44ea-9aa0-e02a184da50d
record_format openpolar
spelling ftuniaarhuspubl:oai:pure.atira.dk:publications/c8dfdb9b-ff1f-44ea-9aa0-e02a184da50d 2023-05-15T16:21:28+02:00 Dissolved organic nutrients dominate melting surface ice of the Dark Zone (Greenland Ice Sheet) Holland, Alexandra Williamson, Christopher Sgouridis, Fotis Tedstone, Andrew McCutcheon, Jenine Cook, Joseph Poniecka, Ewa Yallop, Marian Tranter, Martyn Anesio, Alexandre 2019-08-30 https://pure.au.dk/portal/da/publications/dissolved-organic-nutrients-dominate-melting-surface-ice-of-the-dark-zone-greenland-ice-sheet(c8dfdb9b-ff1f-44ea-9aa0-e02a184da50d).html https://doi.org/10.5194/bg-16-3283-2019 eng eng info:eu-repo/semantics/restrictedAccess Holland , A , Williamson , C , Sgouridis , F , Tedstone , A , McCutcheon , J , Cook , J , Poniecka , E , Yallop , M , Tranter , M & Anesio , A 2019 , ' Dissolved organic nutrients dominate melting surface ice of the Dark Zone (Greenland Ice Sheet) ' , Biogeosciences , vol. 16 , pp. 3296-3296 . https://doi.org/10.5194/bg-16-3283-2019 article 2019 ftuniaarhuspubl https://doi.org/10.5194/bg-16-3283-2019 2022-02-16T23:50:04Z Glaciers and ice sheets host abundant and dynamic communities of microorganisms on the ice surface (supraglacial environments). Recently, it has been shown that Streptophyte glacier algae blooming on the surface ice of the south-western coast of the Greenland Ice Sheet are a significant contributor to the 15-year marked decrease in albedo. Currently, little is known about the constraints, such as nutrient availability, on this large-scale algal bloom. In this study, we investigate the relative abundances of dissolved inorganic and dissolved organic macronutrients (N and P) in these darkening surface ice environments. Three distinct ice surfaces, with low, medium and high visible impurity loadings, supraglacial stream water and cryoconite hole water, were sampled. Our results show a clear dominance of the organic phase in all ice surface samples containing low, medium and high visible impurity loadings, with 93 % of the total dissolved nitrogen and 67 % of the total dissolved phosphorus in the organic phase. Mean concentrations in low, medium and high visible impurity surface ice environments are 0.91, 0.62 and 1.0 µM for dissolved inorganic nitrogen (DIN), 5.1, 11 and 14 µM for dissolved organic nitrogen (DON), 0.03, 0.07 and 0.05 µM for dissolved inorganic phosphorus (DIP) and 0.10, 0.15 and 0.12 µM for dissolved organic phosphorus (DOP), respectively. DON concentrations in all three surface ice samples are significantly higher than DON concentrations in supraglacial streams and cryoconite hole water (0 and 0.7 µM, respectively). DOP concentrations are higher in all three surface ice samples compared to supraglacial streams and cryoconite hole water (0.07 µM for both). Dissolved organic carbon (DOC) concentrations increase with the amount of visible impurities present (low: 83 µM, medium: 173 µM and high: 242 µM) and are elevated compared to supraglacial streams and cryoconite hole water (30 and 50 µM, respectively). We speculate that the architecture of the weathering crust, which impacts on water flow paths and storage in the melting surface ice and/or the production of extracellular polymeric substances (EPS), containing both N and P in conjunction with C, is responsible for the temporary retention of DON and DOP in the melting surface ice. The unusual presence of measurable DIP and DIN, principally as NH+4, in the melting surface ice environments suggests that factors other than macronutrient limitation are controlling the extent and magnitude of the glacier algae. Article in Journal/Newspaper glacier Greenland Ice Sheet Aarhus University: Research Greenland Biogeosciences 16 16 3283 3296
institution Open Polar
collection Aarhus University: Research
op_collection_id ftuniaarhuspubl
language English
description Glaciers and ice sheets host abundant and dynamic communities of microorganisms on the ice surface (supraglacial environments). Recently, it has been shown that Streptophyte glacier algae blooming on the surface ice of the south-western coast of the Greenland Ice Sheet are a significant contributor to the 15-year marked decrease in albedo. Currently, little is known about the constraints, such as nutrient availability, on this large-scale algal bloom. In this study, we investigate the relative abundances of dissolved inorganic and dissolved organic macronutrients (N and P) in these darkening surface ice environments. Three distinct ice surfaces, with low, medium and high visible impurity loadings, supraglacial stream water and cryoconite hole water, were sampled. Our results show a clear dominance of the organic phase in all ice surface samples containing low, medium and high visible impurity loadings, with 93 % of the total dissolved nitrogen and 67 % of the total dissolved phosphorus in the organic phase. Mean concentrations in low, medium and high visible impurity surface ice environments are 0.91, 0.62 and 1.0 µM for dissolved inorganic nitrogen (DIN), 5.1, 11 and 14 µM for dissolved organic nitrogen (DON), 0.03, 0.07 and 0.05 µM for dissolved inorganic phosphorus (DIP) and 0.10, 0.15 and 0.12 µM for dissolved organic phosphorus (DOP), respectively. DON concentrations in all three surface ice samples are significantly higher than DON concentrations in supraglacial streams and cryoconite hole water (0 and 0.7 µM, respectively). DOP concentrations are higher in all three surface ice samples compared to supraglacial streams and cryoconite hole water (0.07 µM for both). Dissolved organic carbon (DOC) concentrations increase with the amount of visible impurities present (low: 83 µM, medium: 173 µM and high: 242 µM) and are elevated compared to supraglacial streams and cryoconite hole water (30 and 50 µM, respectively). We speculate that the architecture of the weathering crust, which impacts on water flow paths and storage in the melting surface ice and/or the production of extracellular polymeric substances (EPS), containing both N and P in conjunction with C, is responsible for the temporary retention of DON and DOP in the melting surface ice. The unusual presence of measurable DIP and DIN, principally as NH+4, in the melting surface ice environments suggests that factors other than macronutrient limitation are controlling the extent and magnitude of the glacier algae.
format Article in Journal/Newspaper
author Holland, Alexandra
Williamson, Christopher
Sgouridis, Fotis
Tedstone, Andrew
McCutcheon, Jenine
Cook, Joseph
Poniecka, Ewa
Yallop, Marian
Tranter, Martyn
Anesio, Alexandre
spellingShingle Holland, Alexandra
Williamson, Christopher
Sgouridis, Fotis
Tedstone, Andrew
McCutcheon, Jenine
Cook, Joseph
Poniecka, Ewa
Yallop, Marian
Tranter, Martyn
Anesio, Alexandre
Dissolved organic nutrients dominate melting surface ice of the Dark Zone (Greenland Ice Sheet)
author_facet Holland, Alexandra
Williamson, Christopher
Sgouridis, Fotis
Tedstone, Andrew
McCutcheon, Jenine
Cook, Joseph
Poniecka, Ewa
Yallop, Marian
Tranter, Martyn
Anesio, Alexandre
author_sort Holland, Alexandra
title Dissolved organic nutrients dominate melting surface ice of the Dark Zone (Greenland Ice Sheet)
title_short Dissolved organic nutrients dominate melting surface ice of the Dark Zone (Greenland Ice Sheet)
title_full Dissolved organic nutrients dominate melting surface ice of the Dark Zone (Greenland Ice Sheet)
title_fullStr Dissolved organic nutrients dominate melting surface ice of the Dark Zone (Greenland Ice Sheet)
title_full_unstemmed Dissolved organic nutrients dominate melting surface ice of the Dark Zone (Greenland Ice Sheet)
title_sort dissolved organic nutrients dominate melting surface ice of the dark zone (greenland ice sheet)
publishDate 2019
url https://pure.au.dk/portal/da/publications/dissolved-organic-nutrients-dominate-melting-surface-ice-of-the-dark-zone-greenland-ice-sheet(c8dfdb9b-ff1f-44ea-9aa0-e02a184da50d).html
https://doi.org/10.5194/bg-16-3283-2019
geographic Greenland
geographic_facet Greenland
genre glacier
Greenland
Ice Sheet
genre_facet glacier
Greenland
Ice Sheet
op_source Holland , A , Williamson , C , Sgouridis , F , Tedstone , A , McCutcheon , J , Cook , J , Poniecka , E , Yallop , M , Tranter , M & Anesio , A 2019 , ' Dissolved organic nutrients dominate melting surface ice of the Dark Zone (Greenland Ice Sheet) ' , Biogeosciences , vol. 16 , pp. 3296-3296 . https://doi.org/10.5194/bg-16-3283-2019
op_rights info:eu-repo/semantics/restrictedAccess
op_doi https://doi.org/10.5194/bg-16-3283-2019
container_title Biogeosciences
container_volume 16
container_issue 16
container_start_page 3283
op_container_end_page 3296
_version_ 1766009477068226560