Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw

Permafrost peatlands are biogeochemical hot spots in the Arctic as they store vast amounts of carbon. Permafrost thaw could release part of these long-term immobile carbon stocks as the greenhouse gases (GHGs) carbon dioxide (CO2) and methane (CH4) to the atmosphere, but how much, at which time-span...

Full description

Bibliographic Details
Published in:Global Change Biology
Main Authors: Voigt, Carolina, Marushchak, Maija E., Mastepanov, Mikhail, Lamprecht, Richard E., Christensen, Torben R., Dorodnikov, Maxim, Jackowicz-Korczyński, Marcin, Lindgren, Amelie, Lohila, Annalea, Nykänen, Hannu, Oinonen, Markku, Oksanen, Timo, Palonen, Vesa, Treat, Claire C., Martikainen, Pertti J., Biasi, Christina
Format: Article in Journal/Newspaper
Language:English
Published: 2019
Subjects:
CO
CO2
Online Access:https://pure.au.dk/portal/en/publications/1cfb8e7e-f652-4872-9277-3f4f048ead19
https://doi.org/10.1111/gcb.14574
http://www.scopus.com/inward/record.url?scp=85061985477&partnerID=8YFLogxK
id ftuniaarhuspubl:oai:pure.atira.dk:publications/1cfb8e7e-f652-4872-9277-3f4f048ead19
record_format openpolar
spelling ftuniaarhuspubl:oai:pure.atira.dk:publications/1cfb8e7e-f652-4872-9277-3f4f048ead19 2024-02-11T09:59:39+01:00 Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw Voigt, Carolina Marushchak, Maija E. Mastepanov, Mikhail Lamprecht, Richard E. Christensen, Torben R. Dorodnikov, Maxim Jackowicz-Korczyński, Marcin Lindgren, Amelie Lohila, Annalea Nykänen, Hannu Oinonen, Markku Oksanen, Timo Palonen, Vesa Treat, Claire C. Martikainen, Pertti J. Biasi, Christina 2019-05 https://pure.au.dk/portal/en/publications/1cfb8e7e-f652-4872-9277-3f4f048ead19 https://doi.org/10.1111/gcb.14574 http://www.scopus.com/inward/record.url?scp=85061985477&partnerID=8YFLogxK eng eng https://pure.au.dk/portal/en/publications/1cfb8e7e-f652-4872-9277-3f4f048ead19 info:eu-repo/semantics/restrictedAccess Voigt , C , Marushchak , M E , Mastepanov , M , Lamprecht , R E , Christensen , T R , Dorodnikov , M , Jackowicz-Korczyński , M , Lindgren , A , Lohila , A , Nykänen , H , Oinonen , M , Oksanen , T , Palonen , V , Treat , C C , Martikainen , P J & Biasi , C 2019 , ' Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw ' , Global Change Biology , vol. 25 , no. 5 , pp. 1746-1764 . https://doi.org/10.1111/gcb.14574 climate warming CO greenhouse gas mesocosm methane oxidation permafrost-carbon-feedback PALSA MIRE NORTHERN PEATLANDS CO2 ORGANIC-MATTER CLIMATE-CHANGE CO2 EXCHANGE CH4 FLUXES METHANE EMISSIONS WATER-TABLE TUNDRA SOILS EXTRACTION METHOD article 2019 ftuniaarhuspubl https://doi.org/10.1111/gcb.14574 2024-01-18T00:00:05Z Permafrost peatlands are biogeochemical hot spots in the Arctic as they store vast amounts of carbon. Permafrost thaw could release part of these long-term immobile carbon stocks as the greenhouse gases (GHGs) carbon dioxide (CO2) and methane (CH4) to the atmosphere, but how much, at which time-span and as which gaseous carbon species is still highly uncertain. Here we assess the effect of permafrost thaw on GHG dynamics under different moisture and vegetation scenarios in a permafrost peatland. A novel experimental approach using intact plant-soil systems (mesocosms) allowed us to simulate permafrost thaw under near-natural conditions. We monitored GHG flux dynamics via high-resolution flow-through gas measurements, combined with detailed monitoring of soil GHG concentration dynamics, yielding insights into GHG production and consumption potential of individual soil layers. Thawing the upper 10-15 cm of permafrost under dry conditions increased CO2 emissions to the atmosphere (without vegetation: 0.74 +/- 0.49 vs. 0.84 +/- 0.60 g CO2-C m(-2) day(-1); with vegetation: 1.20 +/- 0.50 vs. 1.32 +/- 0.60 g CO2-C m(-2) day(-1), mean +/- SD, pre- and post-thaw, respectively). Radiocarbon dating (C-14) of respired CO2, supported by an independent curve-fitting approach, showed a clear contribution (9%-27%) of old carbon to this enhanced post-thaw CO2 flux. Elevated concentrations of CO2, CH4, and dissolved organic carbon at depth indicated not just pulse emissions during the thawing process, but sustained decomposition and GHG production from thawed permafrost. Oxidation of CH4 in the peat column, however, prevented CH4 release to the atmosphere. Importantly, we show here that, under dry conditions, peatlands strengthen the permafrost-carbon feedback by adding to the atmospheric CO2 burden post-thaw. However, as long as the water table remains low, our results reveal a strong CH4 sink capacity in these types of Arctic ecosystems pre- and post-thaw, with the potential to compensate part of the permafrost CO2 losses over ... Article in Journal/Newspaper Arctic Arctic Climate change palsa permafrost Tundra Aarhus University: Research Arctic Global Change Biology 25 5 1746 1764
institution Open Polar
collection Aarhus University: Research
op_collection_id ftuniaarhuspubl
language English
topic climate warming
CO
greenhouse gas
mesocosm
methane oxidation
permafrost-carbon-feedback
PALSA MIRE
NORTHERN PEATLANDS
CO2
ORGANIC-MATTER
CLIMATE-CHANGE
CO2 EXCHANGE
CH4 FLUXES
METHANE EMISSIONS
WATER-TABLE
TUNDRA SOILS
EXTRACTION METHOD
spellingShingle climate warming
CO
greenhouse gas
mesocosm
methane oxidation
permafrost-carbon-feedback
PALSA MIRE
NORTHERN PEATLANDS
CO2
ORGANIC-MATTER
CLIMATE-CHANGE
CO2 EXCHANGE
CH4 FLUXES
METHANE EMISSIONS
WATER-TABLE
TUNDRA SOILS
EXTRACTION METHOD
Voigt, Carolina
Marushchak, Maija E.
Mastepanov, Mikhail
Lamprecht, Richard E.
Christensen, Torben R.
Dorodnikov, Maxim
Jackowicz-Korczyński, Marcin
Lindgren, Amelie
Lohila, Annalea
Nykänen, Hannu
Oinonen, Markku
Oksanen, Timo
Palonen, Vesa
Treat, Claire C.
Martikainen, Pertti J.
Biasi, Christina
Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw
topic_facet climate warming
CO
greenhouse gas
mesocosm
methane oxidation
permafrost-carbon-feedback
PALSA MIRE
NORTHERN PEATLANDS
CO2
ORGANIC-MATTER
CLIMATE-CHANGE
CO2 EXCHANGE
CH4 FLUXES
METHANE EMISSIONS
WATER-TABLE
TUNDRA SOILS
EXTRACTION METHOD
description Permafrost peatlands are biogeochemical hot spots in the Arctic as they store vast amounts of carbon. Permafrost thaw could release part of these long-term immobile carbon stocks as the greenhouse gases (GHGs) carbon dioxide (CO2) and methane (CH4) to the atmosphere, but how much, at which time-span and as which gaseous carbon species is still highly uncertain. Here we assess the effect of permafrost thaw on GHG dynamics under different moisture and vegetation scenarios in a permafrost peatland. A novel experimental approach using intact plant-soil systems (mesocosms) allowed us to simulate permafrost thaw under near-natural conditions. We monitored GHG flux dynamics via high-resolution flow-through gas measurements, combined with detailed monitoring of soil GHG concentration dynamics, yielding insights into GHG production and consumption potential of individual soil layers. Thawing the upper 10-15 cm of permafrost under dry conditions increased CO2 emissions to the atmosphere (without vegetation: 0.74 +/- 0.49 vs. 0.84 +/- 0.60 g CO2-C m(-2) day(-1); with vegetation: 1.20 +/- 0.50 vs. 1.32 +/- 0.60 g CO2-C m(-2) day(-1), mean +/- SD, pre- and post-thaw, respectively). Radiocarbon dating (C-14) of respired CO2, supported by an independent curve-fitting approach, showed a clear contribution (9%-27%) of old carbon to this enhanced post-thaw CO2 flux. Elevated concentrations of CO2, CH4, and dissolved organic carbon at depth indicated not just pulse emissions during the thawing process, but sustained decomposition and GHG production from thawed permafrost. Oxidation of CH4 in the peat column, however, prevented CH4 release to the atmosphere. Importantly, we show here that, under dry conditions, peatlands strengthen the permafrost-carbon feedback by adding to the atmospheric CO2 burden post-thaw. However, as long as the water table remains low, our results reveal a strong CH4 sink capacity in these types of Arctic ecosystems pre- and post-thaw, with the potential to compensate part of the permafrost CO2 losses over ...
format Article in Journal/Newspaper
author Voigt, Carolina
Marushchak, Maija E.
Mastepanov, Mikhail
Lamprecht, Richard E.
Christensen, Torben R.
Dorodnikov, Maxim
Jackowicz-Korczyński, Marcin
Lindgren, Amelie
Lohila, Annalea
Nykänen, Hannu
Oinonen, Markku
Oksanen, Timo
Palonen, Vesa
Treat, Claire C.
Martikainen, Pertti J.
Biasi, Christina
author_facet Voigt, Carolina
Marushchak, Maija E.
Mastepanov, Mikhail
Lamprecht, Richard E.
Christensen, Torben R.
Dorodnikov, Maxim
Jackowicz-Korczyński, Marcin
Lindgren, Amelie
Lohila, Annalea
Nykänen, Hannu
Oinonen, Markku
Oksanen, Timo
Palonen, Vesa
Treat, Claire C.
Martikainen, Pertti J.
Biasi, Christina
author_sort Voigt, Carolina
title Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw
title_short Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw
title_full Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw
title_fullStr Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw
title_full_unstemmed Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw
title_sort ecosystem carbon response of an arctic peatland to simulated permafrost thaw
publishDate 2019
url https://pure.au.dk/portal/en/publications/1cfb8e7e-f652-4872-9277-3f4f048ead19
https://doi.org/10.1111/gcb.14574
http://www.scopus.com/inward/record.url?scp=85061985477&partnerID=8YFLogxK
geographic Arctic
geographic_facet Arctic
genre Arctic
Arctic
Climate change
palsa
permafrost
Tundra
genre_facet Arctic
Arctic
Climate change
palsa
permafrost
Tundra
op_source Voigt , C , Marushchak , M E , Mastepanov , M , Lamprecht , R E , Christensen , T R , Dorodnikov , M , Jackowicz-Korczyński , M , Lindgren , A , Lohila , A , Nykänen , H , Oinonen , M , Oksanen , T , Palonen , V , Treat , C C , Martikainen , P J & Biasi , C 2019 , ' Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw ' , Global Change Biology , vol. 25 , no. 5 , pp. 1746-1764 . https://doi.org/10.1111/gcb.14574
op_relation https://pure.au.dk/portal/en/publications/1cfb8e7e-f652-4872-9277-3f4f048ead19
op_rights info:eu-repo/semantics/restrictedAccess
op_doi https://doi.org/10.1111/gcb.14574
container_title Global Change Biology
container_volume 25
container_issue 5
container_start_page 1746
op_container_end_page 1764
_version_ 1790595451018280960