Evaluation of the HEC-HMS model for the hydrological simulation of a paramo basin

In this study, the performance of the HEC-HMS model was evaluated for the simulation of rain-runoff processes in a paramo basin of approximately 21. 8 km2, south of Ecuador. The calibration and validation comprises the period of July-2013 to June-2016 with daily data. The Soil Moisture Accounting (S...

Full description

Bibliographic Details
Published in:DYNA
Main Authors: Timbe Castro, Luis Manuel, Crespo Sánchez, Patricio Javier, Cabrera-Balarezo, Juan José
Format: Article in Journal/Newspaper
Language:Spanish
Published: Universidad Nacional de Colombia - Sede Medellín - Facultad de Minas 2019
Subjects:
Online Access:https://revistas.unal.edu.co/index.php/dyna/article/view/70738
id ftuncolombiarev:oai:www.revistas.unal.edu.co:article/70738
record_format openpolar
institution Open Polar
collection Universidad Nacional de Colombia: Portal de Revistas UN
op_collection_id ftuncolombiarev
language Spanish
topic HEC HMS
calibration
validation
andean paramo wetlands
rainfall runoff
calibración
validación
páramo
precipitación escorrentía
spellingShingle HEC HMS
calibration
validation
andean paramo wetlands
rainfall runoff
calibración
validación
páramo
precipitación escorrentía
Timbe Castro, Luis Manuel
Crespo Sánchez, Patricio Javier
Cabrera-Balarezo, Juan José
Evaluation of the HEC-HMS model for the hydrological simulation of a paramo basin
topic_facet HEC HMS
calibration
validation
andean paramo wetlands
rainfall runoff
calibración
validación
páramo
precipitación escorrentía
description In this study, the performance of the HEC-HMS model was evaluated for the simulation of rain-runoff processes in a paramo basin of approximately 21. 8 km2, south of Ecuador. The calibration and validation comprises the period of July-2013 to June-2016 with daily data. The Soil Moisture Accounting (SMA) method was used to compute the water flow in the soil. For the rainfall distribution, the Thiessen method was used, while the Evapotranspiration was calculated with the Penman-Monteith equation. The results revealed that (1) 83% of the water infiltrates the soil while only 17% is retained in plants and the soil surface, (2) the water is retained for approximately 42 days before reaching the river and (3) that more than 60% of the flow corresponds to sub-surface flow. En este estudio se evaluó el desempeño del modelo HEC-HMS, para la simulación de los procesos de lluvia-escorrentía en una cuenca de páramo de aproximadamente 21. 8 km2 al sur del Ecuador. La calibración y validación comprende el periodo de julio-2013 a junio-2016 con datos diarios. Se usó el método de Contenido de Humedad del Suelo (SMA) para calcular el flujo de agua en el suelo. Para la distribución de la lluvia se utilizó el método de Thiessen, mientras que la Evapotranspiración se calculó con la ecuación de Penman-Monteith. Los resultados revelaron que (1) el 83% del agua se infiltra en el suelo mientras que solo el 17% es retenido en plantas y la superficie del suelo, (2) el agua es retenida por aproximadamente 42 días antes de llegar al río y (3) que más del 60% del flujo corresponde a flujo sub-superficial.
format Article in Journal/Newspaper
author Timbe Castro, Luis Manuel
Crespo Sánchez, Patricio Javier
Cabrera-Balarezo, Juan José
author_facet Timbe Castro, Luis Manuel
Crespo Sánchez, Patricio Javier
Cabrera-Balarezo, Juan José
author_sort Timbe Castro, Luis Manuel
title Evaluation of the HEC-HMS model for the hydrological simulation of a paramo basin
title_short Evaluation of the HEC-HMS model for the hydrological simulation of a paramo basin
title_full Evaluation of the HEC-HMS model for the hydrological simulation of a paramo basin
title_fullStr Evaluation of the HEC-HMS model for the hydrological simulation of a paramo basin
title_full_unstemmed Evaluation of the HEC-HMS model for the hydrological simulation of a paramo basin
title_sort evaluation of the hec-hms model for the hydrological simulation of a paramo basin
publisher Universidad Nacional de Colombia - Sede Medellín - Facultad de Minas
publishDate 2019
url https://revistas.unal.edu.co/index.php/dyna/article/view/70738
genre Arctic
genre_facet Arctic
op_source DYNA; Vol. 86 Núm. 210 (2019): July-September, 2019; 338-344
DYNA; Vol. 86 No. 210 (2019): July-September, 219; 338-344
2346-2183
0012-7353
op_relation https://revistas.unal.edu.co/index.php/dyna/article/view/70738/72341
Beniston M. Climatic Change in Mountain Regions: A Review of Possible Impacts. Clim Var Chang High Elev Reg Past, Present Futur SE - 2 2003;15:5–31. doi:10.1007/978-94-015-1252-7_2.
Célleri R, Feyen J. The Hydrology of Tropical Andean Ecosystems: Importance, Knowledge Status, and Perspectives. Mt Res Dev 2009;29:350–5. doi:10.1659/mrd.00007.
Buytaert W, Célleri R, De Bièvre B, Cisneros F, Wyseure G, Deckers J, et al. Human impact on the hydrology of the Andean paramos. Earth-Science Rev 2006;79:53–72. doi:10.1016/j.earscirev.2006.06.002.
Roa-García MC, Brown S, Schreier H, Lavkulich LM. The role of land use and soils in regulating water flow in small headwater catchments of the Andes. Water Resour Res 2011;47. doi:10.1029/2010WR009582.
Harden CP, Hartsig J, Farley K a., Lee J, Bre mer LL, Crespo P, et al. Effects of Land-Use Change on Water in Andean Páramo Grassland Soils. Ann Assoc Am Geogr 2013;103:375–84. doi:10.1659/mrd.00007.
Vuille M. Climate Change and Water Resources in the Tropical Andes. IDB Tech Note 2013:29.
Farley KA, Bremer LL, Harden CP, Hartsig J. Changes in carbon storage under alternative land uses in biodiverse Andean grasslands: Implications for payment for ecosystem services. Conserv Lett 2013;6:21–7. doi:10.1111/j.1755-263X.2012.00267.x.
Buytaert W, Cuesta-Camacho F, Tobón C. Potential impacts of climate change on the environmental services of humid tropical alpine regions. Glob Ecol Biogeogr 2011;20:19–33. doi:10.1111/j.1466-8238.2010.00585.x.
Buytaert W, Celleri R, Willems P, Bièvre B De, Wyseure G. Spatial and temporal rainfall variability in mountainous areas: A case study from the south Ecuadorian Andes. J Hydrol 2006;329:413–21. doi:10.1016/j.jhydrol.2006.02.031.
Vásconez P, Hofstede R. Los páramos ecuatorianos. Botánica Económica Los Andes Cent 2006:91–109.
Erwin KL. Wetlands and global climate change: The role of wetland restoration in a changing world. Wetl Ecol Manag 2009;17:71–84. doi:10.1007/s11273-008-9119-1.
Buytaert W, Bievre B De. Water for cities: The impact of climate change and demographic growth in the tropical Andes. Water Resour Res 2012;48:1–13. doi:10.1029/2011WR011755.
Crespo P, Feyen J, Buytaert W, Célleri R, Frede H-G, Ramírez M, et al. Development of a conceptual model of the hydrologic response of tropical Andean micro-catchments in Southern Ecuador. Hydrol Earth Syst Sci Discuss 2012;9:2475–510. doi:10.5194/hessd-9-2475-2012.
Flores-López F, Galaitsi SE, Escobar M, Purkey D. Modeling of Andean páramo ecosystems’ hydrological response to environmental change. Water (Switzerland) 2016;8. doi:10.3390/w8030094.
Iñiguez V, Morales O, Cisneros F, Bauwens W, Wyseure G. Analysis of the drought recovery of Andosols on southern Ecuadorian Andean páramos. Hydrol Earth Syst Sci 2016;20:2421–35. doi:10.5194/hess-20-2421-2016. [16] Gil Morales EG, Tobón Marín C. Hydrological m odelling with TOPMODEL of Chingaza páramo, Colombia. Rev Fac Nac Agron 2016;69. doi:10.15446/rfna.v69n2.59137.
Buytaert W, Beven K. Models as multiple working hypotheses: Hydrological simulation of tropical alpine wetlands. Hydrol Process 2011;25:1784–99.
Viviroli D, Zappa M, Gurtz J, Weingartner R. An introduction to the hydrological modelling system PREVAH and its pre- and post-processing-tools. Environ Model Softw 2009;24:1209–22. doi:10.1016/j.envsoft.2009.04.001.
Buytaert W, Deckers J, Wyseure G. Description and classification of nonallophanic Andosols in south Ecuadorian alpine grasslands (paramo). Geomorphology 2006;73:207–21. doi:10.1016/j.geomorph.2005.06.012.
Mosquera GM, Lazo PX, Célleri R, Wilcox BP, Crespo P. Runoff from tropical alpine grasslands increases with areal extent of wetlands. Catena 2015;125:120–8. doi:10.1016/j.catena.2014.10.010.
IUSS Working Group WRB. World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. 2014. doi:10.1017/S0014479706394902.
Podwojewski P, Poulenard J, Zambrana T, Hofstede R. Overgrazing effects on vegetation cover and properties of volcanic ash soil in the páramo of Llangahua and La Esperanza (Tungurahua, Ecuador). Soil Use Manag 2002;18. doi:10.1079/SUM2002100.
Poulenard J, Michel JC, Bartoli F, Portal JM, Podwojewski P. Water repellency of volcanic ash soils from Ecuadorian paramo: Effect of water content and characteristics of hydrophobic organic matter. Eur J Soil Sci 2004;55:487–96. doi:10.1111/j.1365-2389.2004.00625.x.
Poulenard J, Podwojewski P, Janeau JL, Collinet J. Runoff and soil erosion under rainfall simulation of Andisols from the Ecuadorian Páramo: Effect of tillage and burning. Catena 2001;45:185–207. doi:10.1016/S0341-8162(01)00148-5.
Córdova M, Carrillo-Rojas G, Crespo P, Wilcox B, Célleri R. Evaluation of the Penman-Monteith (FAO 56 PM) Method for Calculating Reference Evapotranspiration Using Limited Data. Mt Res Dev 2015;35:230–9. doi:10.1659/MRD-JOURNAL-D-14-0024.1.
Córdova M, Célleri R, Shellito CJ, Orellana-Alvear J, Abril A, Carrillo-Rojas G. Near-surface air temperature lapse rate over complex terrain in the Southern Ecuadorian Andes: implications for temperature mapping. Arctic, Antarct Alp Res 2016;48:673–684. doi:10.1657/AAAR0015-077.
Allen RG, Pereira LS, Raes D, Smith M, Ab W. Allen_FAO1998 1998:1–15.
Raes D. The ETo Calculator Table of Contents - Reference Manual 2009:1–38.
Scharffenberg W a., Fleming MJ. Hydrologic Modeling System User’s Manual. Security 2010:318. doi:CDP-74A.
Bennett TH. Development and Application of a Continuous Soil Moisture Accounting Algorithm for the Hydrologic Engineering Center Hydrologic Modeling System (HEC-HMS). 1998.
Crespo PJ, Feyen J, Buytaert W, Bücker A, Breuer L, Frede HG, et al. Identifying controls of the rainfall-runoff response of small catchments in the tropical Andes (Ecuador). J Hydrol 2011;407:164–74. doi:10.1016/j.jhydrol.2011.07.021.
Crespo P, Célleri R, Buytaert W, Feyen JAN, Iñiguez V, Borja P, et al. Land use change impacts on the hydrology of wet Andean páramo ecosystems 2010.
Mosquera GM, Célleri R, Lazo PX, Vaché KB, Perakis SS, Crespo P. Combined use of isotopic and hydrometric data to conceptualize ecohydrological processes in a high-elevation tropical ecosystem. Hydrol Process 2016;30:2930–47. doi:10.1002/hyp.10927.
Mosquera GM, Segura C, Vaché KB, Windhorst D, Breuer L, Crespo P. Insights into the water mean transit time in a high-elevation tropical ecosystem. Hydrol Earth Syst Sci 2016;20:2987–3004. doi:10.5194/hess-20-2987-2016.
https://revistas.unal.edu.co/index.php/dyna/article/view/70738
op_rights Derechos de autor 2019 DYNA
https://creativecommons.org/licenses/by-nc-nd/4.0
op_rightsnorm CC-BY-NC-ND
op_doi https://doi.org/10.1007/978-94-015-1252-7_2
https://doi.org/10.1659/mrd.00007
https://doi.org/10.1016/j.earscirev.2006.06.002
https://doi.org/10.1029/2010WR009582
https://doi.org/10.1111/j.1755-263X.2012.00267.x
https://doi.org/10.1111/j.1466-82
container_title DYNA
container_volume 86
container_issue 210
container_start_page 338
op_container_end_page 344
_version_ 1766302606738587648
spelling ftuncolombiarev:oai:www.revistas.unal.edu.co:article/70738 2023-05-15T14:28:26+02:00 Evaluation of the HEC-HMS model for the hydrological simulation of a paramo basin Evaluación del modelo HEC-HMS para la simulación hidrológica de una cuenca de páramo Timbe Castro, Luis Manuel Crespo Sánchez, Patricio Javier Cabrera-Balarezo, Juan José 2019-07-01 application/pdf https://revistas.unal.edu.co/index.php/dyna/article/view/70738 spa spa Universidad Nacional de Colombia - Sede Medellín - Facultad de Minas https://revistas.unal.edu.co/index.php/dyna/article/view/70738/72341 Beniston M. Climatic Change in Mountain Regions: A Review of Possible Impacts. Clim Var Chang High Elev Reg Past, Present Futur SE - 2 2003;15:5–31. doi:10.1007/978-94-015-1252-7_2. Célleri R, Feyen J. The Hydrology of Tropical Andean Ecosystems: Importance, Knowledge Status, and Perspectives. Mt Res Dev 2009;29:350–5. doi:10.1659/mrd.00007. Buytaert W, Célleri R, De Bièvre B, Cisneros F, Wyseure G, Deckers J, et al. Human impact on the hydrology of the Andean paramos. Earth-Science Rev 2006;79:53–72. doi:10.1016/j.earscirev.2006.06.002. Roa-García MC, Brown S, Schreier H, Lavkulich LM. The role of land use and soils in regulating water flow in small headwater catchments of the Andes. Water Resour Res 2011;47. doi:10.1029/2010WR009582. Harden CP, Hartsig J, Farley K a., Lee J, Bre mer LL, Crespo P, et al. Effects of Land-Use Change on Water in Andean Páramo Grassland Soils. Ann Assoc Am Geogr 2013;103:375–84. doi:10.1659/mrd.00007. Vuille M. Climate Change and Water Resources in the Tropical Andes. IDB Tech Note 2013:29. Farley KA, Bremer LL, Harden CP, Hartsig J. Changes in carbon storage under alternative land uses in biodiverse Andean grasslands: Implications for payment for ecosystem services. Conserv Lett 2013;6:21–7. doi:10.1111/j.1755-263X.2012.00267.x. Buytaert W, Cuesta-Camacho F, Tobón C. Potential impacts of climate change on the environmental services of humid tropical alpine regions. Glob Ecol Biogeogr 2011;20:19–33. doi:10.1111/j.1466-8238.2010.00585.x. Buytaert W, Celleri R, Willems P, Bièvre B De, Wyseure G. Spatial and temporal rainfall variability in mountainous areas: A case study from the south Ecuadorian Andes. J Hydrol 2006;329:413–21. doi:10.1016/j.jhydrol.2006.02.031. Vásconez P, Hofstede R. Los páramos ecuatorianos. Botánica Económica Los Andes Cent 2006:91–109. Erwin KL. Wetlands and global climate change: The role of wetland restoration in a changing world. Wetl Ecol Manag 2009;17:71–84. doi:10.1007/s11273-008-9119-1. Buytaert W, Bievre B De. Water for cities: The impact of climate change and demographic growth in the tropical Andes. Water Resour Res 2012;48:1–13. doi:10.1029/2011WR011755. Crespo P, Feyen J, Buytaert W, Célleri R, Frede H-G, Ramírez M, et al. Development of a conceptual model of the hydrologic response of tropical Andean micro-catchments in Southern Ecuador. Hydrol Earth Syst Sci Discuss 2012;9:2475–510. doi:10.5194/hessd-9-2475-2012. Flores-López F, Galaitsi SE, Escobar M, Purkey D. Modeling of Andean páramo ecosystems’ hydrological response to environmental change. Water (Switzerland) 2016;8. doi:10.3390/w8030094. Iñiguez V, Morales O, Cisneros F, Bauwens W, Wyseure G. Analysis of the drought recovery of Andosols on southern Ecuadorian Andean páramos. Hydrol Earth Syst Sci 2016;20:2421–35. doi:10.5194/hess-20-2421-2016. [16] Gil Morales EG, Tobón Marín C. Hydrological m odelling with TOPMODEL of Chingaza páramo, Colombia. Rev Fac Nac Agron 2016;69. doi:10.15446/rfna.v69n2.59137. Buytaert W, Beven K. Models as multiple working hypotheses: Hydrological simulation of tropical alpine wetlands. Hydrol Process 2011;25:1784–99. Viviroli D, Zappa M, Gurtz J, Weingartner R. An introduction to the hydrological modelling system PREVAH and its pre- and post-processing-tools. Environ Model Softw 2009;24:1209–22. doi:10.1016/j.envsoft.2009.04.001. Buytaert W, Deckers J, Wyseure G. Description and classification of nonallophanic Andosols in south Ecuadorian alpine grasslands (paramo). Geomorphology 2006;73:207–21. doi:10.1016/j.geomorph.2005.06.012. Mosquera GM, Lazo PX, Célleri R, Wilcox BP, Crespo P. Runoff from tropical alpine grasslands increases with areal extent of wetlands. Catena 2015;125:120–8. doi:10.1016/j.catena.2014.10.010. IUSS Working Group WRB. World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. 2014. doi:10.1017/S0014479706394902. Podwojewski P, Poulenard J, Zambrana T, Hofstede R. Overgrazing effects on vegetation cover and properties of volcanic ash soil in the páramo of Llangahua and La Esperanza (Tungurahua, Ecuador). Soil Use Manag 2002;18. doi:10.1079/SUM2002100. Poulenard J, Michel JC, Bartoli F, Portal JM, Podwojewski P. Water repellency of volcanic ash soils from Ecuadorian paramo: Effect of water content and characteristics of hydrophobic organic matter. Eur J Soil Sci 2004;55:487–96. doi:10.1111/j.1365-2389.2004.00625.x. Poulenard J, Podwojewski P, Janeau JL, Collinet J. Runoff and soil erosion under rainfall simulation of Andisols from the Ecuadorian Páramo: Effect of tillage and burning. Catena 2001;45:185–207. doi:10.1016/S0341-8162(01)00148-5. Córdova M, Carrillo-Rojas G, Crespo P, Wilcox B, Célleri R. Evaluation of the Penman-Monteith (FAO 56 PM) Method for Calculating Reference Evapotranspiration Using Limited Data. Mt Res Dev 2015;35:230–9. doi:10.1659/MRD-JOURNAL-D-14-0024.1. Córdova M, Célleri R, Shellito CJ, Orellana-Alvear J, Abril A, Carrillo-Rojas G. Near-surface air temperature lapse rate over complex terrain in the Southern Ecuadorian Andes: implications for temperature mapping. Arctic, Antarct Alp Res 2016;48:673–684. doi:10.1657/AAAR0015-077. Allen RG, Pereira LS, Raes D, Smith M, Ab W. Allen_FAO1998 1998:1–15. Raes D. The ETo Calculator Table of Contents - Reference Manual 2009:1–38. Scharffenberg W a., Fleming MJ. Hydrologic Modeling System User’s Manual. Security 2010:318. doi:CDP-74A. Bennett TH. Development and Application of a Continuous Soil Moisture Accounting Algorithm for the Hydrologic Engineering Center Hydrologic Modeling System (HEC-HMS). 1998. Crespo PJ, Feyen J, Buytaert W, Bücker A, Breuer L, Frede HG, et al. Identifying controls of the rainfall-runoff response of small catchments in the tropical Andes (Ecuador). J Hydrol 2011;407:164–74. doi:10.1016/j.jhydrol.2011.07.021. Crespo P, Célleri R, Buytaert W, Feyen JAN, Iñiguez V, Borja P, et al. Land use change impacts on the hydrology of wet Andean páramo ecosystems 2010. Mosquera GM, Célleri R, Lazo PX, Vaché KB, Perakis SS, Crespo P. Combined use of isotopic and hydrometric data to conceptualize ecohydrological processes in a high-elevation tropical ecosystem. Hydrol Process 2016;30:2930–47. doi:10.1002/hyp.10927. Mosquera GM, Segura C, Vaché KB, Windhorst D, Breuer L, Crespo P. Insights into the water mean transit time in a high-elevation tropical ecosystem. Hydrol Earth Syst Sci 2016;20:2987–3004. doi:10.5194/hess-20-2987-2016. https://revistas.unal.edu.co/index.php/dyna/article/view/70738 Derechos de autor 2019 DYNA https://creativecommons.org/licenses/by-nc-nd/4.0 CC-BY-NC-ND DYNA; Vol. 86 Núm. 210 (2019): July-September, 2019; 338-344 DYNA; Vol. 86 No. 210 (2019): July-September, 219; 338-344 2346-2183 0012-7353 HEC HMS calibration validation andean paramo wetlands rainfall runoff calibración validación páramo precipitación escorrentía info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2019 ftuncolombiarev https://doi.org/10.1007/978-94-015-1252-7_2 https://doi.org/10.1659/mrd.00007 https://doi.org/10.1016/j.earscirev.2006.06.002 https://doi.org/10.1029/2010WR009582 https://doi.org/10.1111/j.1755-263X.2012.00267.x https://doi.org/10.1111/j.1466-82 2022-12-14T08:42:56Z In this study, the performance of the HEC-HMS model was evaluated for the simulation of rain-runoff processes in a paramo basin of approximately 21. 8 km2, south of Ecuador. The calibration and validation comprises the period of July-2013 to June-2016 with daily data. The Soil Moisture Accounting (SMA) method was used to compute the water flow in the soil. For the rainfall distribution, the Thiessen method was used, while the Evapotranspiration was calculated with the Penman-Monteith equation. The results revealed that (1) 83% of the water infiltrates the soil while only 17% is retained in plants and the soil surface, (2) the water is retained for approximately 42 days before reaching the river and (3) that more than 60% of the flow corresponds to sub-surface flow. En este estudio se evaluó el desempeño del modelo HEC-HMS, para la simulación de los procesos de lluvia-escorrentía en una cuenca de páramo de aproximadamente 21. 8 km2 al sur del Ecuador. La calibración y validación comprende el periodo de julio-2013 a junio-2016 con datos diarios. Se usó el método de Contenido de Humedad del Suelo (SMA) para calcular el flujo de agua en el suelo. Para la distribución de la lluvia se utilizó el método de Thiessen, mientras que la Evapotranspiración se calculó con la ecuación de Penman-Monteith. Los resultados revelaron que (1) el 83% del agua se infiltra en el suelo mientras que solo el 17% es retenido en plantas y la superficie del suelo, (2) el agua es retenida por aproximadamente 42 días antes de llegar al río y (3) que más del 60% del flujo corresponde a flujo sub-superficial. Article in Journal/Newspaper Arctic Universidad Nacional de Colombia: Portal de Revistas UN DYNA 86 210 338 344