Marine extremophile microorganisms with potential in bioprospecting studies

El interés por estudiar los ambientes marinos extremos ha ido creciendo en las últimas dos décadas, motivado principalmente por la búsqueda de microorganismos productores de metabolitos con fines biotecnológicos. En esta revisión se presentan las fuentes de aislamiento de microorganismos extremófilo...

Full description

Bibliographic Details
Published in:Revista de la Facultad de Ciencias
Main Authors: Velásquez Emiliani, Anyela Vanessa, Quintero De La Hoz, Marynés, Jiménez Vergara, Eylin Yaidith, Blandón García, Lina Marcela, Gómez León, Javier
Format: Article in Journal/Newspaper
Language:Spanish
Published: Universidad Nacional de Colombia - Sede Medellín - Facultad de Ciencias 2018
Subjects:
Online Access:https://revistas.unal.edu.co/index.php/rfc/article/view/67360
id ftuncolombiarev:oai:www.revistas.unal.edu.co:article/67360
record_format openpolar
institution Open Polar
collection Universidad Nacional de Colombia: Portal de Revistas UN
op_collection_id ftuncolombiarev
language Spanish
topic Actividad biológica
ambientes extremos
productos naturales marinos
biociencias
spellingShingle Actividad biológica
ambientes extremos
productos naturales marinos
biociencias
Velásquez Emiliani, Anyela Vanessa
Quintero De La Hoz, Marynés
Jiménez Vergara, Eylin Yaidith
Blandón García, Lina Marcela
Gómez León, Javier
Marine extremophile microorganisms with potential in bioprospecting studies
topic_facet Actividad biológica
ambientes extremos
productos naturales marinos
biociencias
description El interés por estudiar los ambientes marinos extremos ha ido creciendo en las últimas dos décadas, motivado principalmente por la búsqueda de microorganismos productores de metabolitos con fines biotecnológicos. En esta revisión se presentan las fuentes de aislamiento de microorganismos extremófilos en ambientes marinos y costeros alrededor del mundo y las moléculas aisladas de estos que han mostrado una apreciable importancia biotecnológica, con el fin de reportar la disponibilidad de nichos ambientales con potencial en bioprospección y así favorecer su aprovechamiento. Las investigaciones más representativas incluyen los piezófilos, halófilos, psicrófilos y termófilos, grupos en los que se han identificado nuevas especies y obtenido compuestos con actividad biológica.
format Article in Journal/Newspaper
author Velásquez Emiliani, Anyela Vanessa
Quintero De La Hoz, Marynés
Jiménez Vergara, Eylin Yaidith
Blandón García, Lina Marcela
Gómez León, Javier
author_facet Velásquez Emiliani, Anyela Vanessa
Quintero De La Hoz, Marynés
Jiménez Vergara, Eylin Yaidith
Blandón García, Lina Marcela
Gómez León, Javier
author_sort Velásquez Emiliani, Anyela Vanessa
title Marine extremophile microorganisms with potential in bioprospecting studies
title_short Marine extremophile microorganisms with potential in bioprospecting studies
title_full Marine extremophile microorganisms with potential in bioprospecting studies
title_fullStr Marine extremophile microorganisms with potential in bioprospecting studies
title_full_unstemmed Marine extremophile microorganisms with potential in bioprospecting studies
title_sort marine extremophile microorganisms with potential in bioprospecting studies
publisher Universidad Nacional de Colombia - Sede Medellín - Facultad de Ciencias
publishDate 2018
url https://revistas.unal.edu.co/index.php/rfc/article/view/67360
genre Polar Biology
genre_facet Polar Biology
op_source Revista de la Facultad de Ciencias; Vol. 7 No. 2 (2018); 9-43
Revista de la Facultad de Ciencias; Vol. 7 Núm. 2 (2018); 9-43
2357-5549
0121-747X
op_relation https://revistas.unal.edu.co/index.php/rfc/article/view/67360/66644
Abdel-Mageed, W. M.; Milne, B. F.; Wagner, M.; Schumacher, M.; Sandor, P.; Pathom-aree, P.; Goodfellow, M.; Bull, A. T.; Horikoshi, K.; Ebel, R.; Diederich, M.; Fiedler, H.-P.; Jaspars, M. (2010), Dermacozines, a new phenazine family from deep-sea dermacocci isolated from a Mariana Trench sediment. Organic & Biomolecular Chemistry, 8(10): 2352-2362. http://dx.doi.org/10.1039/c001445a
Abe, F. & Horikoshi, K. (2001), The biotechnological potential of piezophiles. Trends in biotechnology. 19(3): 102–108. https://doi.org/10.1016/S0167-7799(00)01539-0.
Andrianasolo, E. H.; Haramaty, L.; Rosario-Passapera, R.; Bidle, K.; White, E.; Vetriani, C.; Falkowski, P.; Lutz, R. (2009), Ammonificins A and B, Hydroxyethylamine Chroman Derivatives from a Cultured Marine Hydrothermal Vent Bacterium, Thermovibrio ammonificans. Journal of Natural Products, 72(6): 1216-1219. http://dx.doi.org/10.1021/np800726d
Andrianasolo, E. H.; Haramaty, L.; Rosario-Passapera, R.; Vetriani, C.; Falkowski, P.; White, E.; Lutz, R. (2012), Ammonificins C and D, Hydroxyethylamine Chromene Derivatives from a Cultured Marine Hydrothermal Vent Bacterium, Thermovibrio ammonificans. Mar. Drugs. 10(10): 2300-2311. http://dx.doi.org/10.3390/md10102300
Arena, A.; Gugliandolo, C.; Stassi, G.; Pavone, B.; Iannello, D.; Bisignano, G.; Maugeri, T. L. (2009), An exopolysaccharide produced by Geobacillus thermodenitrificans strain B3-72: Antiviral activity on immunocompetent cells. Immunology Letters, 123(2): 132-137. http://dx.doi.org/10.1016/j.imlet.2009.03.001
Arena, A.; Maugeri, T. L.; Pavone, B.; Iannello, D.; Gugliandolo, C.; Bisignano, G. (2006), Antiviral and immunoregulatory effect of a novel exopolysaccharide from a marine thermotolerant Bacillus licheniformis. International Immunopharmacology, 6(1): 8-13. https://doi.org/10.1016/j.intimp.2005.07.004
Atomi, H. (2005), Recent progress towards the application of hyperthermophiles and their enzymes. Current Opinion in Chemical Biology, 9(2): 166-173. https://doi.org/10.1016/j.cbpa.2005.05.013
Ballav, S.; Kerkar, S.; Thomas.; S.; Augustine, N. (2015), Halophilic and halotolerant actinomycetes from a marine saltern of Goa, India producing anti-bacterial metabolites. Journal of Bioscience and Bioengineering, 119(3): 323-330. https://doi.org/10.1016/j.jbiosc.2014.08.017
Batista-García, R. A.; Sutton, T.; Jackson, S. A.; Tovar-Herrera, O. E.; Balcázar-López, E.; Sánchez-Carbente, M. del R.; Sánchez-Reyes, A.; Dobson, A. D. W.; Folch-Mallol, J. L. (2017), Characterization of lignocellulolytic activities from fungi isolated from the deep-sea sponge Stelletta normani. PLOS ONE, 12(3): e0173750. https://doi.org/10.1016/10.1371/journal.pone.0173750
Beeler, E. & Singh, O. V. (2016), Extremophiles as sources of inorganic bio-nanoparticles. World Journal of Microbiology and Biotechnology. 32(9): 156. https://doi.org/10.1007/s11274-016-2111-7 Berezovsky, I. N.; Zeldovich, K. B.; Shakhnovich, E. I.; (2007), Positive and Negative Design in Stability and Thermal Adaptation of Natural Proteins. PLOS Computational Biology, 3(3): e52. https://doi.org/10.1371/journal.pcbi.0030052
Bonugli-Santos, R. C.; dos Santos Vasconcelos, M. R.; Passarini, M. R. Z.; Vieira, G. A. L.; Lopes, V. C. P.; Mainardi, P. H.; dos Santos, J. A.; de Azevedo Duarte, L.; Otero, I. V. R.; da Silva Yoshida, A. M.; Feitosa, V. A.; Pessoa, A.; Sette, L. D. (2015), Marine-derived fungi: diversity of enzymes and biotechnological applications. Frontiers in Microbiology, 6; 269. https://doi.org/10.3389/fmicb.2015.00269
Borchert, E.; Knobloch, S.; Dwyer, E.; Flynn, S.; Jackson, S. A.; Jóhannsson, R.; Marteinsson, V. T.; O’Gara, F.; Dobson, A. D. W. (2017), Biotechnological Potential of Cold Adapted Pseudoalteromonas spp. Isolated from ‘Deep Sea’ Sponges. Mar. Drugs. 15(6): 184. https://doi.org/10.3390/md15060184
Bowman, J. P. (2008), Genomic Analysis of Psychrophilic Prokaryotes. In: Psychrophiles: from Biodiversity to Biotechnology. Margesin, R.; Schinner, F.; Marx, J. C.; Gerday, C. eds. Springer, Berlin, Heidelberg. pp: 265-284. https://doi.org/10.1007/978-3-540-74335-4_16 Brakstad, O. G. (2008), Natural and Stimulated Biodegradation of Petroleum in Cold Marine Environments. In: Psychrophiles: from Biodiversity to Biotechnology. Margesin, R.; Schinner, F.; Marx, J. C.; Gerday, C. eds. Springer, Berlin, Heidelberg. pp: 389-407. https://link.springer.com/chapter/10.1007%2F978-3-540-74335-4_23
Coker, J. A. (2016), Extremophiles and biotechnology: current uses and prospects. F1000Research. 5 (F1000 Faculty Rev): 396. https://doi.org/10.12688/f1000research.7432.1
Collins, T.; Roulling, F.; Piette, F.; Marx, J.-C.; Feller, G.; Gerday, C.; D'Amico, S. (2008), Fundamentals of Cold-Adapted Enzymes. In: Psychrophiles: from Biodiversity to Biotechnology. Margesin, R.; Schinner, F.; Marx, J. C.; Gerday, C. eds. Springer, Berlin, Heidelberg. pp: 211-227. https://link.springer.com/chapter/10.1007/978-3-540-74335-4_13
Chakravorty, D. & Patra, S. (2012), Attaining Extremophiles and Extremolytes: Methodologies and Limitations. In: Extremophiles: Sustainable Resources and Biotechnological Implications. Singh, O. V. eds. John Wiley & Sons, Inc. NJ, USA. pp: 29-74. https://doi.org/10.1002/9781118394144.ch2
Chakraborty, S.; Khopade, A.; Kokare, C.; Mahadik, K.; Chopade, B. (2009), Isolation and characterization of novel α-amylase from marine Streptomyces sp. D1. Journal of Molecular Catalysis B: Enzymatic, 58(1): 17-23. https://doi.org/10.1016/j.molcatb.2008.10.011
Cvetkovska, M.; Hüner, N. P. A.; Smith, D. R. (2017), Chilling out: the evolution and diversification of psychrophilic algae with a focus on Chlamydomonadales. Polar Biology. 40(6): 1169-1184. https://doi.org/10.1007/s00300-016-2045-4
Dalmaso, G.; Ferreira, D.; Vermelho, A. (2015), Marine Extremophiles: A Source of Hydrolases for Biotechnological Applications. Mar. Drugs. 13 (4): 1925-1965. https://doi.org/10.3390/md13041925
Dhakal, D.; Pokhrel, A. R.; Shrestha, B.; Sohng, J. K. (2017), Marine Rare Actinobacteria: Isolation, Characterization, and Strategies for Harnessing Bioactive Compounds. Front. Microbiol. 8: 1106. https://doi.org/10.3389/fmicb.2017.01106
Del-Cid, A.; Ubilla, P.; Ravanal, M.-C.; Medina, E.; Vaca, I.; Levicán, G.; Eyzaguirre, J.; Chávez.; R. (2014), Cold-active xylanase produced by fungi associated with Antarctic marine sponges. Applied Biochemistry and Biotechnology, 172(1): 524-532. https://doi.org/10.1007/s12010-013-0551-1
Di Lorenzo, F.; Palmigiano, A.; Paciello, I.; Pallach, M.; Garozzo, D.; Bernardini, M.-L.; Cono, V. L. Yakimov, M. M.; Molinaro, A.; Silipo, A. (2017), The Deep-Sea Polyextremophile Halobacteroides lacunaris TB21 Rough-Type LPS: Structure and Inhibitory Activity towards Toxic LPS. Mar. Drugs. 15(7): 201. https://doi.org/10.3390/md15070201
Dickinson, I.; Goodall-Copestake, W.; Thorne, M. A. S.; Schlitt, T.; Ávila-Jiménez, M. L.; Pearce, D. A. (2016), Extremophiles in an Antarctic Marine Ecosystem. Microorganisms. 4(1): 8. https://doi.org/10.3390/microorganisms4010008
Donot, F.; Fontana, A.; Baccou, J. C.; Schorr-Galindo, S. (2012), Microbial exopolysaccharides: Main examples of synthesis, excretion, genetics and extraction. Carbohydrate Polymers, 87(2): 951-962. https://doi.org/10.1016/j.carbpol.2011.08.083
Du, L.; Li, D.: Zhu, T.; Cai, S.; Wang, F.; Xiao, X.; Gu, Q. (2009), New alkaloids and diterpenes from a deep ocean sediment derived fungus Penicillium sp. Tetrahedron, 65(5): 1033-1039. https://doi.org/10.1016/j.tet.2008.11.078
Elleuche, S.; Schäfers, C.; Blank, S.; Schröder, C.; Antranikian, G. (2015), Exploration of extremophiles for high temperature biotechnological processes. Current Opinion in Microbiology. 25: 113-119. https://doi.org/10.1016/j.mib.2015.05.011
Fang, J.; Zhang, L.; Bazylinski, D.A. (2010), Deep-sea piezosphere and piezophiles: Geomicrobiology and biogeochemistry. Trends. Microbiol. 18: 413–422. https://doi.org/10.1016/j.tim.2010.06.006
Fernández, L.; Louvado, A.; Esteves, V. I.; Gomes, N. C. M.; Almeida, A.; Cunha, Â. (2017), Biodegradation of 17β-estradiol by bacteria isolated from deep sea sediments in aerobic and anaerobic media. Journal of Hazardous Materials, Special Issue on Emerging Contaminants in engineered and natural environment, 323: 359-366. https://doi.org/10.1016/j.jhazmat.2016.05.029
Finore, I.; Di Donato, P.; Mastascusa, V.; Nicolaus, B.; Poli, A. (2014), Fermentation Technologies for the Optimization of Marine Microbial Exopolysaccharide Production. Mar. Drugs. 12(5): 3005-3024. https://doi.org/10.3390/md12053005
Fulzele, R.; DeSa, E.; Yadav, A.; Shouche, Y.; Bhadekar, R. (2011), Characterization of novel extracellular protease produced by marine bacterial isolate from the Indian Ocean. Brazilian Journal of Microbiology, 42(4): 1364-1373. https://doi.org/10.1590/S1517-838220110004000018
Flores, P. A., Amenábar, M. J.; Blamey, J. M. (2013), Hot Environments from Antarctica: Source of Thermophiles and Hyperthermophiles, with Potential Biotechnological Applications. In: Satyanarayana T.; Littlechild J.; Kawarabayasi Y.; (eds) Thermophilic Microbes in Environmental and Industrial Biotechnology. Springer, Dordrecht, 99-118p. https://link.springer.com/chapter/10.1007%2F978-94-007-5899-5_3
Frisvad, J. C. (2008), Cold-Adapted Fungi as a Source for Valuable Metabolites. In: Psychrophiles: from Biodiversity to Biotechnology. Margesin, R.; Schinner, F.; Marx, J. C.; Gerday, C. eds. Springer, Berlin, Heidelberg. pp 381-387. https://link.springer.com/chapter/10.1007%2F978-3-540-74335-4_22
Gärtner, A.; Ohlendorf, B.; Schulz, D.; Zinecker, H.; Wiese, J.; Imhoff, J. F. (2011), Levantilides A and B, 20-Membered Macrolides from a Micromonospora Strain Isolated from the Mediterranean Deep Sea Sediment. Mar. Drugs. 9(1): 98-108. https://doi.org/10.3390/md9010098.
Garcia-Descalzo, L.; Alcazar, A.; Baquero, F.; Cid, C. (2012), Biotechnological Applications of Cold-Adapted Bacteria. In: Extremophiles: Sustainable Resources and Biotechnological Implications. Singh, O. V. eds. John Wiley & Sons, Inc. NJ, USA. pp: 159-174. https://doi.org/10.1002/9781118394144.ch6
Giddings, L.-A.; & Newman, D. J. (2015), Bioactive Compounds from Marine Extremophiles. In: Bioactive Compounds from Marine Extremophiles. SpringerBriefs in Microbiology. Springer, Cham. pp 1-124. https://link.springer.com/book/10.1007%2F978-3-319-14361-3
Gómez, J.A. (2008), Caracterización cinética y enzimática de Thermoanaerobacter italicus cepa USBA 18 aislada de un manantial termomineral en Paipa, Boyacá. Tesis para optar título de Microbiólogo Industrial, Pontificia Universidad Javeriana. Bogotá D.C., Colombia. 128 p. https://repository.javeriana.edu.co/handle/10554/8399.
Gonçalves, L. G.; Borges, N.; Serra, F.; Fernandes, P. L; Dopazo, H.; Santos, H. (2012), Evolution of the biosynthesis of di-myo-inositol phosphate, a marker of adaptation to hot marine environments. Environmental Microbiology, 14(3): 691-701. https://doi.org/10.1111/j.1462-2920.2011.02621.x
Gonthier, I.; Rager, M.-N.; Metzger, P.; Guezennec, J.; Largeau, C. (2001), A di-O-dihydrogeranylgeranyl glycerol from Thermococcus S 557, a novel ether lipid, and likely intermediate in the biosynthesis of diethers in Archæa. Tetrahedron Letters, 42(15): 2795-2797. https://doi.org/10.1016/S0040-4039(01)00305-7
Guo, W.; Zhang, Z.; Zhu, T.; Gu, Q.; Li, D. (2015), Penicyclones A-E, Antibacterial Polyketides from the Deep-Sea-Derived Fungus Penicillium sp. F23-2. Journal of Natural Products, 78(11): 2699-2703. https://doi.org/10.1021/acs.jnatprod.5b00655
Hohmann, C.; Schneider, K.; Bruntner, C.; Irran, E.; Nicholson, G.; Bull, A.T.; Jones, A. L.; Brown, R.; Stach, J. E. M.; Goodfellow, M.; Beil, W.; Krämer, M.; Imhoff, J. F.; Süssmuth, R. D.; Fiedler, H.-P. (2009), Caboxamycin, a new antibiotic of the benzoxazole family produced by the deep-sea strain Streptomyces sp. NTK 937. The Journal of Antibiotics, 62(2): 99-104. https://doi.org/10.1038/ja.2008.24
Homaei, A.; Lavajoo, F.; Sariri, R. (2016), Development of marine biotechnology as a resource for novel proteases and their role in modern biotechnology. International Journal of Biological Macromolecules, 88: 542-552. https://doi.org/10.1016/j.ijbiomac.2016.04.023.
Huang, H.; Yang, T.; Ren, X.; Liu, J.; Song, Y.; Sun, A.; Ma, J.; Wang, B.; Zhang, Y.; Huang, C.; Zhang, C.; Ju, J. (2012), Cytotoxic Angucycline Class Glycosides from the Deep Sea Actinomycete Streptomyces lusitanus SCSIO LR32. Journal of Natural Products, 75(2): 202-208. https://doi.org/10.1021/np2008335.
Huang, H.; Yao, Y.; He, Z.; Yang, T.; Ma, J.; Tian, X.; Li, Y.; Huang, C.; Chen, X.; Li, W.; Zhang, S.; Zhang, C.; Ju, J. (2011), Antimalarial β-Carboline and Indolactam Alkaloids from Marinactinospora thermotolerans, a Deep Sea Isolate. Journal of Natural Products, 74(10): 2122-2127. https://doi.org/10.1021/np200399t.
Hussein, A. H.; Lisowska, B. K.; Leak, D. J. (2015), The Genus Geobacillus and Their Biotechnological Potential. Advances in Applied Microbiology, 92: 1-48. https://doi.org/10.1016/bs.aambs.2015.03.001.
Huston, A. L. (2008). Biotechnological Aspects of Cold-Adapted Enzymes. In: Psychrophiles: from Biodiversity to Biotechnology. Margesin, R.; Schinner, F.; Marx, J. C.; Gerday, C. eds. Springer, Berlin, Heidelberg. pp 347-363. https://link.springer.com/chapter/10.1007/978-3-540-74335-4_20.
Ibrahim, A. S. S.; Al-Salamah, A. A.; Elbadawi, Y. B.; El-Tayeb, M. A.; Ibrahim, S. S. S. (2015), Production of extracellular alkaline protease by new halotolerant alkaliphilic Bacillus sp. NPST-AK15 isolated from hyper saline soda lakes. Electronic Journal of Biotechnology, 18(3): 236-243. https://doi.org/10.1016/j.ejbt.2015.04.001.
Imhoff, J. F. (2016), Natural Products from Marine Fungi—Still an Underrepresented Resource. Mar. Drugs. 14(1): 19. https://doi.org/10.3390/md14010019.
Jenifer, J. S. C. A.; Donio, M. B. S.; Michaelbabu, M.; Vincent, S. G. P.; Citarasu, T. (2015), Haloalkaliphilic Streptomyces spp. AJ8 isolated from solar salt works and its’ pharmacological potential. AMB Express, 5: 59. https://doi.org/10.1186/s13568-015-0143-2.
Jiang, L.; Xu, H.; Zeng, X.; Wu, X.; Long, M.; Shao, Z. (2015), Thermophilic hydrogen-producing bacteria inhabiting deep-sea hydrothermal environments represented by Caloranaerobacter. Research in Microbiology, 166(9): 677-687. https://doi.org/10.1016/j.resmic.2015.05.002.
op_rights Derechos de autor 2018 Revista de la Facultad de Ciencias
https://creativecommons.org/licenses/by-nc-nd/4.0
op_rightsnorm CC-BY-NC-ND
op_doi https://doi.org/10.1021/np800726d
https://doi.org/10.3390/md10102300
https://doi.org/10.1016/j.imlet.2009.03.001
https://doi.org/10.1016/j.intimp.2005.07.004
https://doi.org/10.1016/j.cbpa.2005.05.013
https://doi.org/10.1016/j.jbiosc.2014.08.017
container_title Revista de la Facultad de Ciencias
container_volume 7
container_issue 2
container_start_page 9
op_container_end_page 43
_version_ 1766171710950735872
spelling ftuncolombiarev:oai:www.revistas.unal.edu.co:article/67360 2023-05-15T18:02:03+02:00 Marine extremophile microorganisms with potential in bioprospecting studies Microorganismos marinos extremófilos con potencial en bioprospección Velásquez Emiliani, Anyela Vanessa Quintero De La Hoz, Marynés Jiménez Vergara, Eylin Yaidith Blandón García, Lina Marcela Gómez León, Javier 2018-07-01 application/pdf https://revistas.unal.edu.co/index.php/rfc/article/view/67360 spa spa Universidad Nacional de Colombia - Sede Medellín - Facultad de Ciencias https://revistas.unal.edu.co/index.php/rfc/article/view/67360/66644 Abdel-Mageed, W. M.; Milne, B. F.; Wagner, M.; Schumacher, M.; Sandor, P.; Pathom-aree, P.; Goodfellow, M.; Bull, A. T.; Horikoshi, K.; Ebel, R.; Diederich, M.; Fiedler, H.-P.; Jaspars, M. (2010), Dermacozines, a new phenazine family from deep-sea dermacocci isolated from a Mariana Trench sediment. Organic & Biomolecular Chemistry, 8(10): 2352-2362. http://dx.doi.org/10.1039/c001445a Abe, F. & Horikoshi, K. (2001), The biotechnological potential of piezophiles. Trends in biotechnology. 19(3): 102–108. https://doi.org/10.1016/S0167-7799(00)01539-0. Andrianasolo, E. H.; Haramaty, L.; Rosario-Passapera, R.; Bidle, K.; White, E.; Vetriani, C.; Falkowski, P.; Lutz, R. (2009), Ammonificins A and B, Hydroxyethylamine Chroman Derivatives from a Cultured Marine Hydrothermal Vent Bacterium, Thermovibrio ammonificans. Journal of Natural Products, 72(6): 1216-1219. http://dx.doi.org/10.1021/np800726d Andrianasolo, E. H.; Haramaty, L.; Rosario-Passapera, R.; Vetriani, C.; Falkowski, P.; White, E.; Lutz, R. (2012), Ammonificins C and D, Hydroxyethylamine Chromene Derivatives from a Cultured Marine Hydrothermal Vent Bacterium, Thermovibrio ammonificans. Mar. Drugs. 10(10): 2300-2311. http://dx.doi.org/10.3390/md10102300 Arena, A.; Gugliandolo, C.; Stassi, G.; Pavone, B.; Iannello, D.; Bisignano, G.; Maugeri, T. L. (2009), An exopolysaccharide produced by Geobacillus thermodenitrificans strain B3-72: Antiviral activity on immunocompetent cells. Immunology Letters, 123(2): 132-137. http://dx.doi.org/10.1016/j.imlet.2009.03.001 Arena, A.; Maugeri, T. L.; Pavone, B.; Iannello, D.; Gugliandolo, C.; Bisignano, G. (2006), Antiviral and immunoregulatory effect of a novel exopolysaccharide from a marine thermotolerant Bacillus licheniformis. International Immunopharmacology, 6(1): 8-13. https://doi.org/10.1016/j.intimp.2005.07.004 Atomi, H. (2005), Recent progress towards the application of hyperthermophiles and their enzymes. Current Opinion in Chemical Biology, 9(2): 166-173. https://doi.org/10.1016/j.cbpa.2005.05.013 Ballav, S.; Kerkar, S.; Thomas.; S.; Augustine, N. (2015), Halophilic and halotolerant actinomycetes from a marine saltern of Goa, India producing anti-bacterial metabolites. Journal of Bioscience and Bioengineering, 119(3): 323-330. https://doi.org/10.1016/j.jbiosc.2014.08.017 Batista-García, R. A.; Sutton, T.; Jackson, S. A.; Tovar-Herrera, O. E.; Balcázar-López, E.; Sánchez-Carbente, M. del R.; Sánchez-Reyes, A.; Dobson, A. D. W.; Folch-Mallol, J. L. (2017), Characterization of lignocellulolytic activities from fungi isolated from the deep-sea sponge Stelletta normani. PLOS ONE, 12(3): e0173750. https://doi.org/10.1016/10.1371/journal.pone.0173750 Beeler, E. & Singh, O. V. (2016), Extremophiles as sources of inorganic bio-nanoparticles. World Journal of Microbiology and Biotechnology. 32(9): 156. https://doi.org/10.1007/s11274-016-2111-7 Berezovsky, I. N.; Zeldovich, K. B.; Shakhnovich, E. I.; (2007), Positive and Negative Design in Stability and Thermal Adaptation of Natural Proteins. PLOS Computational Biology, 3(3): e52. https://doi.org/10.1371/journal.pcbi.0030052 Bonugli-Santos, R. C.; dos Santos Vasconcelos, M. R.; Passarini, M. R. Z.; Vieira, G. A. L.; Lopes, V. C. P.; Mainardi, P. H.; dos Santos, J. A.; de Azevedo Duarte, L.; Otero, I. V. R.; da Silva Yoshida, A. M.; Feitosa, V. A.; Pessoa, A.; Sette, L. D. (2015), Marine-derived fungi: diversity of enzymes and biotechnological applications. Frontiers in Microbiology, 6; 269. https://doi.org/10.3389/fmicb.2015.00269 Borchert, E.; Knobloch, S.; Dwyer, E.; Flynn, S.; Jackson, S. A.; Jóhannsson, R.; Marteinsson, V. T.; O’Gara, F.; Dobson, A. D. W. (2017), Biotechnological Potential of Cold Adapted Pseudoalteromonas spp. Isolated from ‘Deep Sea’ Sponges. Mar. Drugs. 15(6): 184. https://doi.org/10.3390/md15060184 Bowman, J. P. (2008), Genomic Analysis of Psychrophilic Prokaryotes. In: Psychrophiles: from Biodiversity to Biotechnology. Margesin, R.; Schinner, F.; Marx, J. C.; Gerday, C. eds. Springer, Berlin, Heidelberg. pp: 265-284. https://doi.org/10.1007/978-3-540-74335-4_16 Brakstad, O. G. (2008), Natural and Stimulated Biodegradation of Petroleum in Cold Marine Environments. In: Psychrophiles: from Biodiversity to Biotechnology. Margesin, R.; Schinner, F.; Marx, J. C.; Gerday, C. eds. Springer, Berlin, Heidelberg. pp: 389-407. https://link.springer.com/chapter/10.1007%2F978-3-540-74335-4_23 Coker, J. A. (2016), Extremophiles and biotechnology: current uses and prospects. F1000Research. 5 (F1000 Faculty Rev): 396. https://doi.org/10.12688/f1000research.7432.1 Collins, T.; Roulling, F.; Piette, F.; Marx, J.-C.; Feller, G.; Gerday, C.; D'Amico, S. (2008), Fundamentals of Cold-Adapted Enzymes. In: Psychrophiles: from Biodiversity to Biotechnology. Margesin, R.; Schinner, F.; Marx, J. C.; Gerday, C. eds. Springer, Berlin, Heidelberg. pp: 211-227. https://link.springer.com/chapter/10.1007/978-3-540-74335-4_13 Chakravorty, D. & Patra, S. (2012), Attaining Extremophiles and Extremolytes: Methodologies and Limitations. In: Extremophiles: Sustainable Resources and Biotechnological Implications. Singh, O. V. eds. John Wiley & Sons, Inc. NJ, USA. pp: 29-74. https://doi.org/10.1002/9781118394144.ch2 Chakraborty, S.; Khopade, A.; Kokare, C.; Mahadik, K.; Chopade, B. (2009), Isolation and characterization of novel α-amylase from marine Streptomyces sp. D1. Journal of Molecular Catalysis B: Enzymatic, 58(1): 17-23. https://doi.org/10.1016/j.molcatb.2008.10.011 Cvetkovska, M.; Hüner, N. P. A.; Smith, D. R. (2017), Chilling out: the evolution and diversification of psychrophilic algae with a focus on Chlamydomonadales. Polar Biology. 40(6): 1169-1184. https://doi.org/10.1007/s00300-016-2045-4 Dalmaso, G.; Ferreira, D.; Vermelho, A. (2015), Marine Extremophiles: A Source of Hydrolases for Biotechnological Applications. Mar. Drugs. 13 (4): 1925-1965. https://doi.org/10.3390/md13041925 Dhakal, D.; Pokhrel, A. R.; Shrestha, B.; Sohng, J. K. (2017), Marine Rare Actinobacteria: Isolation, Characterization, and Strategies for Harnessing Bioactive Compounds. Front. Microbiol. 8: 1106. https://doi.org/10.3389/fmicb.2017.01106 Del-Cid, A.; Ubilla, P.; Ravanal, M.-C.; Medina, E.; Vaca, I.; Levicán, G.; Eyzaguirre, J.; Chávez.; R. (2014), Cold-active xylanase produced by fungi associated with Antarctic marine sponges. Applied Biochemistry and Biotechnology, 172(1): 524-532. https://doi.org/10.1007/s12010-013-0551-1 Di Lorenzo, F.; Palmigiano, A.; Paciello, I.; Pallach, M.; Garozzo, D.; Bernardini, M.-L.; Cono, V. L. Yakimov, M. M.; Molinaro, A.; Silipo, A. (2017), The Deep-Sea Polyextremophile Halobacteroides lacunaris TB21 Rough-Type LPS: Structure and Inhibitory Activity towards Toxic LPS. Mar. Drugs. 15(7): 201. https://doi.org/10.3390/md15070201 Dickinson, I.; Goodall-Copestake, W.; Thorne, M. A. S.; Schlitt, T.; Ávila-Jiménez, M. L.; Pearce, D. A. (2016), Extremophiles in an Antarctic Marine Ecosystem. Microorganisms. 4(1): 8. https://doi.org/10.3390/microorganisms4010008 Donot, F.; Fontana, A.; Baccou, J. C.; Schorr-Galindo, S. (2012), Microbial exopolysaccharides: Main examples of synthesis, excretion, genetics and extraction. Carbohydrate Polymers, 87(2): 951-962. https://doi.org/10.1016/j.carbpol.2011.08.083 Du, L.; Li, D.: Zhu, T.; Cai, S.; Wang, F.; Xiao, X.; Gu, Q. (2009), New alkaloids and diterpenes from a deep ocean sediment derived fungus Penicillium sp. Tetrahedron, 65(5): 1033-1039. https://doi.org/10.1016/j.tet.2008.11.078 Elleuche, S.; Schäfers, C.; Blank, S.; Schröder, C.; Antranikian, G. (2015), Exploration of extremophiles for high temperature biotechnological processes. Current Opinion in Microbiology. 25: 113-119. https://doi.org/10.1016/j.mib.2015.05.011 Fang, J.; Zhang, L.; Bazylinski, D.A. (2010), Deep-sea piezosphere and piezophiles: Geomicrobiology and biogeochemistry. Trends. Microbiol. 18: 413–422. https://doi.org/10.1016/j.tim.2010.06.006 Fernández, L.; Louvado, A.; Esteves, V. I.; Gomes, N. C. M.; Almeida, A.; Cunha, Â. (2017), Biodegradation of 17β-estradiol by bacteria isolated from deep sea sediments in aerobic and anaerobic media. Journal of Hazardous Materials, Special Issue on Emerging Contaminants in engineered and natural environment, 323: 359-366. https://doi.org/10.1016/j.jhazmat.2016.05.029 Finore, I.; Di Donato, P.; Mastascusa, V.; Nicolaus, B.; Poli, A. (2014), Fermentation Technologies for the Optimization of Marine Microbial Exopolysaccharide Production. Mar. Drugs. 12(5): 3005-3024. https://doi.org/10.3390/md12053005 Fulzele, R.; DeSa, E.; Yadav, A.; Shouche, Y.; Bhadekar, R. (2011), Characterization of novel extracellular protease produced by marine bacterial isolate from the Indian Ocean. Brazilian Journal of Microbiology, 42(4): 1364-1373. https://doi.org/10.1590/S1517-838220110004000018 Flores, P. A., Amenábar, M. J.; Blamey, J. M. (2013), Hot Environments from Antarctica: Source of Thermophiles and Hyperthermophiles, with Potential Biotechnological Applications. In: Satyanarayana T.; Littlechild J.; Kawarabayasi Y.; (eds) Thermophilic Microbes in Environmental and Industrial Biotechnology. Springer, Dordrecht, 99-118p. https://link.springer.com/chapter/10.1007%2F978-94-007-5899-5_3 Frisvad, J. C. (2008), Cold-Adapted Fungi as a Source for Valuable Metabolites. In: Psychrophiles: from Biodiversity to Biotechnology. Margesin, R.; Schinner, F.; Marx, J. C.; Gerday, C. eds. Springer, Berlin, Heidelberg. pp 381-387. https://link.springer.com/chapter/10.1007%2F978-3-540-74335-4_22 Gärtner, A.; Ohlendorf, B.; Schulz, D.; Zinecker, H.; Wiese, J.; Imhoff, J. F. (2011), Levantilides A and B, 20-Membered Macrolides from a Micromonospora Strain Isolated from the Mediterranean Deep Sea Sediment. Mar. Drugs. 9(1): 98-108. https://doi.org/10.3390/md9010098. Garcia-Descalzo, L.; Alcazar, A.; Baquero, F.; Cid, C. (2012), Biotechnological Applications of Cold-Adapted Bacteria. In: Extremophiles: Sustainable Resources and Biotechnological Implications. Singh, O. V. eds. John Wiley & Sons, Inc. NJ, USA. pp: 159-174. https://doi.org/10.1002/9781118394144.ch6 Giddings, L.-A.; & Newman, D. J. (2015), Bioactive Compounds from Marine Extremophiles. In: Bioactive Compounds from Marine Extremophiles. SpringerBriefs in Microbiology. Springer, Cham. pp 1-124. https://link.springer.com/book/10.1007%2F978-3-319-14361-3 Gómez, J.A. (2008), Caracterización cinética y enzimática de Thermoanaerobacter italicus cepa USBA 18 aislada de un manantial termomineral en Paipa, Boyacá. Tesis para optar título de Microbiólogo Industrial, Pontificia Universidad Javeriana. Bogotá D.C., Colombia. 128 p. https://repository.javeriana.edu.co/handle/10554/8399. Gonçalves, L. G.; Borges, N.; Serra, F.; Fernandes, P. L; Dopazo, H.; Santos, H. (2012), Evolution of the biosynthesis of di-myo-inositol phosphate, a marker of adaptation to hot marine environments. Environmental Microbiology, 14(3): 691-701. https://doi.org/10.1111/j.1462-2920.2011.02621.x Gonthier, I.; Rager, M.-N.; Metzger, P.; Guezennec, J.; Largeau, C. (2001), A di-O-dihydrogeranylgeranyl glycerol from Thermococcus S 557, a novel ether lipid, and likely intermediate in the biosynthesis of diethers in Archæa. Tetrahedron Letters, 42(15): 2795-2797. https://doi.org/10.1016/S0040-4039(01)00305-7 Guo, W.; Zhang, Z.; Zhu, T.; Gu, Q.; Li, D. (2015), Penicyclones A-E, Antibacterial Polyketides from the Deep-Sea-Derived Fungus Penicillium sp. F23-2. Journal of Natural Products, 78(11): 2699-2703. https://doi.org/10.1021/acs.jnatprod.5b00655 Hohmann, C.; Schneider, K.; Bruntner, C.; Irran, E.; Nicholson, G.; Bull, A.T.; Jones, A. L.; Brown, R.; Stach, J. E. M.; Goodfellow, M.; Beil, W.; Krämer, M.; Imhoff, J. F.; Süssmuth, R. D.; Fiedler, H.-P. (2009), Caboxamycin, a new antibiotic of the benzoxazole family produced by the deep-sea strain Streptomyces sp. NTK 937. The Journal of Antibiotics, 62(2): 99-104. https://doi.org/10.1038/ja.2008.24 Homaei, A.; Lavajoo, F.; Sariri, R. (2016), Development of marine biotechnology as a resource for novel proteases and their role in modern biotechnology. International Journal of Biological Macromolecules, 88: 542-552. https://doi.org/10.1016/j.ijbiomac.2016.04.023. Huang, H.; Yang, T.; Ren, X.; Liu, J.; Song, Y.; Sun, A.; Ma, J.; Wang, B.; Zhang, Y.; Huang, C.; Zhang, C.; Ju, J. (2012), Cytotoxic Angucycline Class Glycosides from the Deep Sea Actinomycete Streptomyces lusitanus SCSIO LR32. Journal of Natural Products, 75(2): 202-208. https://doi.org/10.1021/np2008335. Huang, H.; Yao, Y.; He, Z.; Yang, T.; Ma, J.; Tian, X.; Li, Y.; Huang, C.; Chen, X.; Li, W.; Zhang, S.; Zhang, C.; Ju, J. (2011), Antimalarial β-Carboline and Indolactam Alkaloids from Marinactinospora thermotolerans, a Deep Sea Isolate. Journal of Natural Products, 74(10): 2122-2127. https://doi.org/10.1021/np200399t. Hussein, A. H.; Lisowska, B. K.; Leak, D. J. (2015), The Genus Geobacillus and Their Biotechnological Potential. Advances in Applied Microbiology, 92: 1-48. https://doi.org/10.1016/bs.aambs.2015.03.001. Huston, A. L. (2008). Biotechnological Aspects of Cold-Adapted Enzymes. In: Psychrophiles: from Biodiversity to Biotechnology. Margesin, R.; Schinner, F.; Marx, J. C.; Gerday, C. eds. Springer, Berlin, Heidelberg. pp 347-363. https://link.springer.com/chapter/10.1007/978-3-540-74335-4_20. Ibrahim, A. S. S.; Al-Salamah, A. A.; Elbadawi, Y. B.; El-Tayeb, M. A.; Ibrahim, S. S. S. (2015), Production of extracellular alkaline protease by new halotolerant alkaliphilic Bacillus sp. NPST-AK15 isolated from hyper saline soda lakes. Electronic Journal of Biotechnology, 18(3): 236-243. https://doi.org/10.1016/j.ejbt.2015.04.001. Imhoff, J. F. (2016), Natural Products from Marine Fungi—Still an Underrepresented Resource. Mar. Drugs. 14(1): 19. https://doi.org/10.3390/md14010019. Jenifer, J. S. C. A.; Donio, M. B. S.; Michaelbabu, M.; Vincent, S. G. P.; Citarasu, T. (2015), Haloalkaliphilic Streptomyces spp. AJ8 isolated from solar salt works and its’ pharmacological potential. AMB Express, 5: 59. https://doi.org/10.1186/s13568-015-0143-2. Jiang, L.; Xu, H.; Zeng, X.; Wu, X.; Long, M.; Shao, Z. (2015), Thermophilic hydrogen-producing bacteria inhabiting deep-sea hydrothermal environments represented by Caloranaerobacter. Research in Microbiology, 166(9): 677-687. https://doi.org/10.1016/j.resmic.2015.05.002. Derechos de autor 2018 Revista de la Facultad de Ciencias https://creativecommons.org/licenses/by-nc-nd/4.0 CC-BY-NC-ND Revista de la Facultad de Ciencias; Vol. 7 No. 2 (2018); 9-43 Revista de la Facultad de Ciencias; Vol. 7 Núm. 2 (2018); 9-43 2357-5549 0121-747X Actividad biológica ambientes extremos productos naturales marinos biociencias info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2018 ftuncolombiarev https://doi.org/10.1021/np800726d https://doi.org/10.3390/md10102300 https://doi.org/10.1016/j.imlet.2009.03.001 https://doi.org/10.1016/j.intimp.2005.07.004 https://doi.org/10.1016/j.cbpa.2005.05.013 https://doi.org/10.1016/j.jbiosc.2014.08.017 2022-12-14T09:12:17Z El interés por estudiar los ambientes marinos extremos ha ido creciendo en las últimas dos décadas, motivado principalmente por la búsqueda de microorganismos productores de metabolitos con fines biotecnológicos. En esta revisión se presentan las fuentes de aislamiento de microorganismos extremófilos en ambientes marinos y costeros alrededor del mundo y las moléculas aisladas de estos que han mostrado una apreciable importancia biotecnológica, con el fin de reportar la disponibilidad de nichos ambientales con potencial en bioprospección y así favorecer su aprovechamiento. Las investigaciones más representativas incluyen los piezófilos, halófilos, psicrófilos y termófilos, grupos en los que se han identificado nuevas especies y obtenido compuestos con actividad biológica. Article in Journal/Newspaper Polar Biology Universidad Nacional de Colombia: Portal de Revistas UN Revista de la Facultad de Ciencias 7 2 9 43