The Relationship between Mechanical Properties and Gradual Deterioration of Microstructures of Rock Mass Subject to Freeze-thaw Cycles

Under freeze-thaw cycles, the relationship between rock microstructure deterioration and its macroscopic mechanical characteristics has drawn extensive attention from engineers. With the objective to incorporate freeze-thaw cycle experiment into headrace tunnel engineering, in the present study two...

Full description

Bibliographic Details
Published in:Earth Sciences Research Journal
Main Author: Jiang, Haibo
Format: Article in Journal/Newspaper
Language:English
Published: Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Geociencias 2018
Subjects:
Online Access:https://revistas.unal.edu.co/index.php/esrj/article/view/66108
id ftuncolombiarev:oai:www.revistas.unal.edu.co:article/66108
record_format openpolar
institution Open Polar
collection Universidad Nacional de Colombia: Portal de Revistas UN
op_collection_id ftuncolombiarev
language English
topic Freeze-thaw cycle
microstructure
progressive deterioration
strength damage
Ciclo congelación-descongelación
microestructura
deterioro progresivo
daño a la resistencia de la roca
spellingShingle Freeze-thaw cycle
microstructure
progressive deterioration
strength damage
Ciclo congelación-descongelación
microestructura
deterioro progresivo
daño a la resistencia de la roca
Jiang, Haibo
The Relationship between Mechanical Properties and Gradual Deterioration of Microstructures of Rock Mass Subject to Freeze-thaw Cycles
topic_facet Freeze-thaw cycle
microstructure
progressive deterioration
strength damage
Ciclo congelación-descongelación
microestructura
deterioro progresivo
daño a la resistencia de la roca
description Under freeze-thaw cycles, the relationship between rock microstructure deterioration and its macroscopic mechanical characteristics has drawn extensive attention from engineers. With the objective to incorporate freeze-thaw cycle experiment into headrace tunnel engineering, in the present study two groups of andesite rock samples in different states are tested under the conditions of the lowest freezing temperature of –40 ℃ and the thawing temperature of 20 ℃. Damage detection was performed by magnetic resonance imaging for the interior microstructure of rock samples subject to different freeze-thaw cycles, and the relationship between the sample mechanical properties and gradual deterioration of rock microstructures was discussed. The results demonstrate evident influence of freeze-thaw cycle on the damage and deterioration of internal pore structure in andesite, and the rock uniaxial compressive strength and elasticity modulus exhibit a decreasing trend with the increase of freeze-thaw cycles. After 40 cycles, the strength of naturally saturated rock samples decreases by 39.4% (equivalent to 69.4 MPa) and the elasticity modulus drops by 47.46% (equivalent to 3.27 GPa). For rock samples saturated by vacuum, 40 freeze-thaw cycles lead to a decrease of 36.86% (equivalent to 58.2 MPa) in rock strength and a drop of 44.85% (equivalent to 2.83 GPa) in elasticity modulus. Therefore, the test results quantitatively elucidate the substantial influence of freeze-thaw cycle on the damage and deterioration of internal structure in andesite. En el ciclo de congelación y descongelación, la relación entre el deterioro de la microestructura de la roca y sus características mecánicas macroscópicas ha atraido un amplio interés de los investigadores. Con el objetivo de incorporar las pruebas del ciclo congelación y descongelación del canal de un túnel, en este estudio se evaluaron dos grupos de muestras de andesitas en diferentes estados bajo las condiciones de congelación a -40 ºC y de descongelación a 20 ºC. La detección del ...
format Article in Journal/Newspaper
author Jiang, Haibo
author_facet Jiang, Haibo
author_sort Jiang, Haibo
title The Relationship between Mechanical Properties and Gradual Deterioration of Microstructures of Rock Mass Subject to Freeze-thaw Cycles
title_short The Relationship between Mechanical Properties and Gradual Deterioration of Microstructures of Rock Mass Subject to Freeze-thaw Cycles
title_full The Relationship between Mechanical Properties and Gradual Deterioration of Microstructures of Rock Mass Subject to Freeze-thaw Cycles
title_fullStr The Relationship between Mechanical Properties and Gradual Deterioration of Microstructures of Rock Mass Subject to Freeze-thaw Cycles
title_full_unstemmed The Relationship between Mechanical Properties and Gradual Deterioration of Microstructures of Rock Mass Subject to Freeze-thaw Cycles
title_sort relationship between mechanical properties and gradual deterioration of microstructures of rock mass subject to freeze-thaw cycles
publisher Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Geociencias
publishDate 2018
url https://revistas.unal.edu.co/index.php/esrj/article/view/66108
long_lat ENVELOPE(-44.817,-44.817,-60.733,-60.733)
geographic Roca
geographic_facet Roca
genre Journal of Glaciology
Permafrost and Periglacial Processes
genre_facet Journal of Glaciology
Permafrost and Periglacial Processes
op_source Earth Sciences Research Journal; Vol. 22 No. 1 (2018); 53-57
Earth Sciences Research Journal; Vol. 22 Núm. 1 (2018); 53-57
2339-3459
1794-6190
op_relation https://revistas.unal.edu.co/index.php/esrj/article/view/66108/pdf
Demirdag S. (2013). Effects of freezing-thawing and thermal shock cycles on physical and mechanical properties of filled and unfilled travertines. Construction and Building Materials, 47, 1395-1401.
De Argandona, V. G. R., Rey, A. R. & Celorio, C. (1999). Characterization by computed X-ray tomography of the evolution of the pore structure of a dolomite rock during freeze-thaw cyclic tests. Physics and Chemistry of the Earth, Part A –Solid Earth Geodesy, 24, 633- 637.
Fatih B. (2012). Predicting mechanical strength loss of natural stones after freeze-thaw in cold regions. Cold Regions Science and Technology, 83-84, 98-102.
Javier, M. M., David, B., & Miguel, G. H. (2013). Non-linear decay of building stones during freeze-thaw weathering processes. Construction and Building Materials, 38, 443-454.
Kubicar, L., Vretenar, V., & Bobac. (2006). Thermophysical analysis of sandstone by pulse transient method. International Journal of Thermophysics, 27, 220-234.
Li, J., Zhou, K., & Zhang, Y. (2012). Experimental study of rock porous structure damage characteristics under condition of freezing-thawing cycles based on unclear magnetic resonance technique. Chinese Journal of Rock Mechanics and Engineering, 31, 1208-1214.
Li, X., Lu, Y. & Wang, Y. (2013). Research on damage model of single jointed rock masses under coupling action of freeze- thaw and loading. Chinese Journal of Rock Mechanics and Engineering, 32, 2308-2315.
Liu, H., Liu, Y., & Xing, C. (2014). Test study of damage failure of jointed rock mass under freezing-thawing cycles. Rock and Soil Mechanics, 35, 1547-1554.
Matsuoka, N. (2001). Microgelivation versus macro-gelivation: towards bridging the gap between laboratory and eld frost weathering. Permafrost and Periglacial Processes, 11, 299-313.
Mutlutürk, M., Altindag, R. & Türk, G. (2004). A decay function model for the integrity loss of rock when subjected to recurrent cycles of freezing-thawing and heating-cooling. International Journal of Rock Mechanics & Mining Sciences, 41, 237-244.
Nicholson, H., Dawn, T. & Nicholson, F. (2000). Physical deterioration of sedimentary rocks subjected to experimental freezing-thawing weathering. Earth Surface Processes and Landforms, 25, 1295-1308.
Rostasy, R. S., Weib, R. & Wiedemann, G. (1980). Changes of pore structures of cement mortars due to temperature. Cement and Concrete Research, 10, 157-164.
Wen, L., Li, X., & Yin, Y. (2013). Study of physico-mechanical properties of granite porphyry and limestone in slopes of open-pit metal mine under freezing-thawing cycles and their application. Journal of Glaciology and Geocryology, 36, 632-639.
Yamabe, T. & Neaupane, K. M. (2001). Determination of some thermo- mechanical properties of Sirahama sandstone under subzero temperature conditions. International Journal of Rock Mechanics & Mining Sciences, 38, 1029-1034.
Yan, X., Liu, H., & Xing, C. (2015). Constitutive model research on freezing-thawing damage of rock based on deformation and propagation of microcracks. Rock and Soil Mechanics, 36, 3489-3499.
Yavuz, H. Effect of freeze-thaw and thermal shock weathering on the physical and mechanical properties of an andesite stone. Bulletin of Engineering Geology and the Environment, 70, 187-192.
Zhang, J., Miao, L. & Yang, Z. (2008). Research on rock degradation and deterioration mechanisms and mechanical characteristics under cyclic freezing-thawing. Chinese Journal of Rock Mechanics and Engineering, 27, 1688-1694.
Zhang, S. J., Lai, Y. M. & Zhang, X. F. (2004). Study on the damage propagation of surrounding rock from a cold–region tunnel under freeze-thaw cycle condition. Tunneling and Underground Space Technology, 19, 295-302.
Zhou, K. P., Hu, Z. X. & Li, J. L. (2014). Study of marble damage evolution laws under unloading conditions based on nuclear magnetic resonance technique. Chinese Journal of Rock Mechanics and Engineering, 33, 3523-3530.
https://revistas.unal.edu.co/index.php/esrj/article/view/66108
op_rights Derechos de autor 2018 Earth Sciences Research Journal
https://creativecommons.org/licenses/by/4.0
op_rightsnorm CC-BY
container_title Earth Sciences Research Journal
container_volume 22
container_issue 1
container_start_page 53
op_container_end_page 57
_version_ 1766049230418345984
spelling ftuncolombiarev:oai:www.revistas.unal.edu.co:article/66108 2023-05-15T16:57:39+02:00 The Relationship between Mechanical Properties and Gradual Deterioration of Microstructures of Rock Mass Subject to Freeze-thaw Cycles Relación entre las propiedades mecánicas y el deterioro gradual de la microestructura de la roca tras los ciclos de congelación-descongelación Jiang, Haibo 2018-01-01 application/pdf https://revistas.unal.edu.co/index.php/esrj/article/view/66108 eng eng Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Geociencias https://revistas.unal.edu.co/index.php/esrj/article/view/66108/pdf Demirdag S. (2013). Effects of freezing-thawing and thermal shock cycles on physical and mechanical properties of filled and unfilled travertines. Construction and Building Materials, 47, 1395-1401. De Argandona, V. G. R., Rey, A. R. & Celorio, C. (1999). Characterization by computed X-ray tomography of the evolution of the pore structure of a dolomite rock during freeze-thaw cyclic tests. Physics and Chemistry of the Earth, Part A –Solid Earth Geodesy, 24, 633- 637. Fatih B. (2012). Predicting mechanical strength loss of natural stones after freeze-thaw in cold regions. Cold Regions Science and Technology, 83-84, 98-102. Javier, M. M., David, B., & Miguel, G. H. (2013). Non-linear decay of building stones during freeze-thaw weathering processes. Construction and Building Materials, 38, 443-454. Kubicar, L., Vretenar, V., & Bobac. (2006). Thermophysical analysis of sandstone by pulse transient method. International Journal of Thermophysics, 27, 220-234. Li, J., Zhou, K., & Zhang, Y. (2012). Experimental study of rock porous structure damage characteristics under condition of freezing-thawing cycles based on unclear magnetic resonance technique. Chinese Journal of Rock Mechanics and Engineering, 31, 1208-1214. Li, X., Lu, Y. & Wang, Y. (2013). Research on damage model of single jointed rock masses under coupling action of freeze- thaw and loading. Chinese Journal of Rock Mechanics and Engineering, 32, 2308-2315. Liu, H., Liu, Y., & Xing, C. (2014). Test study of damage failure of jointed rock mass under freezing-thawing cycles. Rock and Soil Mechanics, 35, 1547-1554. Matsuoka, N. (2001). Microgelivation versus macro-gelivation: towards bridging the gap between laboratory and eld frost weathering. Permafrost and Periglacial Processes, 11, 299-313. Mutlutürk, M., Altindag, R. & Türk, G. (2004). A decay function model for the integrity loss of rock when subjected to recurrent cycles of freezing-thawing and heating-cooling. International Journal of Rock Mechanics & Mining Sciences, 41, 237-244. Nicholson, H., Dawn, T. & Nicholson, F. (2000). Physical deterioration of sedimentary rocks subjected to experimental freezing-thawing weathering. Earth Surface Processes and Landforms, 25, 1295-1308. Rostasy, R. S., Weib, R. & Wiedemann, G. (1980). Changes of pore structures of cement mortars due to temperature. Cement and Concrete Research, 10, 157-164. Wen, L., Li, X., & Yin, Y. (2013). Study of physico-mechanical properties of granite porphyry and limestone in slopes of open-pit metal mine under freezing-thawing cycles and their application. Journal of Glaciology and Geocryology, 36, 632-639. Yamabe, T. & Neaupane, K. M. (2001). Determination of some thermo- mechanical properties of Sirahama sandstone under subzero temperature conditions. International Journal of Rock Mechanics & Mining Sciences, 38, 1029-1034. Yan, X., Liu, H., & Xing, C. (2015). Constitutive model research on freezing-thawing damage of rock based on deformation and propagation of microcracks. Rock and Soil Mechanics, 36, 3489-3499. Yavuz, H. Effect of freeze-thaw and thermal shock weathering on the physical and mechanical properties of an andesite stone. Bulletin of Engineering Geology and the Environment, 70, 187-192. Zhang, J., Miao, L. & Yang, Z. (2008). Research on rock degradation and deterioration mechanisms and mechanical characteristics under cyclic freezing-thawing. Chinese Journal of Rock Mechanics and Engineering, 27, 1688-1694. Zhang, S. J., Lai, Y. M. & Zhang, X. F. (2004). Study on the damage propagation of surrounding rock from a cold–region tunnel under freeze-thaw cycle condition. Tunneling and Underground Space Technology, 19, 295-302. Zhou, K. P., Hu, Z. X. & Li, J. L. (2014). Study of marble damage evolution laws under unloading conditions based on nuclear magnetic resonance technique. Chinese Journal of Rock Mechanics and Engineering, 33, 3523-3530. https://revistas.unal.edu.co/index.php/esrj/article/view/66108 Derechos de autor 2018 Earth Sciences Research Journal https://creativecommons.org/licenses/by/4.0 CC-BY Earth Sciences Research Journal; Vol. 22 No. 1 (2018); 53-57 Earth Sciences Research Journal; Vol. 22 Núm. 1 (2018); 53-57 2339-3459 1794-6190 Freeze-thaw cycle microstructure progressive deterioration strength damage Ciclo congelación-descongelación microestructura deterioro progresivo daño a la resistencia de la roca info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2018 ftuncolombiarev 2022-12-14T08:58:00Z Under freeze-thaw cycles, the relationship between rock microstructure deterioration and its macroscopic mechanical characteristics has drawn extensive attention from engineers. With the objective to incorporate freeze-thaw cycle experiment into headrace tunnel engineering, in the present study two groups of andesite rock samples in different states are tested under the conditions of the lowest freezing temperature of –40 ℃ and the thawing temperature of 20 ℃. Damage detection was performed by magnetic resonance imaging for the interior microstructure of rock samples subject to different freeze-thaw cycles, and the relationship between the sample mechanical properties and gradual deterioration of rock microstructures was discussed. The results demonstrate evident influence of freeze-thaw cycle on the damage and deterioration of internal pore structure in andesite, and the rock uniaxial compressive strength and elasticity modulus exhibit a decreasing trend with the increase of freeze-thaw cycles. After 40 cycles, the strength of naturally saturated rock samples decreases by 39.4% (equivalent to 69.4 MPa) and the elasticity modulus drops by 47.46% (equivalent to 3.27 GPa). For rock samples saturated by vacuum, 40 freeze-thaw cycles lead to a decrease of 36.86% (equivalent to 58.2 MPa) in rock strength and a drop of 44.85% (equivalent to 2.83 GPa) in elasticity modulus. Therefore, the test results quantitatively elucidate the substantial influence of freeze-thaw cycle on the damage and deterioration of internal structure in andesite. En el ciclo de congelación y descongelación, la relación entre el deterioro de la microestructura de la roca y sus características mecánicas macroscópicas ha atraido un amplio interés de los investigadores. Con el objetivo de incorporar las pruebas del ciclo congelación y descongelación del canal de un túnel, en este estudio se evaluaron dos grupos de muestras de andesitas en diferentes estados bajo las condiciones de congelación a -40 ºC y de descongelación a 20 ºC. La detección del ... Article in Journal/Newspaper Journal of Glaciology Permafrost and Periglacial Processes Universidad Nacional de Colombia: Portal de Revistas UN Roca ENVELOPE(-44.817,-44.817,-60.733,-60.733) Earth Sciences Research Journal 22 1 53 57