Hydrocarbonoclastic bacteria of the genus Pseudomonas in Samanea saman (Jacq.) Merr. rhizosphere

The research goal includes isolation, characterization and identification of Pseudomonas species existing in the rhizosphere of a legume present (colonizing or survivor) in a savanna soil polluted by an oil spill, in order to explain the support of the growth of this leguminous plant through the red...

Full description

Bibliographic Details
Published in:Revista Colombiana de Biotecnología
Main Authors: Mayz, Juliana Coromoto, Manzi, Lorna Victoria
Format: Article in Journal/Newspaper
Language:Spanish
Published: Universidad Nacional de Colombia - Sede Bogotá - Instituto de Biotecnología 2017
Subjects:
Online Access:https://revistas.unal.edu.co/index.php/biotecnologia/article/view/57408
id ftuncolombiarev:oai:www.revistas.unal.edu.co:article/57408
record_format openpolar
institution Open Polar
collection Universidad Nacional de Colombia: Portal de Revistas UN
op_collection_id ftuncolombiarev
language Spanish
topic contamination
toxicity
petroleum
Pseudomonas
hydrocarbonoclastic action
Contaminación
toxicidad
petróleo
acción hidrocarburoclástica
spellingShingle contamination
toxicity
petroleum
Pseudomonas
hydrocarbonoclastic action
Contaminación
toxicidad
petróleo
acción hidrocarburoclástica
Mayz, Juliana Coromoto
Manzi, Lorna Victoria
Hydrocarbonoclastic bacteria of the genus Pseudomonas in Samanea saman (Jacq.) Merr. rhizosphere
topic_facet contamination
toxicity
petroleum
Pseudomonas
hydrocarbonoclastic action
Contaminación
toxicidad
petróleo
acción hidrocarburoclástica
description The research goal includes isolation, characterization and identification of Pseudomonas species existing in the rhizosphere of a legume present (colonizing or survivor) in a savanna soil polluted by an oil spill, in order to explain the support of the growth of this leguminous plant through the reduction of the toxicity of spilled oil (hydrocarbonoclastic effects). The site is located at Amana del Tamarindo village entrance, Monagas State, Venezuela (9 ° 38' 52 "N, 63 ° 7' 20" E, 46 masl). An area of 50 m2 was sampled. In concordance to the descriptions, keys, and comparison with the UOJ Herbarium exsiccatae, the legume collected was identified as Samanea saman (Jacq.) Merr., which belongs to the Fabaceae family. The results of the biochemical characterization and the production of pyocyanine and fluorescein pigments allowed identifying 10 isolates as P. fluorescens, 5 as P. putida and 5 as P. aeruginosa. Samanea saman is recommended for re-vegetation of the contaminated area. El objetivo de esta investigación incluye el aislamiento, caracterización e identificación de las especies de Pseudomonas existentes en la rizosfera de una leguminosa presente (colonizadora o sobreviviente) en un suelo de sabana contaminado por un derrame de petróleo con el fin de explicar el apoyo al crecimiento de esta leguminosa a través de la reducción de la toxicidad del crudo derramado (efectos hidrocarburoclásticos) El sitio se encuentra a la entrada del pueblo de Amana del Tamarindo, estado Monagas, Venezuela (9° 38' 52" N, 63° 7' 20'' E, 46 msnm). Se muestreó un área de 50 m2. Según las descripciones, claves y comparación con las exsiccatae del herbario UOJ, la leguminosa colectada fue identificada como Samanea saman (Jacq.) Merr., la cual pertenece a la Familia Fabaceae. Los resultados de la caracterización bioquímica y la producción de los pigmentos piocianina y fluoresceína permitieron identificar diez aislados como P. fluorescens, 5 como P. putida y 5 como P. aeruginosa. Se recomienda la revegetación con S. saman del área ...
format Article in Journal/Newspaper
author Mayz, Juliana Coromoto
Manzi, Lorna Victoria
author_facet Mayz, Juliana Coromoto
Manzi, Lorna Victoria
author_sort Mayz, Juliana Coromoto
title Hydrocarbonoclastic bacteria of the genus Pseudomonas in Samanea saman (Jacq.) Merr. rhizosphere
title_short Hydrocarbonoclastic bacteria of the genus Pseudomonas in Samanea saman (Jacq.) Merr. rhizosphere
title_full Hydrocarbonoclastic bacteria of the genus Pseudomonas in Samanea saman (Jacq.) Merr. rhizosphere
title_fullStr Hydrocarbonoclastic bacteria of the genus Pseudomonas in Samanea saman (Jacq.) Merr. rhizosphere
title_full_unstemmed Hydrocarbonoclastic bacteria of the genus Pseudomonas in Samanea saman (Jacq.) Merr. rhizosphere
title_sort hydrocarbonoclastic bacteria of the genus pseudomonas in samanea saman (jacq.) merr. rhizosphere
publisher Universidad Nacional de Colombia - Sede Bogotá - Instituto de Biotecnología
publishDate 2017
url https://revistas.unal.edu.co/index.php/biotecnologia/article/view/57408
long_lat ENVELOPE(-60.552,-60.552,-62.998,-62.998)
geographic Entrada
geographic_facet Entrada
genre Arctic
genre_facet Arctic
op_source Revista Colombiana de Biotecnología; Vol. 19 Núm. 1 (2017); 29-37
Revista Colombiana de Biotecnología; Vol. 19 No. 1 (2017); 29-37
1909-8758
0123-3475
op_relation https://revistas.unal.edu.co/index.php/biotecnologia/article/view/57408/doc
https://revistas.unal.edu.co/index.php/biotecnologia/article/view/57408/pdf
Achuba F.I. 2006. The effect of sublethal concentrations of crude oil on the growth and metabolism of cowpea (Vigna unguiculata) seedlings. The Environmentalist. 26(1):17–20.
Adekunle O. 2012. Mechanisms of antimicrobial resistance in bacteria, general approach. Int. J. Pharm. Med. & Bio. Sc. 1(2):166-187.
Adenipekun C.O., Oyetunji O.J. & Kassim L.S. 2009. Screening of Abelmoschus esculentus L. Moench for tolerance to spent engine oil. J. Appl. Biosci. 20:1131-1137.
Agrawal T., Anil S., Kotasthane A. S., Kushwah R. 2015. Genotypic and phenotypic diversity of polyhydroxybutyrate (PHB) producing Pseudomonas putida isolates of Chhattisgarh region and assessment of its phosphate solubilizing ability. 3 Biotech. 5:45–60.
Arora N.K. 2015. Plant Microbes Symbiosis: Plant Facets. Springer, India. 381 p.
Baishya M. & Chandra M. 2015. Phytoremediation of crude oil using two local varieties of castor oil plant (Ricinus communis) of Assam. In. J. Pharm. Bio. Sci. 6(4): (B)1173-1182.
Benedek T., Máthé I., Salamon R., Rákos S., Pásztohy Z., Márialigeti K. & Szabolcs Lány S. 2012. Potential bacterial soil inoculant made up by Rhodococcus sp. and Pseudomonas sp. for remediation in situ of hydrocarbon – and heavy metal polluted soils. Studia UBB Chemia, 57(3):199 – 211.
Brenner, J.; Kreig; Stanley, T. 2005. Bergey's Manual of Systematic Bacteriology. The Probacteria, Part A. Introductory Essay, New York: Springer, p 27.
Bushnell L. D. & Hass H. F. 1941. The utilization of certain hydrocarbons by microorganisms. J. Bacteriol. 41(5):653-673.
Chibuike G. U. & Obiora S. C. 2014. Bioremediation of hydrocarbon-polluted soils for improved crop performance. Int. J. Environ. Sci. 4(5):840-858.
Cuenca M. del S., Roca A., Molina-Santiago C., Duque E., Armengaud J., Gómez-Garcia M. R. & Ramos J. L 2016. Understanding butanol tolerance and assimilation in Pseudomonas putida BIRD-1: an integrated omics approach. Microb. Biotechnol. 9(1):100-115.
Das N. & Chandran P. 2011. Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnol. Res. Int. 2011:1-13.
De Oliveira G. B., Favarin L., Luchese R. H. & McIntosh D. 2015. Psychrotrophic bacteria in milk: How much do we really know?. Braz. J. Microbiol. 46(2):313–321.
Edwin-Wosu N. L. 2013. Phytoremediation (Series 5): Organic carbon, matter, phosphorus and nitrogen trajectories as indices of assessment in a macrophytic treatment of hydrocarbon degraded soil environment. Eur J Exp Biol, 3(3):11-17.
Eze C. N., Maduka J. N., Ogbonna J. C. & Eze E. A. 2013. Effects of bonny light crude oil contamination on the germination, shoot growth and rhizobacterial flora of Vigna unguiculata and Arachis hypogea grown in sandy loam soil. Sci. Res. Essays. 8(2):99-107.
Fernández M., Conde S., Duque E. & Ramos J. L. 2013. In vivo gene expression of Pseudomonas putida KT2440 in the rhizosphere of different plants. Microbial. Biotech. 6:307-313.
Flemming H.C. & Wingender J. 2010. The biofilm matrix. Nat. Rev. Microbiol. 8(9):623-633.
Gofar N. 2013. Synergism of wild grass and hydrocarbonoclastic bacteria petroleum biodegradation. J. Trop. Soils. 18(2): 161-168.
Government of Canada (GC). 2015. Final Screening Assessment Report for Pseudomonas stutzeri ATCC 17587, Canada: Ministery of the Environment and Ministery of Health. 40 p.
Goswami D., Thakker J. N. & Dhandhukia P. C. 2016. Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. Cogent Food & Agric. 2: 1127500.
Hassaine A. & Bordjiba O. 2015. Metabolic capacities of three strains of Pseudomonas aeruginosa to biodegrade crude oil. Adv. Environ. Biol. 9(18): 139-146.
Inckot R.C., Bona C., Souza L.A. de & Santos G.O. 2008. Anatomia das plântulas de Mimosa pilulifera (Leguminosae) crescendo em solo contaminado com petróleo e solo biorremediado. Rodriguésia 59(3): 513-524.
Janek T., Łukaszewicz M. & Krasowska A. 2013. Identification and characterization of biosurfactants produced by the Arctic bacterium Pseudomonas putida BD2, Colloids and Surfaces B: Biointerfaces. 110:379-386.
Kabir M., Zafar Iqbal M. & Shafiq M. 2012. Traffic density, climatic conditions and seasonal growth of Samanea saman (Jacq.) Merr. on different polluted roads of karachi city. Pak. J. Bot. 44(6):1881-1890.
Keller, R. 2004. Identification of tropical woody plants in the absence of flowers, a field guide, 2nd. Edition, Switzerland: Birkhäuser Verlag Basel, 294 p.
Khan J. A. & Abbas S. H. 2011. Isolation and characterization of micro-organism from oil contaminated sites. Adv. Appl. Sci. Res. 2(3):455-460.
Komolafe R. J., Akinola O. M. & Agbolade O. J. 2015. Effect of petrol and spent oil on the growth of Guinea Corn (Sorghum bicolor L.). Int. J. Plant Biol. 6(1):5883.
Kumar G. P., Desai S., Amalraj L. & Reddy G. 2015. Isolation of fluorescent Pseudomonas spp. from diverse agro-ecosystems of India and characterization of their PGPR traits. Bacteriol. J. 5 (1): 13-24.
Kumara M., Leon V., De Sisto Materano A., Ilzins O. A., Galindo-Castro I. & Fuenmayor S. L. 2006. Polycyclic aromatic hydrocarbon degradation by biosurfactant-producing Pseudomonas sp. IR1. Z. Naturforsch C. 61(3-4):203-212.
Lăzăroaie M.M. 2009. Investigation of saturated and aromatic hydrocarbon resistance mechanisms in Pseudomonas aeruginosa IBBML1 Cen. Eur. J. Biol. 4(4):469-481.
Leite G. G. F., Figueirôa J. V., Almeida T. C. M., Valões J. L., Marques W. F., Duarte M. D. D. C. & Gorlach-Lira K. 2016. Production of rhamnolipids and diesel oil degradation by bacteria isolated from soil contaminated by petroleum. Biotechnol. Progress. 32(2): 262–270.
Lorestani B., Kolahchi N., Ghasemi M. & Cheraghi M. 2014. Changes germination, growth and anatomy Vicia ervilia in response to light crude oil stress. J. Chem. Health Risks 4(1):45-52.
Maheshwari, D. K.; Dheeman, S.; Agarwal M. 2015. Phytohormone-producing PGPR for sustainable agriculture. In D. K. Maheshwari (Ed.), Bacterial metabolites in sustainable agroecosystem, Swizerland: Springer International Publ. p 159.
Mead G. C. & Adams B. W. 1977. A selective medium for the rapid isolation of pseudomonads associated with poultry meat spoilage Br. Poult. Sci. 18(6):661-670.
Mikkonen A., Kondo E., Lapp K., Wallenius K., Lindstom K., Hartikainem H. & Suominen L. 2011. Contaminant and plant derived changes en soil chemical and microbiological indicators during fuel oil rhizoremediation with Galega orientalis. Geoderma 160(3-4):336-346.
Missouri Botanical Garden (MBG). 2016. Tropicos.org. 07 Feb 2016. Disponible en http://www.tropicos.org.
Moussa T. A. A., Mohamed M. S. & Samak N. 2014. Production and characterization of di-rhamnolipid produced by Pseudomonas aeruginosa TMN. Braz. J. Chem. Eng. 31(4):867-880.
Narváez-Flores S., Gómez L. M., & Martínez M. M. 2008. , Selection of bacteria with hydrocarbon degrading capacity isolated from Colombian Caribbean sediments., Bol. Invest. Mar. Cost. 37:63-77.
Ogbulie T. E., Duru C. & Nwanebu F. C. 2015. Interaction effects of plants and indigenous micro-organisms on degradation of N-alkanes in crude oil contaminated agricultural soil. J. Ecosys. Ecograph. 5(2): 166-181.
Olanipekun O., Ogunbayo A. & Layokun S. 2012. Estimation of biomass energetic yield and maintenance energy of growth of Pseudomonas aeruginosa and Pseudomonas fluorescens on diesel oil. Int. J. Res. Chem. Environ. 2(1):206-209.
Osawaru M. E., Ogwu M. C. & Braimah L. 2013. Growth responses of two cultivated okra species (Abelmoschus caillei (A. Chev) Stevels and Abelmoschus esculentus (Linn.) Moench) in crude oil contaminated soil. Nigerian J. Basic Appl. Sci. 21(3):215-226.
Parra J. & Gámez A. 2012. Determinación de especies arbóreas a través de caracteres vegetativos en la Estación Experimental Caparo, estado Barinas, Venezuela. Revista Forestal Venezolana. 56(2):135-145.
Ramos J. L., Cuenca S., Molina-Santiago C., Segura A., Duque E., Gómez-García M. R., Udaondo Z. & Roca A. 2015. Mechanisms of solvent resistance mediated by interplay of cellular factors in Pseudomonas putida. FEMS Microbiol. Rev. 39(4):555-566.
Rasamiravaka T., Labtani Q., Pierre Duez P. & El Jaziri, M. 2015. The formation of biofilms by Pseudomonas aeruginosa: A review of the natural and synthetic compounds interfering with control mechanisms. BioMed Res. Intern. 2015:1-17.
Rodríguez A. & Gámez A. 2010. Clave vegetativa para la identificación de árboles de la familia Fabaceae de la ciudad de Mérida, Venezuela. Pittieria 34: 89-111.
Saitou K., Furuhata K., Kawakami Y. & Fukuyama M. 2009. Biofilm formation abilities and disinfectant-resistance of Pseudomonas aeruginosa isolated from cockroaches captured in hospitals. Biocontrol Sci. 14(2):65-68.
Sebastiani L.F., Scebba R. & Tognett R. 2004. Heavy metal accumulation and growth responses in popular clones Eridana (popular deltoids) and 1-214 (p. deltoids x euramariceana) exposed to industrial waste. Environ. Exp. Bot. 52(1):79-88.
Smith, R.; Casadiego, J.; Sanabria, M.; Yunes F. 1996. Clave para los árboles de los Llanos de Venezuela basada en características vegetativas, Venezuela: Sociedad Venezolana de Ciencias Naturales, 275 p.
op_rights Derechos de autor 2017 Revista Colombiana de Biotecnología
https://creativecommons.org/licenses/by/4.0
op_rightsnorm CC-BY
container_title Revista Colombiana de Biotecnología
container_volume 19
container_issue 1
container_start_page 29
op_container_end_page 37
_version_ 1766302659442114560
spelling ftuncolombiarev:oai:www.revistas.unal.edu.co:article/57408 2023-05-15T14:28:30+02:00 Hydrocarbonoclastic bacteria of the genus Pseudomonas in Samanea saman (Jacq.) Merr. rhizosphere Bacterias hidrocarburoclásticas del género Pseudomonas en la rizosfera de Samanea saman (Jacq.) Merr. Mayz, Juliana Coromoto Manzi, Lorna Victoria 2017-01-01 application/vnd.openxmlformats-officedocument.wordprocessingml.document application/pdf https://revistas.unal.edu.co/index.php/biotecnologia/article/view/57408 spa spa Universidad Nacional de Colombia - Sede Bogotá - Instituto de Biotecnología https://revistas.unal.edu.co/index.php/biotecnologia/article/view/57408/doc https://revistas.unal.edu.co/index.php/biotecnologia/article/view/57408/pdf Achuba F.I. 2006. The effect of sublethal concentrations of crude oil on the growth and metabolism of cowpea (Vigna unguiculata) seedlings. The Environmentalist. 26(1):17–20. Adekunle O. 2012. Mechanisms of antimicrobial resistance in bacteria, general approach. Int. J. Pharm. Med. & Bio. Sc. 1(2):166-187. Adenipekun C.O., Oyetunji O.J. & Kassim L.S. 2009. Screening of Abelmoschus esculentus L. Moench for tolerance to spent engine oil. J. Appl. Biosci. 20:1131-1137. Agrawal T., Anil S., Kotasthane A. S., Kushwah R. 2015. Genotypic and phenotypic diversity of polyhydroxybutyrate (PHB) producing Pseudomonas putida isolates of Chhattisgarh region and assessment of its phosphate solubilizing ability. 3 Biotech. 5:45–60. Arora N.K. 2015. Plant Microbes Symbiosis: Plant Facets. Springer, India. 381 p. Baishya M. & Chandra M. 2015. Phytoremediation of crude oil using two local varieties of castor oil plant (Ricinus communis) of Assam. In. J. Pharm. Bio. Sci. 6(4): (B)1173-1182. Benedek T., Máthé I., Salamon R., Rákos S., Pásztohy Z., Márialigeti K. & Szabolcs Lány S. 2012. Potential bacterial soil inoculant made up by Rhodococcus sp. and Pseudomonas sp. for remediation in situ of hydrocarbon – and heavy metal polluted soils. Studia UBB Chemia, 57(3):199 – 211. Brenner, J.; Kreig; Stanley, T. 2005. Bergey's Manual of Systematic Bacteriology. The Probacteria, Part A. Introductory Essay, New York: Springer, p 27. Bushnell L. D. & Hass H. F. 1941. The utilization of certain hydrocarbons by microorganisms. J. Bacteriol. 41(5):653-673. Chibuike G. U. & Obiora S. C. 2014. Bioremediation of hydrocarbon-polluted soils for improved crop performance. Int. J. Environ. Sci. 4(5):840-858. Cuenca M. del S., Roca A., Molina-Santiago C., Duque E., Armengaud J., Gómez-Garcia M. R. & Ramos J. L 2016. Understanding butanol tolerance and assimilation in Pseudomonas putida BIRD-1: an integrated omics approach. Microb. Biotechnol. 9(1):100-115. Das N. & Chandran P. 2011. Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnol. Res. Int. 2011:1-13. De Oliveira G. B., Favarin L., Luchese R. H. & McIntosh D. 2015. Psychrotrophic bacteria in milk: How much do we really know?. Braz. J. Microbiol. 46(2):313–321. Edwin-Wosu N. L. 2013. Phytoremediation (Series 5): Organic carbon, matter, phosphorus and nitrogen trajectories as indices of assessment in a macrophytic treatment of hydrocarbon degraded soil environment. Eur J Exp Biol, 3(3):11-17. Eze C. N., Maduka J. N., Ogbonna J. C. & Eze E. A. 2013. Effects of bonny light crude oil contamination on the germination, shoot growth and rhizobacterial flora of Vigna unguiculata and Arachis hypogea grown in sandy loam soil. Sci. Res. Essays. 8(2):99-107. Fernández M., Conde S., Duque E. & Ramos J. L. 2013. In vivo gene expression of Pseudomonas putida KT2440 in the rhizosphere of different plants. Microbial. Biotech. 6:307-313. Flemming H.C. & Wingender J. 2010. The biofilm matrix. Nat. Rev. Microbiol. 8(9):623-633. Gofar N. 2013. Synergism of wild grass and hydrocarbonoclastic bacteria petroleum biodegradation. J. Trop. Soils. 18(2): 161-168. Government of Canada (GC). 2015. Final Screening Assessment Report for Pseudomonas stutzeri ATCC 17587, Canada: Ministery of the Environment and Ministery of Health. 40 p. Goswami D., Thakker J. N. & Dhandhukia P. C. 2016. Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. Cogent Food & Agric. 2: 1127500. Hassaine A. & Bordjiba O. 2015. Metabolic capacities of three strains of Pseudomonas aeruginosa to biodegrade crude oil. Adv. Environ. Biol. 9(18): 139-146. Inckot R.C., Bona C., Souza L.A. de & Santos G.O. 2008. Anatomia das plântulas de Mimosa pilulifera (Leguminosae) crescendo em solo contaminado com petróleo e solo biorremediado. Rodriguésia 59(3): 513-524. Janek T., Łukaszewicz M. & Krasowska A. 2013. Identification and characterization of biosurfactants produced by the Arctic bacterium Pseudomonas putida BD2, Colloids and Surfaces B: Biointerfaces. 110:379-386. Kabir M., Zafar Iqbal M. & Shafiq M. 2012. Traffic density, climatic conditions and seasonal growth of Samanea saman (Jacq.) Merr. on different polluted roads of karachi city. Pak. J. Bot. 44(6):1881-1890. Keller, R. 2004. Identification of tropical woody plants in the absence of flowers, a field guide, 2nd. Edition, Switzerland: Birkhäuser Verlag Basel, 294 p. Khan J. A. & Abbas S. H. 2011. Isolation and characterization of micro-organism from oil contaminated sites. Adv. Appl. Sci. Res. 2(3):455-460. Komolafe R. J., Akinola O. M. & Agbolade O. J. 2015. Effect of petrol and spent oil on the growth of Guinea Corn (Sorghum bicolor L.). Int. J. Plant Biol. 6(1):5883. Kumar G. P., Desai S., Amalraj L. & Reddy G. 2015. Isolation of fluorescent Pseudomonas spp. from diverse agro-ecosystems of India and characterization of their PGPR traits. Bacteriol. J. 5 (1): 13-24. Kumara M., Leon V., De Sisto Materano A., Ilzins O. A., Galindo-Castro I. & Fuenmayor S. L. 2006. Polycyclic aromatic hydrocarbon degradation by biosurfactant-producing Pseudomonas sp. IR1. Z. Naturforsch C. 61(3-4):203-212. Lăzăroaie M.M. 2009. Investigation of saturated and aromatic hydrocarbon resistance mechanisms in Pseudomonas aeruginosa IBBML1 Cen. Eur. J. Biol. 4(4):469-481. Leite G. G. F., Figueirôa J. V., Almeida T. C. M., Valões J. L., Marques W. F., Duarte M. D. D. C. & Gorlach-Lira K. 2016. Production of rhamnolipids and diesel oil degradation by bacteria isolated from soil contaminated by petroleum. Biotechnol. Progress. 32(2): 262–270. Lorestani B., Kolahchi N., Ghasemi M. & Cheraghi M. 2014. Changes germination, growth and anatomy Vicia ervilia in response to light crude oil stress. J. Chem. Health Risks 4(1):45-52. Maheshwari, D. K.; Dheeman, S.; Agarwal M. 2015. Phytohormone-producing PGPR for sustainable agriculture. In D. K. Maheshwari (Ed.), Bacterial metabolites in sustainable agroecosystem, Swizerland: Springer International Publ. p 159. Mead G. C. & Adams B. W. 1977. A selective medium for the rapid isolation of pseudomonads associated with poultry meat spoilage Br. Poult. Sci. 18(6):661-670. Mikkonen A., Kondo E., Lapp K., Wallenius K., Lindstom K., Hartikainem H. & Suominen L. 2011. Contaminant and plant derived changes en soil chemical and microbiological indicators during fuel oil rhizoremediation with Galega orientalis. Geoderma 160(3-4):336-346. Missouri Botanical Garden (MBG). 2016. Tropicos.org. 07 Feb 2016. Disponible en http://www.tropicos.org. Moussa T. A. A., Mohamed M. S. & Samak N. 2014. Production and characterization of di-rhamnolipid produced by Pseudomonas aeruginosa TMN. Braz. J. Chem. Eng. 31(4):867-880. Narváez-Flores S., Gómez L. M., & Martínez M. M. 2008. , Selection of bacteria with hydrocarbon degrading capacity isolated from Colombian Caribbean sediments., Bol. Invest. Mar. Cost. 37:63-77. Ogbulie T. E., Duru C. & Nwanebu F. C. 2015. Interaction effects of plants and indigenous micro-organisms on degradation of N-alkanes in crude oil contaminated agricultural soil. J. Ecosys. Ecograph. 5(2): 166-181. Olanipekun O., Ogunbayo A. & Layokun S. 2012. Estimation of biomass energetic yield and maintenance energy of growth of Pseudomonas aeruginosa and Pseudomonas fluorescens on diesel oil. Int. J. Res. Chem. Environ. 2(1):206-209. Osawaru M. E., Ogwu M. C. & Braimah L. 2013. Growth responses of two cultivated okra species (Abelmoschus caillei (A. Chev) Stevels and Abelmoschus esculentus (Linn.) Moench) in crude oil contaminated soil. Nigerian J. Basic Appl. Sci. 21(3):215-226. Parra J. & Gámez A. 2012. Determinación de especies arbóreas a través de caracteres vegetativos en la Estación Experimental Caparo, estado Barinas, Venezuela. Revista Forestal Venezolana. 56(2):135-145. Ramos J. L., Cuenca S., Molina-Santiago C., Segura A., Duque E., Gómez-García M. R., Udaondo Z. & Roca A. 2015. Mechanisms of solvent resistance mediated by interplay of cellular factors in Pseudomonas putida. FEMS Microbiol. Rev. 39(4):555-566. Rasamiravaka T., Labtani Q., Pierre Duez P. & El Jaziri, M. 2015. The formation of biofilms by Pseudomonas aeruginosa: A review of the natural and synthetic compounds interfering with control mechanisms. BioMed Res. Intern. 2015:1-17. Rodríguez A. & Gámez A. 2010. Clave vegetativa para la identificación de árboles de la familia Fabaceae de la ciudad de Mérida, Venezuela. Pittieria 34: 89-111. Saitou K., Furuhata K., Kawakami Y. & Fukuyama M. 2009. Biofilm formation abilities and disinfectant-resistance of Pseudomonas aeruginosa isolated from cockroaches captured in hospitals. Biocontrol Sci. 14(2):65-68. Sebastiani L.F., Scebba R. & Tognett R. 2004. Heavy metal accumulation and growth responses in popular clones Eridana (popular deltoids) and 1-214 (p. deltoids x euramariceana) exposed to industrial waste. Environ. Exp. Bot. 52(1):79-88. Smith, R.; Casadiego, J.; Sanabria, M.; Yunes F. 1996. Clave para los árboles de los Llanos de Venezuela basada en características vegetativas, Venezuela: Sociedad Venezolana de Ciencias Naturales, 275 p. Derechos de autor 2017 Revista Colombiana de Biotecnología https://creativecommons.org/licenses/by/4.0 CC-BY Revista Colombiana de Biotecnología; Vol. 19 Núm. 1 (2017); 29-37 Revista Colombiana de Biotecnología; Vol. 19 No. 1 (2017); 29-37 1909-8758 0123-3475 contamination toxicity petroleum Pseudomonas hydrocarbonoclastic action Contaminación toxicidad petróleo acción hidrocarburoclástica info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Artículo revisado por pares 2017 ftuncolombiarev 2022-12-14T08:36:54Z The research goal includes isolation, characterization and identification of Pseudomonas species existing in the rhizosphere of a legume present (colonizing or survivor) in a savanna soil polluted by an oil spill, in order to explain the support of the growth of this leguminous plant through the reduction of the toxicity of spilled oil (hydrocarbonoclastic effects). The site is located at Amana del Tamarindo village entrance, Monagas State, Venezuela (9 ° 38' 52 "N, 63 ° 7' 20" E, 46 masl). An area of 50 m2 was sampled. In concordance to the descriptions, keys, and comparison with the UOJ Herbarium exsiccatae, the legume collected was identified as Samanea saman (Jacq.) Merr., which belongs to the Fabaceae family. The results of the biochemical characterization and the production of pyocyanine and fluorescein pigments allowed identifying 10 isolates as P. fluorescens, 5 as P. putida and 5 as P. aeruginosa. Samanea saman is recommended for re-vegetation of the contaminated area. El objetivo de esta investigación incluye el aislamiento, caracterización e identificación de las especies de Pseudomonas existentes en la rizosfera de una leguminosa presente (colonizadora o sobreviviente) en un suelo de sabana contaminado por un derrame de petróleo con el fin de explicar el apoyo al crecimiento de esta leguminosa a través de la reducción de la toxicidad del crudo derramado (efectos hidrocarburoclásticos) El sitio se encuentra a la entrada del pueblo de Amana del Tamarindo, estado Monagas, Venezuela (9° 38' 52" N, 63° 7' 20'' E, 46 msnm). Se muestreó un área de 50 m2. Según las descripciones, claves y comparación con las exsiccatae del herbario UOJ, la leguminosa colectada fue identificada como Samanea saman (Jacq.) Merr., la cual pertenece a la Familia Fabaceae. Los resultados de la caracterización bioquímica y la producción de los pigmentos piocianina y fluoresceína permitieron identificar diez aislados como P. fluorescens, 5 como P. putida y 5 como P. aeruginosa. Se recomienda la revegetación con S. saman del área ... Article in Journal/Newspaper Arctic Universidad Nacional de Colombia: Portal de Revistas UN Entrada ENVELOPE(-60.552,-60.552,-62.998,-62.998) Revista Colombiana de Biotecnología 19 1 29 37