Antibiotic- and heavy-metal resistance in bacteria isolated from deep subsurface in El Callao region, Venezuela

The effect of contamination with mercury (Hg) in the deep subsurface bacterial communities in the region of El Callao (Bolívar State, Venezuela) was investigated. Bacterial communities from two deep levels (-288 m and -388 m) in a gold mine were studied with the aim of describe the most relevant fea...

Full description

Bibliographic Details
Published in:Nova
Main Authors: Rojas Pirela, Maura Lina, Ball, María Mercedes, Botello Suárez, Wilmar Alirio
Format: Article in Journal/Newspaper
Language:Spanish
Published: Universidad Nacional de Colombia - Sede Bogotá - Instituto de Biotecnología 2014
Subjects:
Online Access:https://revistas.unal.edu.co/index.php/biotecnologia/article/view/41004
id ftuncolombiarev:oai:www.revistas.unal.edu.co:article/41004
record_format openpolar
institution Open Polar
collection Universidad Nacional de Colombia: Portal de Revistas UN
op_collection_id ftuncolombiarev
language Spanish
topic subsurface bacteria
resistance
mercury
antibiotic
plasmid
bacterias del subsuelo
resistencia
mercurio
antibióticos
plásmidos
Investigación
Biotecnología
Avance Científico
spellingShingle subsurface bacteria
resistance
mercury
antibiotic
plasmid
bacterias del subsuelo
resistencia
mercurio
antibióticos
plásmidos
Investigación
Biotecnología
Avance Científico
Rojas Pirela, Maura Lina
Ball, María Mercedes
Botello Suárez, Wilmar Alirio
Antibiotic- and heavy-metal resistance in bacteria isolated from deep subsurface in El Callao region, Venezuela
topic_facet subsurface bacteria
resistance
mercury
antibiotic
plasmid
bacterias del subsuelo
resistencia
mercurio
antibióticos
plásmidos
Investigación
Biotecnología
Avance Científico
description The effect of contamination with mercury (Hg) in the deep subsurface bacterial communities in the region of El Callao (Bolívar State, Venezuela) was investigated. Bacterial communities from two deep levels (-288 m and -388 m) in a gold mine were studied with the aim of describe the most relevant features of their colonizing indigenous culturable bacteria. Antibiotic and heavy metals resistance patterns, presence of the merA gene and plasmids in resistant isolates were evaluated. A high frequency of resistant indigenous bacteria to Hg and other heavy metals was found. From 76 Hg-resistant isolates tested 73.7 % were, in addition, resistant to ampicillin, 86.8% to chloramphenicol, 67.1 % for tetracycline, 56.6 % streptomycin, and 51.3 % kanamycin. Furthermore, it was found that 40.74 % (-328 mm) and 26.53 % (-388 m) of Hg-resistant bacteria were simultaneously resistant to both four and five of these antibiotics. The presence of low and high molecular weight plasmids was detected and, despite that isolated showed resistance to mercurial compounds, the presence of the gene merA was detected only in 71.05 % of strains. These results suggest that exposure to Hg could be a selective pressure on the proliferation of antibiotic-resistant bacteria and promote the preservation and propagation of these resistance genes. However, the existence of such resistances to these depths could also support the idea that antibiotic resistance in these bacteria is natural and has a more ancient origin than their exposure to Hg. Se investigó el efecto de la contaminación con mercurio (Hg) en las comunidades bacterianas del subsuelo profundo en la región de El Callao (Estado Bolívar, Venezuela). Se estudiaron comunidades bacterianas de dos niveles de profundidad (-288 m y -388 m) en una mina de oro con el propósito de describir las características más relevantes de las bacterias indígenas cultivables que colonizaban esta mina. Se evaluaron los patrones de resistencia a antibióticos y metales pesados, presencia del gen merA y plásmidos ...
format Article in Journal/Newspaper
author Rojas Pirela, Maura Lina
Ball, María Mercedes
Botello Suárez, Wilmar Alirio
author_facet Rojas Pirela, Maura Lina
Ball, María Mercedes
Botello Suárez, Wilmar Alirio
author_sort Rojas Pirela, Maura Lina
title Antibiotic- and heavy-metal resistance in bacteria isolated from deep subsurface in El Callao region, Venezuela
title_short Antibiotic- and heavy-metal resistance in bacteria isolated from deep subsurface in El Callao region, Venezuela
title_full Antibiotic- and heavy-metal resistance in bacteria isolated from deep subsurface in El Callao region, Venezuela
title_fullStr Antibiotic- and heavy-metal resistance in bacteria isolated from deep subsurface in El Callao region, Venezuela
title_full_unstemmed Antibiotic- and heavy-metal resistance in bacteria isolated from deep subsurface in El Callao region, Venezuela
title_sort antibiotic- and heavy-metal resistance in bacteria isolated from deep subsurface in el callao region, venezuela
publisher Universidad Nacional de Colombia - Sede Bogotá - Instituto de Biotecnología
publishDate 2014
url https://revistas.unal.edu.co/index.php/biotecnologia/article/view/41004
long_lat ENVELOPE(-63.658,-63.658,-64.985,-64.985)
geographic Mercurio
geographic_facet Mercurio
genre Arctic
genre_facet Arctic
op_source Revista Colombiana de Biotecnología; Vol. 16 Núm. 2 (2014); 141-149
Revista Colombiana de Biotecnología; Vol. 16 No. 2 (2014); 141-149
1909-8758
0123-3475
op_relation https://revistas.unal.edu.co/index.php/biotecnologia/article/view/41004/48888
https://revistas.unal.edu.co/index.php/biotecnologia/article/view/41004/48889
https://revistas.unal.edu.co/index.php/biotecnologia/article/view/41004/50101
Adams, A.; Raman, A.; Hodgkins, D.; Nicol, H. 2013. Accumulation of heavy metals by naturally colonizing Typha domingensis (Poales Typhaceae) in waste-rock dump leachate storage ponds in a gold-copper mine in the central tablelands of New South Wales, Australia. International Journal of Mining, Reclamationand Environment. 27: (4). 294- 307.
Allen, H.; Donato, J.; Wang, H.H.; Cloud-Hansen, K.A.; Davies, J.; Handelsman, J. 2010. Call of the wild: antibiotic resistance genes in natural environments. Nature Reviews Microbiology. 8 (4):251-59.
Akinbowale, O.; Peng, H.; Grant, P.; Barton, M. 2007. Antibiotic and heavy metal resistance in motile Aeromonads and Pseudomonas spp. from rainbow trout (Oncorhynchusmykiss) farms in Australia. International Journal of Antimicrobial Agents. 30(2):177-82.
Ball, M.; Carrero, P.; Castro, D.; Yarzábal, A. 2007. Mercury resistance in bacterial strains isolated from tailing ponds in a gold mining area near El Callao (Bolívar State, Venezuela). CurrentMicrobiology. 54(2):149–154.
Baker-Austin, C.; Wright, M.; Stepanauskas, R.; McArthur J. 2006. Co-selection of antibiotics and metals resistance. Trends Microbiology. 14(4): 176–182.
Benyehuda, G.; Coombs, J.; Ward, P.; Balkwill, D.; Barkay, T. 2003. Metal resistance among aerobic chemoorganotrophic bacterial isolates from the deep terrestrial subsurface. Canadian Journal of Microbiology. 49(2):151-156.
Bhullar, K.; Waglechner, N.; Pawlowski, P.; Koteva, K.; Banks, E.; Johnston, M.; et al., 2012. Antibiotic resistance is prevalent in an isolated cave microbiome. PLoSONE. 7(4):e34953.
Brown, M.; Balkwill, D. 2009. Antibiotic resistance in bacteria isolated from the deep terrestrial subsurface. Microbial Ecology. 57(3):484-493.
Coombs, J. 2009. Potential for horizontal gene transfer in subsurface microbial communities. Totowa, New Jersey. In Gogarten M, Gogarten J, Olendzenski L (Eds).Humana Press. Horizontal Gene Transfer: Genomes in Flux. p 413-433.
Clinical and Laboratory Standards Institute. 2005. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. Wayne, PA Fifteenth informational supplement, CLSI document M100- S15.
Chivian, D.; Brodie, E.; Alm, E.; Culley, D.; Dehal, P.; DeSantis, T.; & Onstott, T. C. 2008. Environmental genomics reveals a single species ecosystem deep within Earth. Science. 322(5899):275- 278.
Davies, J.; Davies, D. 2010. Origins and Evolution of Antibiotic Resistance.Microbiology and Molecular Biology Reviews. 74 (3): 417-433.
Diptendu, S.; Goutam, P. 2013. Molecular Characterization of Metal and Antibiotic Resistance Activities in a Bacterial Population Isolated from Waste Water Sample. Intenational Journal of Biotechnology and Bioengineering Research. 4(1):21-30.
Duran, F.; Carrero, P.; Rondón, C. 2005. A new method to determine mercury species in water samples through cold vapor generation and atomic absorption spectroscopy detection. Proceedings of the VII Venezuelan Chemistry Congress, Faculty of Sciences. Universidad de Los Andes (Mérida, Venezuela). p 35–37.
Fredrickson, J.; Balkwill, D. 2006. Geomicrobial processes and biodiversity in the deep terrestrial subsurface. Geomicrobiology Journal. 23(6): 345-356.
García-Sánchez, A.; Contreras, F.; Adams, M.; Santos, F. 2008. Mercury contamination or surface water and fish in a gold mining región (Cuyuni River Basin,Venezuela). International Journal Environment Pollution. 33(2/3) 260-274.
Gómez, W.; Ball, M.; Botello, W.; Yarzábal, A. 2013. Horizontal transfer of heavy metal and antibiotic-resistance markers between indigenous bacteria, colonizing mercury contaminated tailing ponds in southern Venezuela, and human pathogens. Revista de la Sociedad Venezolana de Microbiología. 33: 110- 115.
Hemme, C.; Deng, Y.; Gentry, T.; Fields, M.; Wu, L.; Barua, S.; & Zhou, J. 2010. Metagenomic insights into evolution of a heavy metal - contamined groundwater microbial community. Multidisciplinary Journal of Microbial Ecology. 4: 660-672.
Hildebrand, R. 2005. Autochthonous and allochthonous strata of the El Callao greenstone belt: Implications for the nature of the Paleoproterozoic Trans- Amazonian orogeny and the origin of gold-bearing shear zones in the El Callao mining district, Guayana shield, Venezuela. Precambrian Research. 143(1): 75–86.
Hirayama, H.; Takai, K.; Inagaki, F.; Yamato, Y.; Suzuki, M.; Nealson, K.; Horikoshi, K. 2005. Bacterial community shift along a subsurface geothermal water stream in a Japanese gold mine. Extremophiles. 9 (2):169-184.
Izaki, K. 1981. Enzymatic reduction of mercurius and mercuric ions in Bacillus cereus. Canadian Journal of Microbiology. 27:192- 197.
Laskaris, P.; Tolbas, S.; Calvo-Bado, L.; Wellington E. 2010. Coevolution of antibiotic production and counter-resistance in soil bacteria. Enviromental Microbiology. 12(3):783-796.
Moser, D.; Gihring, T.; Brockman, F.; Fredrickson, J.; Balkwill, D.; Dollhopf, M.; & Onstott, T. C. 2005. Desulfotomaculum spp. and Methanobacterium spp. Dominate a 4 to 5 km Deep Fault. Applied and Environmental Microbiology. 71(12):8773-8783.
Mindlin, S.Z.; Soina, V.S.; Petrova, M.A.; Gorlenko, Zh.M. 2008. Isolation of antibiotic resistance bacterial strains from eastern Siberia permafrost sediments. Russian Journal of Genetics. 44(1): 36-44.
Ni Chadhain, S.; Schaefer, J.; Crane, S.; Zylstra, G.; Barkay, T. 2006. Analysis of mercuric reductase (merA) gene diversity in ananaerobic mercury-contaminated sediment enrichment. Environmental Microbiology. 8(10): 1746-1752.
Pan-Hou, H.; Nishimoto, M.; Imura, N.1981 Possible role of membrane protein in mercury resistance of Enterobacter aerogenes. Archives of Microbiology. 130(2): 93-95.
Paredes, S.; Hidalgo-Prada, B.; Ávila, R.; Albornoz, A. 2007. Análisis de mineral aurífero de la mina Colombia, El Callao, Venezuela, mediante MEB/EDX Y DRX. Acta Microscópica. 16: s301-302.
Parkes, R.; Linnane, C.; Webster, G.; Sass, H.; Weightman, A.; Hornibrook, R.; & Horsfield, B. 2011. Prokaryotes stimulate mineral H2 formation for the deep biosphere and subsequent thermogenic activity. Geology. 39(3): 219-222.
Rastogi, G.; Osman, S.; Kukkadapu, R.; Engelhard, M.; Vaishampayan, P.; Andersen, G.; Sani, R. 2010. Microbial and minerological characterizations of soils collected from the deep biosphere of the former Homestake gold mine, South Dakota. Microbial Ecology. 60 (3): 539-550.
Rastogi, G.; Gurram, R.; Bhalla, A.; Gonzalez, R.; Bischoff, K.; Hughes, S.; Kumar, S.; Sani, R. 2013. Presence of glucose, Xylose, and glycerol fermenting bacteria in the deep biosphere of the Homestake gold mine, South Dakota. Frontiers in Microbiology. 9: 18.
Reniero, D.; Mozzon, E.; Galli, E.; Barbieri, P. 1998. Two aberrant mercury resistance transposons in the Pseudomonas stutzeri plasmid pPB. Gene. 208(1): 37-42.
Reyes, N.; Marc, E.; Frischer, M.; Sobecky, P. 1999. Characterization of mercury resistance mechanisms in marine sediment microbial communities. FEMS Microbiology Ecology. 30 (3): 273-84.
Segawa, T.; Takeuchi, N.; Rivera, A.; Yamada, A.; Yoshimura, Y.; Barcaza, G., & Ushida, K. 2013. Distribution of antibiotic resistance genes in glacier environments. Environmental Ecology of Pathogens and Resistances. 5(1): 127-134.
Seiler, C.; Berendonk, T. 2012. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Frontiers in Microbiology. 3:399.
Sudha, A.; Augustine, N.; Thomas, S. 2013. Emergence of multi-drug resistant bacteria in the Arctic, 790N. Journal of Cell and Life Sciences. 1(1): 1-5.
Summers, A. 2002. Generally Overlooked Fundamentals of Bacterial Genetics and Ecology. Clinical Infectious Diseases. 34: s84-s92.
Stepanauskas, R.; Glenn, T.; Jagoe, C.; Tuckfield, R.; Lindell, A.; King, C.; & McArthur, J. V. 2006. Coselection for microbial resistance to metals and antibiotics in freshwater microcosms. Environmental Microbiology. 8(9): 1510–1514.
Takai, K.; Moser, D.; Deflaum, M.; Onstott, T.; Fredrickson, J. 2001. Archaeal Diversity in Waters from Deep South African Gold Mines. Applied and Environmental Microbiology. 67(12): 5750- 5760.
Telmer, K.; Veiga, MM. 2009. World emissions of mercury from artisanal and small scale gold mining. Pirrone N, Mason R (Eds). Springer Science + Business Media, p 131-172.
Uchimiya, M.; Lima, L.; Thomas, K.; Chang, S.; Wartelle, L.; Rodgers, J. 2010. Immobilization of heavy metal ions (CuII,CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil. Journal of Agricultural Food Chemistry. 58(9): 5538-5344.
Veiga, M.; Bermudez, D.; Pacheco-Ferreira, H.; Martins, P.; Gunson, A.; Berrios, G.; Vos, L.; Hiudobro, P.; Roeser, M. 2005. Mercury from artisanal gold mining in Block B, El Callao, Bolivar State, Venezuela. In Pirrone N and Mahaffey K (Eds). Norwell, MA, USA. Dynamics of Mercury Pollution on Regional and Global Scales: Atmospheric Process and Human Exposure Around the World. Springer Publisher, p. 421-450.
Wang, F.; Lu, S.; Orcutt, B.; Xie, W.; Chen, P.; Xiao, X.; Edwards, J. 2013. Discovering the roles of subsurface microorganisms: Progress and future of deep biosphere investigation. ChineseScience Bulletin. 58 (4-5): 456-467.
Woodruff, L.; Cannon, W. 2010. Immediate and long-term fire effects on total mercury in forests soils of Northeastern Minnesota. Environmental Science & Technology. 44(14): 5371-5376.
https://revistas.unal.edu.co/index.php/biotecnologia/article/view/41004
op_rights Derechos de autor 2014 Revista Colombiana de Biotecnología
https://creativecommons.org/licenses/by/4.0
op_rightsnorm CC-BY
container_title Nova
container_volume 8
container_issue 13
container_start_page 102
_version_ 1766302659251273728
spelling ftuncolombiarev:oai:www.revistas.unal.edu.co:article/41004 2023-05-15T14:28:30+02:00 Antibiotic- and heavy-metal resistance in bacteria isolated from deep subsurface in El Callao region, Venezuela Resistencia a antibioticos y metales pesados en bacterias aisladas de subsuelo en la región El Callao, Venezuela Rojas Pirela, Maura Lina Ball, María Mercedes Botello Suárez, Wilmar Alirio 2014-07-01 application/zip application/pdf text/html https://revistas.unal.edu.co/index.php/biotecnologia/article/view/41004 spa spa Universidad Nacional de Colombia - Sede Bogotá - Instituto de Biotecnología https://revistas.unal.edu.co/index.php/biotecnologia/article/view/41004/48888 https://revistas.unal.edu.co/index.php/biotecnologia/article/view/41004/48889 https://revistas.unal.edu.co/index.php/biotecnologia/article/view/41004/50101 Adams, A.; Raman, A.; Hodgkins, D.; Nicol, H. 2013. Accumulation of heavy metals by naturally colonizing Typha domingensis (Poales Typhaceae) in waste-rock dump leachate storage ponds in a gold-copper mine in the central tablelands of New South Wales, Australia. International Journal of Mining, Reclamationand Environment. 27: (4). 294- 307. Allen, H.; Donato, J.; Wang, H.H.; Cloud-Hansen, K.A.; Davies, J.; Handelsman, J. 2010. Call of the wild: antibiotic resistance genes in natural environments. Nature Reviews Microbiology. 8 (4):251-59. Akinbowale, O.; Peng, H.; Grant, P.; Barton, M. 2007. Antibiotic and heavy metal resistance in motile Aeromonads and Pseudomonas spp. from rainbow trout (Oncorhynchusmykiss) farms in Australia. International Journal of Antimicrobial Agents. 30(2):177-82. Ball, M.; Carrero, P.; Castro, D.; Yarzábal, A. 2007. Mercury resistance in bacterial strains isolated from tailing ponds in a gold mining area near El Callao (Bolívar State, Venezuela). CurrentMicrobiology. 54(2):149–154. Baker-Austin, C.; Wright, M.; Stepanauskas, R.; McArthur J. 2006. Co-selection of antibiotics and metals resistance. Trends Microbiology. 14(4): 176–182. Benyehuda, G.; Coombs, J.; Ward, P.; Balkwill, D.; Barkay, T. 2003. Metal resistance among aerobic chemoorganotrophic bacterial isolates from the deep terrestrial subsurface. Canadian Journal of Microbiology. 49(2):151-156. Bhullar, K.; Waglechner, N.; Pawlowski, P.; Koteva, K.; Banks, E.; Johnston, M.; et al., 2012. Antibiotic resistance is prevalent in an isolated cave microbiome. PLoSONE. 7(4):e34953. Brown, M.; Balkwill, D. 2009. Antibiotic resistance in bacteria isolated from the deep terrestrial subsurface. Microbial Ecology. 57(3):484-493. Coombs, J. 2009. Potential for horizontal gene transfer in subsurface microbial communities. Totowa, New Jersey. In Gogarten M, Gogarten J, Olendzenski L (Eds).Humana Press. Horizontal Gene Transfer: Genomes in Flux. p 413-433. Clinical and Laboratory Standards Institute. 2005. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. Wayne, PA Fifteenth informational supplement, CLSI document M100- S15. Chivian, D.; Brodie, E.; Alm, E.; Culley, D.; Dehal, P.; DeSantis, T.; & Onstott, T. C. 2008. Environmental genomics reveals a single species ecosystem deep within Earth. Science. 322(5899):275- 278. Davies, J.; Davies, D. 2010. Origins and Evolution of Antibiotic Resistance.Microbiology and Molecular Biology Reviews. 74 (3): 417-433. Diptendu, S.; Goutam, P. 2013. Molecular Characterization of Metal and Antibiotic Resistance Activities in a Bacterial Population Isolated from Waste Water Sample. Intenational Journal of Biotechnology and Bioengineering Research. 4(1):21-30. Duran, F.; Carrero, P.; Rondón, C. 2005. A new method to determine mercury species in water samples through cold vapor generation and atomic absorption spectroscopy detection. Proceedings of the VII Venezuelan Chemistry Congress, Faculty of Sciences. Universidad de Los Andes (Mérida, Venezuela). p 35–37. Fredrickson, J.; Balkwill, D. 2006. Geomicrobial processes and biodiversity in the deep terrestrial subsurface. Geomicrobiology Journal. 23(6): 345-356. García-Sánchez, A.; Contreras, F.; Adams, M.; Santos, F. 2008. Mercury contamination or surface water and fish in a gold mining región (Cuyuni River Basin,Venezuela). International Journal Environment Pollution. 33(2/3) 260-274. Gómez, W.; Ball, M.; Botello, W.; Yarzábal, A. 2013. Horizontal transfer of heavy metal and antibiotic-resistance markers between indigenous bacteria, colonizing mercury contaminated tailing ponds in southern Venezuela, and human pathogens. Revista de la Sociedad Venezolana de Microbiología. 33: 110- 115. Hemme, C.; Deng, Y.; Gentry, T.; Fields, M.; Wu, L.; Barua, S.; & Zhou, J. 2010. Metagenomic insights into evolution of a heavy metal - contamined groundwater microbial community. Multidisciplinary Journal of Microbial Ecology. 4: 660-672. Hildebrand, R. 2005. Autochthonous and allochthonous strata of the El Callao greenstone belt: Implications for the nature of the Paleoproterozoic Trans- Amazonian orogeny and the origin of gold-bearing shear zones in the El Callao mining district, Guayana shield, Venezuela. Precambrian Research. 143(1): 75–86. Hirayama, H.; Takai, K.; Inagaki, F.; Yamato, Y.; Suzuki, M.; Nealson, K.; Horikoshi, K. 2005. Bacterial community shift along a subsurface geothermal water stream in a Japanese gold mine. Extremophiles. 9 (2):169-184. Izaki, K. 1981. Enzymatic reduction of mercurius and mercuric ions in Bacillus cereus. Canadian Journal of Microbiology. 27:192- 197. Laskaris, P.; Tolbas, S.; Calvo-Bado, L.; Wellington E. 2010. Coevolution of antibiotic production and counter-resistance in soil bacteria. Enviromental Microbiology. 12(3):783-796. Moser, D.; Gihring, T.; Brockman, F.; Fredrickson, J.; Balkwill, D.; Dollhopf, M.; & Onstott, T. C. 2005. Desulfotomaculum spp. and Methanobacterium spp. Dominate a 4 to 5 km Deep Fault. Applied and Environmental Microbiology. 71(12):8773-8783. Mindlin, S.Z.; Soina, V.S.; Petrova, M.A.; Gorlenko, Zh.M. 2008. Isolation of antibiotic resistance bacterial strains from eastern Siberia permafrost sediments. Russian Journal of Genetics. 44(1): 36-44. Ni Chadhain, S.; Schaefer, J.; Crane, S.; Zylstra, G.; Barkay, T. 2006. Analysis of mercuric reductase (merA) gene diversity in ananaerobic mercury-contaminated sediment enrichment. Environmental Microbiology. 8(10): 1746-1752. Pan-Hou, H.; Nishimoto, M.; Imura, N.1981 Possible role of membrane protein in mercury resistance of Enterobacter aerogenes. Archives of Microbiology. 130(2): 93-95. Paredes, S.; Hidalgo-Prada, B.; Ávila, R.; Albornoz, A. 2007. Análisis de mineral aurífero de la mina Colombia, El Callao, Venezuela, mediante MEB/EDX Y DRX. Acta Microscópica. 16: s301-302. Parkes, R.; Linnane, C.; Webster, G.; Sass, H.; Weightman, A.; Hornibrook, R.; & Horsfield, B. 2011. Prokaryotes stimulate mineral H2 formation for the deep biosphere and subsequent thermogenic activity. Geology. 39(3): 219-222. Rastogi, G.; Osman, S.; Kukkadapu, R.; Engelhard, M.; Vaishampayan, P.; Andersen, G.; Sani, R. 2010. Microbial and minerological characterizations of soils collected from the deep biosphere of the former Homestake gold mine, South Dakota. Microbial Ecology. 60 (3): 539-550. Rastogi, G.; Gurram, R.; Bhalla, A.; Gonzalez, R.; Bischoff, K.; Hughes, S.; Kumar, S.; Sani, R. 2013. Presence of glucose, Xylose, and glycerol fermenting bacteria in the deep biosphere of the Homestake gold mine, South Dakota. Frontiers in Microbiology. 9: 18. Reniero, D.; Mozzon, E.; Galli, E.; Barbieri, P. 1998. Two aberrant mercury resistance transposons in the Pseudomonas stutzeri plasmid pPB. Gene. 208(1): 37-42. Reyes, N.; Marc, E.; Frischer, M.; Sobecky, P. 1999. Characterization of mercury resistance mechanisms in marine sediment microbial communities. FEMS Microbiology Ecology. 30 (3): 273-84. Segawa, T.; Takeuchi, N.; Rivera, A.; Yamada, A.; Yoshimura, Y.; Barcaza, G., & Ushida, K. 2013. Distribution of antibiotic resistance genes in glacier environments. Environmental Ecology of Pathogens and Resistances. 5(1): 127-134. Seiler, C.; Berendonk, T. 2012. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Frontiers in Microbiology. 3:399. Sudha, A.; Augustine, N.; Thomas, S. 2013. Emergence of multi-drug resistant bacteria in the Arctic, 790N. Journal of Cell and Life Sciences. 1(1): 1-5. Summers, A. 2002. Generally Overlooked Fundamentals of Bacterial Genetics and Ecology. Clinical Infectious Diseases. 34: s84-s92. Stepanauskas, R.; Glenn, T.; Jagoe, C.; Tuckfield, R.; Lindell, A.; King, C.; & McArthur, J. V. 2006. Coselection for microbial resistance to metals and antibiotics in freshwater microcosms. Environmental Microbiology. 8(9): 1510–1514. Takai, K.; Moser, D.; Deflaum, M.; Onstott, T.; Fredrickson, J. 2001. Archaeal Diversity in Waters from Deep South African Gold Mines. Applied and Environmental Microbiology. 67(12): 5750- 5760. Telmer, K.; Veiga, MM. 2009. World emissions of mercury from artisanal and small scale gold mining. Pirrone N, Mason R (Eds). Springer Science + Business Media, p 131-172. Uchimiya, M.; Lima, L.; Thomas, K.; Chang, S.; Wartelle, L.; Rodgers, J. 2010. Immobilization of heavy metal ions (CuII,CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil. Journal of Agricultural Food Chemistry. 58(9): 5538-5344. Veiga, M.; Bermudez, D.; Pacheco-Ferreira, H.; Martins, P.; Gunson, A.; Berrios, G.; Vos, L.; Hiudobro, P.; Roeser, M. 2005. Mercury from artisanal gold mining in Block B, El Callao, Bolivar State, Venezuela. In Pirrone N and Mahaffey K (Eds). Norwell, MA, USA. Dynamics of Mercury Pollution on Regional and Global Scales: Atmospheric Process and Human Exposure Around the World. Springer Publisher, p. 421-450. Wang, F.; Lu, S.; Orcutt, B.; Xie, W.; Chen, P.; Xiao, X.; Edwards, J. 2013. Discovering the roles of subsurface microorganisms: Progress and future of deep biosphere investigation. ChineseScience Bulletin. 58 (4-5): 456-467. Woodruff, L.; Cannon, W. 2010. Immediate and long-term fire effects on total mercury in forests soils of Northeastern Minnesota. Environmental Science & Technology. 44(14): 5371-5376. https://revistas.unal.edu.co/index.php/biotecnologia/article/view/41004 Derechos de autor 2014 Revista Colombiana de Biotecnología https://creativecommons.org/licenses/by/4.0 CC-BY Revista Colombiana de Biotecnología; Vol. 16 Núm. 2 (2014); 141-149 Revista Colombiana de Biotecnología; Vol. 16 No. 2 (2014); 141-149 1909-8758 0123-3475 subsurface bacteria resistance mercury antibiotic plasmid bacterias del subsuelo resistencia mercurio antibióticos plásmidos Investigación Biotecnología Avance Científico info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Artículo revisado por pares Experimental 2014 ftuncolombiarev 2022-12-14T08:36:48Z The effect of contamination with mercury (Hg) in the deep subsurface bacterial communities in the region of El Callao (Bolívar State, Venezuela) was investigated. Bacterial communities from two deep levels (-288 m and -388 m) in a gold mine were studied with the aim of describe the most relevant features of their colonizing indigenous culturable bacteria. Antibiotic and heavy metals resistance patterns, presence of the merA gene and plasmids in resistant isolates were evaluated. A high frequency of resistant indigenous bacteria to Hg and other heavy metals was found. From 76 Hg-resistant isolates tested 73.7 % were, in addition, resistant to ampicillin, 86.8% to chloramphenicol, 67.1 % for tetracycline, 56.6 % streptomycin, and 51.3 % kanamycin. Furthermore, it was found that 40.74 % (-328 mm) and 26.53 % (-388 m) of Hg-resistant bacteria were simultaneously resistant to both four and five of these antibiotics. The presence of low and high molecular weight plasmids was detected and, despite that isolated showed resistance to mercurial compounds, the presence of the gene merA was detected only in 71.05 % of strains. These results suggest that exposure to Hg could be a selective pressure on the proliferation of antibiotic-resistant bacteria and promote the preservation and propagation of these resistance genes. However, the existence of such resistances to these depths could also support the idea that antibiotic resistance in these bacteria is natural and has a more ancient origin than their exposure to Hg. Se investigó el efecto de la contaminación con mercurio (Hg) en las comunidades bacterianas del subsuelo profundo en la región de El Callao (Estado Bolívar, Venezuela). Se estudiaron comunidades bacterianas de dos niveles de profundidad (-288 m y -388 m) en una mina de oro con el propósito de describir las características más relevantes de las bacterias indígenas cultivables que colonizaban esta mina. Se evaluaron los patrones de resistencia a antibióticos y metales pesados, presencia del gen merA y plásmidos ... Article in Journal/Newspaper Arctic Universidad Nacional de Colombia: Portal de Revistas UN Mercurio ENVELOPE(-63.658,-63.658,-64.985,-64.985) Nova 8 13 102