Expresión de la Cinasa ROCK 2 y de los microRNAs-138-5p y 455-3p en células de melanoma B16 expuestas a 5-Bromo-2´-deoxiuridina y su asociación con proliferación, adhesión, migración y viabilidad celular

ilustraciones, gráficas, tablas ROCK 2 participa en la reestructuración del citoesqueleto, adhesión y contractilidad celular; aunque se conoce su asociación con la proliferación, migración e invasión en diferentes modelos celulares, poco se sabe sobre las bases moleculares de su regulación en célula...

Full description

Bibliographic Details
Published in:Proceedings of the National Academy of Sciences
Main Author: Muñoz Roa, Esther Natalia
Other Authors: Gómez Grosso, Luis Alberto, Fisiología Molecular
Format: Master Thesis
Language:Spanish
Published: Universidad Nacional de Colombia 2020
Subjects:
Online Access:https://repositorio.unal.edu.co/handle/unal/80286
https://repositorio.unal.edu.co/
id ftuncolombiair:oai:repositorio.unal.edu.co:unal/80286
record_format openpolar
institution Open Polar
collection Repositorio Institucional Universidad Nacional de Colombia
op_collection_id ftuncolombiair
language Spanish
topic 610 - Medicina y salud::612 - Fisiología humana
610 - Medicina y salud::614 - Medicina Forense
incidencia de lesiones
heridas
enfermedades
medicina preventiva pública
Cytology
Citología
Melanoma
5-Bromo-2´-deoxiuridina
Invasión
Migración
Proliferación
miRNAs
spellingShingle 610 - Medicina y salud::612 - Fisiología humana
610 - Medicina y salud::614 - Medicina Forense
incidencia de lesiones
heridas
enfermedades
medicina preventiva pública
Cytology
Citología
Melanoma
5-Bromo-2´-deoxiuridina
Invasión
Migración
Proliferación
miRNAs
Muñoz Roa, Esther Natalia
Expresión de la Cinasa ROCK 2 y de los microRNAs-138-5p y 455-3p en células de melanoma B16 expuestas a 5-Bromo-2´-deoxiuridina y su asociación con proliferación, adhesión, migración y viabilidad celular
topic_facet 610 - Medicina y salud::612 - Fisiología humana
610 - Medicina y salud::614 - Medicina Forense
incidencia de lesiones
heridas
enfermedades
medicina preventiva pública
Cytology
Citología
Melanoma
5-Bromo-2´-deoxiuridina
Invasión
Migración
Proliferación
miRNAs
description ilustraciones, gráficas, tablas ROCK 2 participa en la reestructuración del citoesqueleto, adhesión y contractilidad celular; aunque se conoce su asociación con la proliferación, migración e invasión en diferentes modelos celulares, poco se sabe sobre las bases moleculares de su regulación en células de melanoma. El objetivo de este trabajo fue evaluar los cambios en la morfología, proliferación y las variaciones de expresión de ROCK 2, miR-138-5p y miR-455-3p, dianas moleculares de ROCK 2, en células B16F1 expuestas al análogo de timidina, 5- Bromo-2'- deoxiuridina (BrdU). La exposición a BrdU (72 h) indujo una disminución del 65% en la proliferación, y un fenotipo senescente con aumento de 2,2 veces en el área celular aparente, aumento de 1,27 veces en el diámetro y la granulación. Las células expuestas mejoraron su capacidad de adhesión, circularidad y cierre de heridas y disminuyeron su migración en la cámara de Boyden en un 86,6%. La expresión de la proteína ROCK 2 mostró una disminución de aproximada de 3 veces en su mRNA, y después de la adición de un inhibidor de su actividad (Y27632), se observaron variaciones en la movilidad, polimerización de F-actina y VIM. Estos resultados coincidieron con una disminución de la expresión de miR-138-5p (1,8 veces) y un aumento de miR-455-3p (2,39 veces). En general, es posible sugerir que ROCK 2 participa en la regulación de los cambios morfológicos observados después de la exposición a BrdU, y su acción podría estar regulada, al menos en parte, por la expresión de miR-138-5p y miR-455-3p. (texto tomado de la fuente) ROCK 2 is involved in cytoskeleton restructuring, cell adhesion and contractility; although its association with proliferation, migration and invasion is known in different cell models, little is known about the molecular basis of its regulation in melanoma cells. The aim of this work was to evaluate changes in morphology, proliferation and expression variations of ROCK 2, miR-138-5p and miR-455-3p, molecular targets of ROCK 2, in B16F1 cells exposed ...
author2 Gómez Grosso, Luis Alberto
Fisiología Molecular
format Master Thesis
author Muñoz Roa, Esther Natalia
author_facet Muñoz Roa, Esther Natalia
author_sort Muñoz Roa, Esther Natalia
title Expresión de la Cinasa ROCK 2 y de los microRNAs-138-5p y 455-3p en células de melanoma B16 expuestas a 5-Bromo-2´-deoxiuridina y su asociación con proliferación, adhesión, migración y viabilidad celular
title_short Expresión de la Cinasa ROCK 2 y de los microRNAs-138-5p y 455-3p en células de melanoma B16 expuestas a 5-Bromo-2´-deoxiuridina y su asociación con proliferación, adhesión, migración y viabilidad celular
title_full Expresión de la Cinasa ROCK 2 y de los microRNAs-138-5p y 455-3p en células de melanoma B16 expuestas a 5-Bromo-2´-deoxiuridina y su asociación con proliferación, adhesión, migración y viabilidad celular
title_fullStr Expresión de la Cinasa ROCK 2 y de los microRNAs-138-5p y 455-3p en células de melanoma B16 expuestas a 5-Bromo-2´-deoxiuridina y su asociación con proliferación, adhesión, migración y viabilidad celular
title_full_unstemmed Expresión de la Cinasa ROCK 2 y de los microRNAs-138-5p y 455-3p en células de melanoma B16 expuestas a 5-Bromo-2´-deoxiuridina y su asociación con proliferación, adhesión, migración y viabilidad celular
title_sort expresión de la cinasa rock 2 y de los micrornas-138-5p y 455-3p en células de melanoma b16 expuestas a 5-bromo-2´-deoxiuridina y su asociación con proliferación, adhesión, migración y viabilidad celular
publisher Universidad Nacional de Colombia
publishDate 2020
url https://repositorio.unal.edu.co/handle/unal/80286
https://repositorio.unal.edu.co/
long_lat ENVELOPE(-59.685,-59.685,-62.494,-62.494)
ENVELOPE(-59.685,-59.685,-62.494,-62.494)
geographic De la Fuente
Fuente Rock
geographic_facet De la Fuente
Fuente Rock
genre Fuente Rock
genre_facet Fuente Rock
op_relation Abbott, J, and H Holtzer. 1968. “The Loss of Phenotypic Traits by Differentiated Cells, V. The Effect of 5-Bromodeoxyuridine on Cloned Chondrocytes.” Proceedings of the National Academy of Sciences of the United States of America 59 (4): 1144–51. https://doi.org/10.1073/pnas.59.4.1144.
Acuña Merchán, Lizbeth, Patricia Sánchez Quintero, and Paula Ramírez Barbosa. 2017. “BOLETÍN DE INFORMACIÓN TÉCNICA ESPECIALIZADA, CUENTA DE ALTO COSTO.” Bogotá D.C. www.cuentadealtocosto.org.
Ahn, Jessica, Victoria Sanz-Moreno, and Christopher J Marshall. 2012. “The Metastasis Gene NEDD9 Product Acts through Integrin Β3 and Src to Promote Mesenchymal Motility and Inhibit Amoeboid Motility.” Journal of Cell Science 125 (7): 1814 LP – 1826. https://doi.org/10.1242/jcs.101444.
Amano, Mutsuki, Kazuyasu Chihara, Nao Nakamura, Takako Kaneko, Yoshiharu Matsuura, and Kozo Kaibuchi. 1999. “The COOH Terminus of Rho-Kinase Negatively Regulates Rho-Kinase Activity.” Journal of Biological Chemistry 274 (45): 32418–24. https://doi.org/10.1074/jbc.274.45.32418.
Amano, Mutsuki, Masaaki Ito, Kazushi Kimura, Yuko Fukata, Kazuyasu Chihara, Takeshi Nakano, Yoshiharu Matsuura, and Kozo Kaibuchi. 1996. “Phosphorylation and Activation of Myosin by Rho-Associated Kinase (Rho-Kinase).” Journal of Biological Chemistry 271 (34): 20246–49. https://doi.org/10.1074/jbc.271.34.20246.
Amano, Mutsuki, Masanori Nakayama, and Kozo Kaibuchi. 2010. “Rho-Kinase/ROCK: A Key Regulator of the Cytoskeleton and Cell Polarity.” Cytoskeleton (Hoboken, N.J.) 67 (9): 545–54. https://doi.org/10.1002/cm.20472.
Anisimov, V. 1994. “The Sole DNA Damage Induced by Bromodeoxyuridine Is Sufficient for Initiation of Both Aging and Carcinogenesis in Vivo.” Annals of the New York Academy of Sciences 719 (1): 494–501. https://doi.org/10.1111/j.1749-6632.1994.tb56854.x.
Bartel, David P. 2004. “Review MicroRNAs: Genomics, Biogenesis, Mechanism, and Function.” Cell 116: 281–97. http://bartellab.wi.mit.edu/publication_reprints/Bartel_Cell_review04.pdf.
Belle, Patricia A Van, Rosalie Elenitsas, Kapaettu Satyamoorthy, Jonathan T Wolfe, Dupont Guerry, Lynne Schuchter, Timothy J Van Belle, et al. 1999. “Progression-Related Expression of Β3 Integrin in Melanomas and Nevi.” Human Pathology 30 (5): 562–67. https://doi.org/https://doi.org/10.1016/S0046-8177(99)90202-2.
Bemis, Lynne T, Robert Chen, Carol M Amato, Elizabeth H Classen, Steven E Robinson, David G Coffey, Paul F Erickson, Yiqun G Shellman, and William A Robinson. 2008. “MicroRNA-137 Targets Microphthalmia-Associated Transcription Factor in Melanoma Cell Lines.” Cancer Research 68 (5): 1362 LP – 1368. http://cancerres.aacrjournals.org/content/68/5/1362.abstract.
Ben-Ze’ev, A, and A Raz. 1985. “Relationship between the Organization and Synthesis of Vimentin and the Metastatic Capability of B16 Melanoma Cells.” Cancer Research 45 (6): 2632—2641. http://europepmc.org/abstract/MED/4039222.
Bonaventure, Jacky, Melanie J Domingues, and Lionel Larue. 2013. “Cellular and Molecular Mechanisms Controlling the Migration of Melanocytes and Melanoma Cells.” Pigment Cell & Melanoma Research 26 (3): 316–25. https://doi.org/10.1111/pcmr.12080.
Bray, Freddie, Jacques Ferlay, Isabelle Soerjomataram, Rebecca L Siegel, Lindsey A Torre, and Ahmedin Jemal. 2018. “Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.” CA: A Cancer Journal for Clinicians. https://doi.org/10.3322/caac.21492.
Byers, H., T. Etoh, J. Doherty, A J. Sober, and M. Mihm Jr. 1991. “Cell Migration and Actin Organization in Cultured Human Primary, Recurrent Cutaneous and Metastatic Melanoma. Time-Lapse and Image Analysis.” The American Journal of Pathology 139 (2): 423–35. https://pubmed.ncbi.nlm.nih.gov/1867326.
Byers, Hugh Randolph, Takafumi Etoh†, Jacqueline Vink, Nancy Franklin, Sebastiano Gattoni-Celli, and Martin C Mihm Jr. 1992. “Actin Organization and Cell Migration of Melanoma Cells Relate to Differential Expression of Integrins and Actin-Associated Proteins.” The Journal of Dermatology 19 (11): 847–52. https://doi.org/10.1111/j.1346-8138.1992.tb03795.x.
Call, Katherine M., and William G. Thilly. 1991. “5-Azacytidine Inhibits the Induction of Transient TK-Deficient Cells by 5-Bromodeoxyuridine a Novel Hypothesis for the Facilitation of Hypermethylation by 5-Bromodeoxyuridine.” Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 248 (1): 101–14. https://doi.org/10.1016/0027-5107(91)90092-3.
Caramuta, Stefano, Suzanne Egyházi, Monica Rodolfo, Daniela Witten, Johan Hansson, Catharina Larsson, and Weng-Onn Lui. 2010. “MicroRNA Expression Profiles Associated with Mutational Status and Survival in Malignant Melanoma.” Journal of Investigative Dermatology 130 (8): 2062–70. https://doi.org/10.1038/JID.2010.63.
Carreira, Suzanne, Jane Goodall, Laurence Denat, Mercedes Rodriguez, Paolo Nuciforo, Keith S Hoek, Alessandro Testori, Lionel Larue, and Colin R Goding. 2006. “Mitf Regulation of Dia1 Controls Melanoma Proliferation and Invasiveness.” Genes & Development 20 (24): 3426–39. https://doi.org/10.1101/gad.406406.
Caselitz, J, M Jänner, E Breitbart, K Weber, and M Osborn. 1983. “Malignant Melanomas Contain Only the Vimentin Type of Intermediate Filaments.” Virchows Archiv. A, Pathological Anatomy and Histopathology 400 (1): 43–51. https://doi.org/10.1007/BF00627007.
Chen, Jiamin, Harriet E Feilotter, Geneviève C Paré, Xiao Zhang, Joshua G W Pemberton, Cherif Garady, Dulcie Lai, Xiaolong Yang, and Victor A Tron. 2010. “MicroRNA-193b Represses Cell Proliferation and Regulates Cyclin D1 in Melanoma.” The American Journal of Pathology 176 (5): 2520–29. https://doi.org/10.2353/ajpath.2010.091061.
Chen, Si-Yang, Yuan Du, and Jian Song. 2018. “MicroRNA-340 Inhibits Epithelial-Mesenchymal Transition by Impairing ROCK-1-Dependent Wnt/β-Catenin Signaling Pathway in Epithelial Cells from Human Benign Prostatic Hyperplasia.” Chinese Medical Journal 131 (16): 2008–12. https://doi.org/10.4103/0366-6999.238145.
Clark, Edwin A, Todd R Golub, Eric S Lander, and Richard O Hynes. 2000. “Genomic Analysis of Metastasis Reveals an Essential Role for RhoC.” Nature 406 (6795): 532–35. https://doi.org/10.1038/35020106.
Cohen, Cynthia, Angel Zavala-Pompa, Judy H Sequeira, Mamoru Shoji, Deborah G Sexton, George Cotsonis, Francesca Cerimele, Baskaran Govindarajan, Nada Macaron, and Jack L Arbiser. 2002. “Mitogen-Actived Protein Kinase Activation Is an Early Event in Melanoma Progression.” Clinical Cancer Research 8 (12): 3728 LP – 3733. http://clincancerres.aacrjournals.org/content/8/12/3728.abstract.
Comi, P, S Ottolenghi, B Giglioni, G Migliaccio, A R Migliaccio, E Bassano, S Amadori, G Mastroberardino, and C Peschle. 1986. “Bromodeoxyuridine Treatment of Normal Adult Erythroid Colonies: An In Vitro Model for Reactivation of Human Fetal Globin Genes.” Blood. Vol. 68. www.bloodjournal.org.
“Cuenta de Alto Costo, Asamblea General Ordinaria, Anexo Técnico.” 2020
Cukierman, Edna, Roumen Pankov, Daron R Stevens, and Kenneth M Yamada. 2001. “Taking Cell-Matrix Adhesions to the Third Dimension.” Science 294 (5547): 1708 LP – 1712. https://doi.org/10.1126/science.1064829.
Damsky, William E., David P. Curley, Manjula Santhanakrishnan, Lara E. Rosenbaum, James T. Platt, Bonnie E. Gould Rothberg, Makoto M. Taketo, et al. 2011. “β-Catenin Signaling Controls Metastasis in Braf-Activated Pten-Deficient Melanomas.” Cancer Cell 20 (6): 741–54. https://doi.org/10.1016/j.ccr.2011.10.030.
Djordjevic, B, and W Szybalski. 1960. “Genetics of Human Cell Lines. III. Incorporation of 5-Bromo- and 5-Iododeoxyuridine into the Deoxyribonucleic Acid of Human Cells and Its Effect on Radiation Sensitivity.” The Journal of Experimental Medicine 112 (3): 509–31. https://doi.org/10.1084/jem.112.3.509.
Doyle, Andrew D, Nicole Carvajal, Albert Jin, Kazue Matsumoto, and Kenneth M Yamada. 2015. “Local 3D Matrix Microenvironment Regulates Cell Migration through Spatiotemporal Dynamics of Contractility-Dependent Adhesions.” Nature Communications 6 (1): 8720. https://doi.org/10.1038/ncomms9720.
El-Sibai, Mirvat, Olivier Pertz, Huan Pang, Shu-Chin Yip, Mike Lorenz, Marc Symons, John S Condeelis, Klaus M Hahn, and Jonathan M Backer. 2008. “RhoA/ROCK-Mediated Switching between Cdc42- and Rac1-Dependent Protrusion in MTLn3 Carcinoma Cells.” Experimental Cell Research 314 (7): 1540–52. https://doi.org/10.1016/j.yexcr.2008.01.016.
Epstein, William L, Kimie Fukuyama, and Thomas E Drake. 1973. “Ultrastructural Effects of Thymidine Analogs on Melanosomes and Virus Activation in Cloned Hamster Melanoma Cells in Culture.” YALE JOURNAL OF BIOLOGY AND MEDICINE. Vol. 46. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2592023/pdf/yjbm00160-0147.pdf.
Escobar, Lina Maria. 2001. “Expresión Diferencial Del Gen Rock Alfa e Inhibición Del Crecimiento de Células de Melanoma Humano y Murino Inducido Por La Genisteina y La L-Tirosina in Vitro.” Pontificia Universidad Javeriana.
Esteva, Andre, Brett Kuprel, Roberto A Novoa, Justin Ko, Susan M Swetter, Helen M Blau, and Sebastian Thrun. 2017. “Dermatologist-Level Classification of Skin Cancer with Deep Neural Networks.” Nature 542 (January): 115. http://dx.doi.org/10.1038/nature21056.
Fan, Tao, Shunlin Jiang, Nancy Chung, Ali Alikhan, Christina Ni, Chyi-Chia Richard Lee, and Thomas J Hornyak. 2011. “EZH2-Dependent Suppression of a Cellular Senescence Phenotype in Melanoma Cells by Inhibition of P21/CDKN1A Expression.” Molecular Cancer Research : MCR 9 (4): 418–29. https://doi.org/10.1158/1541-7786.MCR-10-0511.
Felicetti, Federica, M Cristina Errico, Lisabianca Bottero, Patrizia Segnalini, Antonella Stoppacciaro, Mauro Biffoni, Nadia Felli, et al. 2008. “The Promyelocytic Leukemia Zinc Finger–MicroRNA-221/-222 Pathway Controls Melanoma Progression through Multiple Oncogenic Mechanisms.” Cancer Research 68 (8): 2745 LP – 2754. http://cancerres.aacrjournals.org/content/68/8/2745.abstract
Felicetti, Federica, M Cristina Errico, Patrizia Segnalini, Gianfranco Mattia, and Alessandra Carè. 2008. “MicroRNA-221 and -222 Pathway Controls Melanoma Progression.” Expert Review of Anticancer Therapy 8 (11): 1759–65. https://doi.org/10.1586/14737140.8.11.1759.
Feng, Yangbo, Philip V LoGrasso, Olivier Defert, and Rongshi Li. 2016. “Rho Kinase (ROCK) Inhibitors and Their Therapeutic Potential.” Journal of Medicinal Chemistry 59 (6): 2269–2300. https://doi.org/10.1021/acs.jmedchem.5b00683.
FitzGerald, M G, D P Harkin, S Silva-Arrieta, D J MacDonald, L C Lucchina, H Unsal, E O’Neill, et al. 1996. “Prevalence of Germ-Line Mutations in P16, P19ARF, and CDK4 in Familial Melanoma: Analysis of a Clinic-Based Population.” Proceedings of the National Academy of Sciences of the United States of America 93 (16): 8541–45. https://www.ncbi.nlm.nih.gov/pubmed/8710906.
Flørenes, Vivi Ann, Martina Skrede, Kjersti Jørgensen, and Jahn M Nesland. 2004. “Deacetylase Inhibition in Malignant Melanomas: Impact on Cell Cycle Regulation and Survival.” Melanoma Research 14 (3): 173–81. http://www.ncbi.nlm.nih.gov/pubmed/15179185.
Flórez, Óscar, and Luis Alberto. Gómez. 2008. “Expresión diferencial de ARNs pequeños en células de melanoma inducidas a supresión de crecimiento in vitro.” Bioquímica. Universidad Nacional de Colombia. http://eds.a.ebscohost.com.ezproxy.unal.edu.co/eds/detail/detail?vid=2&sid=e81e3236-0391-48e3-b816-49637e9373b2%40sessionmgr4001&hid=4213&bdata=Jmxhbmc9ZXMmc2l0ZT1lZHMtbGl2ZQ%3D%3D#AN=unc.000385548&db=cat02704a.
Flórez Vargas, Óscar Roberto, and L A Gomez. 2008. “Expresión Diferencial de Dos MicroRNAs Asociados Con El Silenciamiento de La Ciclina D1 En Células de Melanoma B16 En Senescencia Inducida Por La 5-Bromo-2-Desoxiuridina.” Revista de La Asociación Colombiana de Ciencias Biológicas. http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat02704a&AN=unc.000385548&lang=es&site=eds-live.
Fukata, Y, N Oshiro, N Kinoshita, Y Kawano, Y Matsuoka, V Bennett, Y Matsuura, and K Kaibuchi. 1999. “Phosphorylation of Adducin by Rho-Kinase Plays a Crucial Role in Cell Motility.” The Journal of Cell Biology 145 (2): 347–61. https://www.ncbi.nlm.nih.gov/pubmed/10209029.
Gao, Xianzheng, Huaying Zhao, Changying Diao, Xiaohui Wang, Yilin Xie, Yaqing Liu, Jing Han, and Mingzhi Zhang. 2018. “MiR-455-3p Serves as Prognostic Factor and Regulates the Proliferation and Migration of Non-Small Cell Lung Cancer through Targeting HOXB5.” Biochemical and Biophysical Research Communications 495 (1): 1074–80. https://doi.org/10.1016/j.bbrc.2017.11.123.
Garbe, Claus, and Ulrike Leiter. 2009. “Melanoma Epidemiology and Trends.” Clinics in Dermatology 27 (1): 3–9. https://doi.org/10.1016/j.clindermatol.2008.09.001. Garcia, Raul I., Irving Werner, and George Szabo. 1979. “Effect of 5-Bromo-2′-Deoxyuridine on Growth and Differentiation of Cultured Embryonic Retinal Pigment Cells.” In Vitro 15 (10): 779–88. https://doi.org/10.1007/BF02618304.
Giotta, G J, K W Brunson, and R Lotan. 1980. “The Effects of 5-Bromodeoxyuridine on Cyclic AMP Levels and Cytoskeletal Organization in Malignant Melanoma Cells.” Cell Biology International Reports 4 (1): 105–16. https://doi.org/10.1016/0309-1651(80)90015-6.
Githens, S, R Pictet, P Phelps, and W J Rutter. 1976. “5-Bromodeoxyuridine May Alter the Differentiative Program of the Embryonic Pancreas.” The Journal of Cell Biology 71 (2): 341–56. https://doi.org/10.1083/jcb.71.2.341.
Glud, Martin, Valentina Manfé, Edyta Biskup, Line Holst, Anne Marie Ahlburg Dirksen, Nina Hastrup, Finn C. Nielsen, Krzysztof T. Drzewiecki, and Robert Gniadecki. 2011. “MicroRNA MiR-125b Induces Senescence in Human Melanoma Cells.” Melanoma Research 21 (3): 253–56. https://doi.org/10.1097/CMR.0b013e328345333b.
Goldstein, Alisa M, May Chan, Mark Harland, Elizabeth M Gillanders, Nicholas K Hayward, Marie-Francoise Avril, Esther Azizi, et al. 2006. “High-Risk Melanoma Susceptibility Genes and Pancreatic Cancer, Neural System Tumors, and Uveal Melanoma across GenoMEL.” Cancer Research 66 (20): 9818 LP – 9828. http://cancerres.aacrjournals.org/content/66/20/9818.abstract.
Gómez, L., M. Rieber, and M. Rieber. 1995. “Decrease in Actin Gene Expression in Melanoma Cells Compared to Melanocytes Is Partly Counteracted by BrdUinduced Cell Adhesion and Antagonized by Ltyrosine Induction of Terminal Differentiation.” Biochemical and Biophysical Research Communications 216 (1).
Gómez, L., M. Rieber, and M. Rieber. 1996. “PCR-Mediated Differential Display and Cloning of a Melanocyte Gene Decreased in Malignant Melanoma and Up-Regulated with Sensitization to DNA Damage.” DNA and Cell Biology 15 (5): 423–27. https://doi.org/10.1089/dna.1996.15.423.
op_rights Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
op_rightsnorm CC-BY-NC-ND
op_doi https://doi.org/10.1073/pnas.59.4.1144
https://doi.org/10.1242/jcs.101444
https://doi.org/10.1074/jbc.274.45.32418
https://doi.org/10.1074/jbc.271.34.20246
https://doi.org/10.1002/cm.20472
https://doi.org/10.1111/j.1749-6632.1994.tb56854.x
htt
container_title Proceedings of the National Academy of Sciences
container_volume 59
container_issue 4
container_start_page 1144
op_container_end_page 1151
_version_ 1766004693056618496
spelling ftuncolombiair:oai:repositorio.unal.edu.co:unal/80286 2023-05-15T16:18:30+02:00 Expresión de la Cinasa ROCK 2 y de los microRNAs-138-5p y 455-3p en células de melanoma B16 expuestas a 5-Bromo-2´-deoxiuridina y su asociación con proliferación, adhesión, migración y viabilidad celular Expression of ROCK 2 kinase and microRNAs-138-5p and 455-3p in B16 melanoma cells exposed to 5-Bromo-2´-deoxyuridine and their association with cell proliferation, adhesion, migration and viability Muñoz Roa, Esther Natalia Gómez Grosso, Luis Alberto Fisiología Molecular 2020 xv, 74 páginas application/pdf https://repositorio.unal.edu.co/handle/unal/80286 https://repositorio.unal.edu.co/ spa spa Universidad Nacional de Colombia Bogotá - Medicina - Maestría en Bioquímica Departamento de Ciencias Fisiológicas Facultad de Medicina Bogotá, Colombia Universidad Nacional de Colombia - Sede Bogotá Abbott, J, and H Holtzer. 1968. “The Loss of Phenotypic Traits by Differentiated Cells, V. The Effect of 5-Bromodeoxyuridine on Cloned Chondrocytes.” Proceedings of the National Academy of Sciences of the United States of America 59 (4): 1144–51. https://doi.org/10.1073/pnas.59.4.1144. Acuña Merchán, Lizbeth, Patricia Sánchez Quintero, and Paula Ramírez Barbosa. 2017. “BOLETÍN DE INFORMACIÓN TÉCNICA ESPECIALIZADA, CUENTA DE ALTO COSTO.” Bogotá D.C. www.cuentadealtocosto.org. Ahn, Jessica, Victoria Sanz-Moreno, and Christopher J Marshall. 2012. “The Metastasis Gene NEDD9 Product Acts through Integrin Β3 and Src to Promote Mesenchymal Motility and Inhibit Amoeboid Motility.” Journal of Cell Science 125 (7): 1814 LP – 1826. https://doi.org/10.1242/jcs.101444. Amano, Mutsuki, Kazuyasu Chihara, Nao Nakamura, Takako Kaneko, Yoshiharu Matsuura, and Kozo Kaibuchi. 1999. “The COOH Terminus of Rho-Kinase Negatively Regulates Rho-Kinase Activity.” Journal of Biological Chemistry 274 (45): 32418–24. https://doi.org/10.1074/jbc.274.45.32418. Amano, Mutsuki, Masaaki Ito, Kazushi Kimura, Yuko Fukata, Kazuyasu Chihara, Takeshi Nakano, Yoshiharu Matsuura, and Kozo Kaibuchi. 1996. “Phosphorylation and Activation of Myosin by Rho-Associated Kinase (Rho-Kinase).” Journal of Biological Chemistry 271 (34): 20246–49. https://doi.org/10.1074/jbc.271.34.20246. Amano, Mutsuki, Masanori Nakayama, and Kozo Kaibuchi. 2010. “Rho-Kinase/ROCK: A Key Regulator of the Cytoskeleton and Cell Polarity.” Cytoskeleton (Hoboken, N.J.) 67 (9): 545–54. https://doi.org/10.1002/cm.20472. Anisimov, V. 1994. “The Sole DNA Damage Induced by Bromodeoxyuridine Is Sufficient for Initiation of Both Aging and Carcinogenesis in Vivo.” Annals of the New York Academy of Sciences 719 (1): 494–501. https://doi.org/10.1111/j.1749-6632.1994.tb56854.x. Bartel, David P. 2004. “Review MicroRNAs: Genomics, Biogenesis, Mechanism, and Function.” Cell 116: 281–97. http://bartellab.wi.mit.edu/publication_reprints/Bartel_Cell_review04.pdf. Belle, Patricia A Van, Rosalie Elenitsas, Kapaettu Satyamoorthy, Jonathan T Wolfe, Dupont Guerry, Lynne Schuchter, Timothy J Van Belle, et al. 1999. “Progression-Related Expression of Β3 Integrin in Melanomas and Nevi.” Human Pathology 30 (5): 562–67. https://doi.org/https://doi.org/10.1016/S0046-8177(99)90202-2. Bemis, Lynne T, Robert Chen, Carol M Amato, Elizabeth H Classen, Steven E Robinson, David G Coffey, Paul F Erickson, Yiqun G Shellman, and William A Robinson. 2008. “MicroRNA-137 Targets Microphthalmia-Associated Transcription Factor in Melanoma Cell Lines.” Cancer Research 68 (5): 1362 LP – 1368. http://cancerres.aacrjournals.org/content/68/5/1362.abstract. Ben-Ze’ev, A, and A Raz. 1985. “Relationship between the Organization and Synthesis of Vimentin and the Metastatic Capability of B16 Melanoma Cells.” Cancer Research 45 (6): 2632—2641. http://europepmc.org/abstract/MED/4039222. Bonaventure, Jacky, Melanie J Domingues, and Lionel Larue. 2013. “Cellular and Molecular Mechanisms Controlling the Migration of Melanocytes and Melanoma Cells.” Pigment Cell & Melanoma Research 26 (3): 316–25. https://doi.org/10.1111/pcmr.12080. Bray, Freddie, Jacques Ferlay, Isabelle Soerjomataram, Rebecca L Siegel, Lindsey A Torre, and Ahmedin Jemal. 2018. “Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.” CA: A Cancer Journal for Clinicians. https://doi.org/10.3322/caac.21492. Byers, H., T. Etoh, J. Doherty, A J. Sober, and M. Mihm Jr. 1991. “Cell Migration and Actin Organization in Cultured Human Primary, Recurrent Cutaneous and Metastatic Melanoma. Time-Lapse and Image Analysis.” The American Journal of Pathology 139 (2): 423–35. https://pubmed.ncbi.nlm.nih.gov/1867326. Byers, Hugh Randolph, Takafumi Etoh†, Jacqueline Vink, Nancy Franklin, Sebastiano Gattoni-Celli, and Martin C Mihm Jr. 1992. “Actin Organization and Cell Migration of Melanoma Cells Relate to Differential Expression of Integrins and Actin-Associated Proteins.” The Journal of Dermatology 19 (11): 847–52. https://doi.org/10.1111/j.1346-8138.1992.tb03795.x. Call, Katherine M., and William G. Thilly. 1991. “5-Azacytidine Inhibits the Induction of Transient TK-Deficient Cells by 5-Bromodeoxyuridine a Novel Hypothesis for the Facilitation of Hypermethylation by 5-Bromodeoxyuridine.” Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 248 (1): 101–14. https://doi.org/10.1016/0027-5107(91)90092-3. Caramuta, Stefano, Suzanne Egyházi, Monica Rodolfo, Daniela Witten, Johan Hansson, Catharina Larsson, and Weng-Onn Lui. 2010. “MicroRNA Expression Profiles Associated with Mutational Status and Survival in Malignant Melanoma.” Journal of Investigative Dermatology 130 (8): 2062–70. https://doi.org/10.1038/JID.2010.63. Carreira, Suzanne, Jane Goodall, Laurence Denat, Mercedes Rodriguez, Paolo Nuciforo, Keith S Hoek, Alessandro Testori, Lionel Larue, and Colin R Goding. 2006. “Mitf Regulation of Dia1 Controls Melanoma Proliferation and Invasiveness.” Genes & Development 20 (24): 3426–39. https://doi.org/10.1101/gad.406406. Caselitz, J, M Jänner, E Breitbart, K Weber, and M Osborn. 1983. “Malignant Melanomas Contain Only the Vimentin Type of Intermediate Filaments.” Virchows Archiv. A, Pathological Anatomy and Histopathology 400 (1): 43–51. https://doi.org/10.1007/BF00627007. Chen, Jiamin, Harriet E Feilotter, Geneviève C Paré, Xiao Zhang, Joshua G W Pemberton, Cherif Garady, Dulcie Lai, Xiaolong Yang, and Victor A Tron. 2010. “MicroRNA-193b Represses Cell Proliferation and Regulates Cyclin D1 in Melanoma.” The American Journal of Pathology 176 (5): 2520–29. https://doi.org/10.2353/ajpath.2010.091061. Chen, Si-Yang, Yuan Du, and Jian Song. 2018. “MicroRNA-340 Inhibits Epithelial-Mesenchymal Transition by Impairing ROCK-1-Dependent Wnt/β-Catenin Signaling Pathway in Epithelial Cells from Human Benign Prostatic Hyperplasia.” Chinese Medical Journal 131 (16): 2008–12. https://doi.org/10.4103/0366-6999.238145. Clark, Edwin A, Todd R Golub, Eric S Lander, and Richard O Hynes. 2000. “Genomic Analysis of Metastasis Reveals an Essential Role for RhoC.” Nature 406 (6795): 532–35. https://doi.org/10.1038/35020106. Cohen, Cynthia, Angel Zavala-Pompa, Judy H Sequeira, Mamoru Shoji, Deborah G Sexton, George Cotsonis, Francesca Cerimele, Baskaran Govindarajan, Nada Macaron, and Jack L Arbiser. 2002. “Mitogen-Actived Protein Kinase Activation Is an Early Event in Melanoma Progression.” Clinical Cancer Research 8 (12): 3728 LP – 3733. http://clincancerres.aacrjournals.org/content/8/12/3728.abstract. Comi, P, S Ottolenghi, B Giglioni, G Migliaccio, A R Migliaccio, E Bassano, S Amadori, G Mastroberardino, and C Peschle. 1986. “Bromodeoxyuridine Treatment of Normal Adult Erythroid Colonies: An In Vitro Model for Reactivation of Human Fetal Globin Genes.” Blood. Vol. 68. www.bloodjournal.org. “Cuenta de Alto Costo, Asamblea General Ordinaria, Anexo Técnico.” 2020 Cukierman, Edna, Roumen Pankov, Daron R Stevens, and Kenneth M Yamada. 2001. “Taking Cell-Matrix Adhesions to the Third Dimension.” Science 294 (5547): 1708 LP – 1712. https://doi.org/10.1126/science.1064829. Damsky, William E., David P. Curley, Manjula Santhanakrishnan, Lara E. Rosenbaum, James T. Platt, Bonnie E. Gould Rothberg, Makoto M. Taketo, et al. 2011. “β-Catenin Signaling Controls Metastasis in Braf-Activated Pten-Deficient Melanomas.” Cancer Cell 20 (6): 741–54. https://doi.org/10.1016/j.ccr.2011.10.030. Djordjevic, B, and W Szybalski. 1960. “Genetics of Human Cell Lines. III. Incorporation of 5-Bromo- and 5-Iododeoxyuridine into the Deoxyribonucleic Acid of Human Cells and Its Effect on Radiation Sensitivity.” The Journal of Experimental Medicine 112 (3): 509–31. https://doi.org/10.1084/jem.112.3.509. Doyle, Andrew D, Nicole Carvajal, Albert Jin, Kazue Matsumoto, and Kenneth M Yamada. 2015. “Local 3D Matrix Microenvironment Regulates Cell Migration through Spatiotemporal Dynamics of Contractility-Dependent Adhesions.” Nature Communications 6 (1): 8720. https://doi.org/10.1038/ncomms9720. El-Sibai, Mirvat, Olivier Pertz, Huan Pang, Shu-Chin Yip, Mike Lorenz, Marc Symons, John S Condeelis, Klaus M Hahn, and Jonathan M Backer. 2008. “RhoA/ROCK-Mediated Switching between Cdc42- and Rac1-Dependent Protrusion in MTLn3 Carcinoma Cells.” Experimental Cell Research 314 (7): 1540–52. https://doi.org/10.1016/j.yexcr.2008.01.016. Epstein, William L, Kimie Fukuyama, and Thomas E Drake. 1973. “Ultrastructural Effects of Thymidine Analogs on Melanosomes and Virus Activation in Cloned Hamster Melanoma Cells in Culture.” YALE JOURNAL OF BIOLOGY AND MEDICINE. Vol. 46. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2592023/pdf/yjbm00160-0147.pdf. Escobar, Lina Maria. 2001. “Expresión Diferencial Del Gen Rock Alfa e Inhibición Del Crecimiento de Células de Melanoma Humano y Murino Inducido Por La Genisteina y La L-Tirosina in Vitro.” Pontificia Universidad Javeriana. Esteva, Andre, Brett Kuprel, Roberto A Novoa, Justin Ko, Susan M Swetter, Helen M Blau, and Sebastian Thrun. 2017. “Dermatologist-Level Classification of Skin Cancer with Deep Neural Networks.” Nature 542 (January): 115. http://dx.doi.org/10.1038/nature21056. Fan, Tao, Shunlin Jiang, Nancy Chung, Ali Alikhan, Christina Ni, Chyi-Chia Richard Lee, and Thomas J Hornyak. 2011. “EZH2-Dependent Suppression of a Cellular Senescence Phenotype in Melanoma Cells by Inhibition of P21/CDKN1A Expression.” Molecular Cancer Research : MCR 9 (4): 418–29. https://doi.org/10.1158/1541-7786.MCR-10-0511. Felicetti, Federica, M Cristina Errico, Lisabianca Bottero, Patrizia Segnalini, Antonella Stoppacciaro, Mauro Biffoni, Nadia Felli, et al. 2008. “The Promyelocytic Leukemia Zinc Finger–MicroRNA-221/-222 Pathway Controls Melanoma Progression through Multiple Oncogenic Mechanisms.” Cancer Research 68 (8): 2745 LP – 2754. http://cancerres.aacrjournals.org/content/68/8/2745.abstract Felicetti, Federica, M Cristina Errico, Patrizia Segnalini, Gianfranco Mattia, and Alessandra Carè. 2008. “MicroRNA-221 and -222 Pathway Controls Melanoma Progression.” Expert Review of Anticancer Therapy 8 (11): 1759–65. https://doi.org/10.1586/14737140.8.11.1759. Feng, Yangbo, Philip V LoGrasso, Olivier Defert, and Rongshi Li. 2016. “Rho Kinase (ROCK) Inhibitors and Their Therapeutic Potential.” Journal of Medicinal Chemistry 59 (6): 2269–2300. https://doi.org/10.1021/acs.jmedchem.5b00683. FitzGerald, M G, D P Harkin, S Silva-Arrieta, D J MacDonald, L C Lucchina, H Unsal, E O’Neill, et al. 1996. “Prevalence of Germ-Line Mutations in P16, P19ARF, and CDK4 in Familial Melanoma: Analysis of a Clinic-Based Population.” Proceedings of the National Academy of Sciences of the United States of America 93 (16): 8541–45. https://www.ncbi.nlm.nih.gov/pubmed/8710906. Flørenes, Vivi Ann, Martina Skrede, Kjersti Jørgensen, and Jahn M Nesland. 2004. “Deacetylase Inhibition in Malignant Melanomas: Impact on Cell Cycle Regulation and Survival.” Melanoma Research 14 (3): 173–81. http://www.ncbi.nlm.nih.gov/pubmed/15179185. Flórez, Óscar, and Luis Alberto. Gómez. 2008. “Expresión diferencial de ARNs pequeños en células de melanoma inducidas a supresión de crecimiento in vitro.” Bioquímica. Universidad Nacional de Colombia. http://eds.a.ebscohost.com.ezproxy.unal.edu.co/eds/detail/detail?vid=2&sid=e81e3236-0391-48e3-b816-49637e9373b2%40sessionmgr4001&hid=4213&bdata=Jmxhbmc9ZXMmc2l0ZT1lZHMtbGl2ZQ%3D%3D#AN=unc.000385548&db=cat02704a. Flórez Vargas, Óscar Roberto, and L A Gomez. 2008. “Expresión Diferencial de Dos MicroRNAs Asociados Con El Silenciamiento de La Ciclina D1 En Células de Melanoma B16 En Senescencia Inducida Por La 5-Bromo-2-Desoxiuridina.” Revista de La Asociación Colombiana de Ciencias Biológicas. http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat02704a&AN=unc.000385548&lang=es&site=eds-live. Fukata, Y, N Oshiro, N Kinoshita, Y Kawano, Y Matsuoka, V Bennett, Y Matsuura, and K Kaibuchi. 1999. “Phosphorylation of Adducin by Rho-Kinase Plays a Crucial Role in Cell Motility.” The Journal of Cell Biology 145 (2): 347–61. https://www.ncbi.nlm.nih.gov/pubmed/10209029. Gao, Xianzheng, Huaying Zhao, Changying Diao, Xiaohui Wang, Yilin Xie, Yaqing Liu, Jing Han, and Mingzhi Zhang. 2018. “MiR-455-3p Serves as Prognostic Factor and Regulates the Proliferation and Migration of Non-Small Cell Lung Cancer through Targeting HOXB5.” Biochemical and Biophysical Research Communications 495 (1): 1074–80. https://doi.org/10.1016/j.bbrc.2017.11.123. Garbe, Claus, and Ulrike Leiter. 2009. “Melanoma Epidemiology and Trends.” Clinics in Dermatology 27 (1): 3–9. https://doi.org/10.1016/j.clindermatol.2008.09.001. Garcia, Raul I., Irving Werner, and George Szabo. 1979. “Effect of 5-Bromo-2′-Deoxyuridine on Growth and Differentiation of Cultured Embryonic Retinal Pigment Cells.” In Vitro 15 (10): 779–88. https://doi.org/10.1007/BF02618304. Giotta, G J, K W Brunson, and R Lotan. 1980. “The Effects of 5-Bromodeoxyuridine on Cyclic AMP Levels and Cytoskeletal Organization in Malignant Melanoma Cells.” Cell Biology International Reports 4 (1): 105–16. https://doi.org/10.1016/0309-1651(80)90015-6. Githens, S, R Pictet, P Phelps, and W J Rutter. 1976. “5-Bromodeoxyuridine May Alter the Differentiative Program of the Embryonic Pancreas.” The Journal of Cell Biology 71 (2): 341–56. https://doi.org/10.1083/jcb.71.2.341. Glud, Martin, Valentina Manfé, Edyta Biskup, Line Holst, Anne Marie Ahlburg Dirksen, Nina Hastrup, Finn C. Nielsen, Krzysztof T. Drzewiecki, and Robert Gniadecki. 2011. “MicroRNA MiR-125b Induces Senescence in Human Melanoma Cells.” Melanoma Research 21 (3): 253–56. https://doi.org/10.1097/CMR.0b013e328345333b. Goldstein, Alisa M, May Chan, Mark Harland, Elizabeth M Gillanders, Nicholas K Hayward, Marie-Francoise Avril, Esther Azizi, et al. 2006. “High-Risk Melanoma Susceptibility Genes and Pancreatic Cancer, Neural System Tumors, and Uveal Melanoma across GenoMEL.” Cancer Research 66 (20): 9818 LP – 9828. http://cancerres.aacrjournals.org/content/66/20/9818.abstract. Gómez, L., M. Rieber, and M. Rieber. 1995. “Decrease in Actin Gene Expression in Melanoma Cells Compared to Melanocytes Is Partly Counteracted by BrdUinduced Cell Adhesion and Antagonized by Ltyrosine Induction of Terminal Differentiation.” Biochemical and Biophysical Research Communications 216 (1). Gómez, L., M. Rieber, and M. Rieber. 1996. “PCR-Mediated Differential Display and Cloning of a Melanocyte Gene Decreased in Malignant Melanoma and Up-Regulated with Sensitization to DNA Damage.” DNA and Cell Biology 15 (5): 423–27. https://doi.org/10.1089/dna.1996.15.423. Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess CC-BY-NC-ND 610 - Medicina y salud::612 - Fisiología humana 610 - Medicina y salud::614 - Medicina Forense incidencia de lesiones heridas enfermedades medicina preventiva pública Cytology Citología Melanoma 5-Bromo-2´-deoxiuridina Invasión Migración Proliferación miRNAs Trabajo de grado - Maestría info:eu-repo/semantics/masterThesis info:eu-repo/semantics/acceptedVersion http://purl.org/coar/resource_type/c_bdcc http://purl.org/coar/version/c_ab4af688f83e57aa Text http://purl.org/redcol/resource_type/TM 2020 ftuncolombiair https://doi.org/10.1073/pnas.59.4.1144 https://doi.org/10.1242/jcs.101444 https://doi.org/10.1074/jbc.274.45.32418 https://doi.org/10.1074/jbc.271.34.20246 https://doi.org/10.1002/cm.20472 https://doi.org/10.1111/j.1749-6632.1994.tb56854.x htt 2022-12-18T01:03:18Z ilustraciones, gráficas, tablas ROCK 2 participa en la reestructuración del citoesqueleto, adhesión y contractilidad celular; aunque se conoce su asociación con la proliferación, migración e invasión en diferentes modelos celulares, poco se sabe sobre las bases moleculares de su regulación en células de melanoma. El objetivo de este trabajo fue evaluar los cambios en la morfología, proliferación y las variaciones de expresión de ROCK 2, miR-138-5p y miR-455-3p, dianas moleculares de ROCK 2, en células B16F1 expuestas al análogo de timidina, 5- Bromo-2'- deoxiuridina (BrdU). La exposición a BrdU (72 h) indujo una disminución del 65% en la proliferación, y un fenotipo senescente con aumento de 2,2 veces en el área celular aparente, aumento de 1,27 veces en el diámetro y la granulación. Las células expuestas mejoraron su capacidad de adhesión, circularidad y cierre de heridas y disminuyeron su migración en la cámara de Boyden en un 86,6%. La expresión de la proteína ROCK 2 mostró una disminución de aproximada de 3 veces en su mRNA, y después de la adición de un inhibidor de su actividad (Y27632), se observaron variaciones en la movilidad, polimerización de F-actina y VIM. Estos resultados coincidieron con una disminución de la expresión de miR-138-5p (1,8 veces) y un aumento de miR-455-3p (2,39 veces). En general, es posible sugerir que ROCK 2 participa en la regulación de los cambios morfológicos observados después de la exposición a BrdU, y su acción podría estar regulada, al menos en parte, por la expresión de miR-138-5p y miR-455-3p. (texto tomado de la fuente) ROCK 2 is involved in cytoskeleton restructuring, cell adhesion and contractility; although its association with proliferation, migration and invasion is known in different cell models, little is known about the molecular basis of its regulation in melanoma cells. The aim of this work was to evaluate changes in morphology, proliferation and expression variations of ROCK 2, miR-138-5p and miR-455-3p, molecular targets of ROCK 2, in B16F1 cells exposed ... Master Thesis Fuente Rock Repositorio Institucional Universidad Nacional de Colombia De la Fuente ENVELOPE(-59.685,-59.685,-62.494,-62.494) Fuente Rock ENVELOPE(-59.685,-59.685,-62.494,-62.494) Proceedings of the National Academy of Sciences 59 4 1144 1151