Efecto de la superficie libre en el desempeño global de una turbina fluvial

diagramas, ilustraciones a color, tablas Las turbinas hidrocinéticas son un importante campo de estudio en energías renovables. Uno de los aspectos menos estudiados computacionalmente hasta la fecha es el efecto de la superficie libre en el desempeño del rotor. En este trabajo se presenta el estudio...

Full description

Bibliographic Details
Main Author: Rodríguez Jaime, Luis Eduardo
Other Authors: Benavides Morán, Aldo Germán, Laín Beatove, Santiago
Format: Master Thesis
Language:Spanish
Published: Universidad Nacional de Colombia 2021
Subjects:
Online Access:https://repositorio.unal.edu.co/handle/unal/79569
https://repositorio.unal.edu.co/
id ftuncolombiair:oai:repositorio.unal.edu.co:unal/79569
record_format openpolar
institution Open Polar
collection Repositorio Institucional Universidad Nacional de Colombia
op_collection_id ftuncolombiair
language Spanish
topic 620 - Ingeniería y operaciones afines
Turbina hidrocinética
Dinámica de Fluidos Computacional (CFD)
Coeficiente de potencia
Superficie libre
Hydrokinetic turbine
Computational Fluid Dynamics (CFD)
Power coefficient
Free surface
Turbina hidráulica
Dinámica de fluidos
Fluid dynamics
Water turbines
spellingShingle 620 - Ingeniería y operaciones afines
Turbina hidrocinética
Dinámica de Fluidos Computacional (CFD)
Coeficiente de potencia
Superficie libre
Hydrokinetic turbine
Computational Fluid Dynamics (CFD)
Power coefficient
Free surface
Turbina hidráulica
Dinámica de fluidos
Fluid dynamics
Water turbines
Rodríguez Jaime, Luis Eduardo
Efecto de la superficie libre en el desempeño global de una turbina fluvial
topic_facet 620 - Ingeniería y operaciones afines
Turbina hidrocinética
Dinámica de Fluidos Computacional (CFD)
Coeficiente de potencia
Superficie libre
Hydrokinetic turbine
Computational Fluid Dynamics (CFD)
Power coefficient
Free surface
Turbina hidráulica
Dinámica de fluidos
Fluid dynamics
Water turbines
description diagramas, ilustraciones a color, tablas Las turbinas hidrocinéticas son un importante campo de estudio en energías renovables. Uno de los aspectos menos estudiados computacionalmente hasta la fecha es el efecto de la superficie libre en el desempeño del rotor. En este trabajo se presenta el estudio numérico por medio de CFD de una turbina hidrocinética considerando la superficie libre. Se presentan simulaciones considerando dos profundidades de inmersión, definidas por la inmersión de la punta del aspa denominadas 0.19D y 0.55D (con D=diámetro). Los modelos de turbulencia k −w SST y SST Transition son implementados sin superficie libre, definiendo SST Transition para todas las simulaciones transitorias con superficie libre debido a su mejor predicción del coeficiente de potencia. Las variaciones en el coeficiente de potencia y de empuje son estudiadas en ambas inmersiones, así como la deformación de la superficie libre y el desarrollo de la estela. El comportamiento a distintas velocidades de rotación, bajo las dos condiciones de inmersión, es comparado con datos experimentales describiendo una curva similar a la experimental. Se presentan simulaciones cambiando la longitud del dominio y el coeficiente de bloqueo, evidenciando la validez del dominio computacional empleado. Finalmente, se estudia el comportamiento incluyendo el soporte que sostiene el rotor, lo que incrementa principalmente el coeficiente de empuje reportado. La mayor inmersión reporta coeficientes de potencia superiores, lo cual está de acuerdo con los datos experimentales y con estudios computacionales previos. Hydrokinetic turbines are an important field of study in renewable energy. Computationally, one of the least aspects studied is the effect of free surface on rotor performance. In this work, numerical study of a hydrokinetic turbine is presented by means of CFD considering the free surface. Simulations are presented considering two immersion depths, defined by the immersion of the blade tip, called 0.19D and 0.55D (with D = ...
author2 Benavides Morán, Aldo Germán
Laín Beatove, Santiago
format Master Thesis
author Rodríguez Jaime, Luis Eduardo
author_facet Rodríguez Jaime, Luis Eduardo
author_sort Rodríguez Jaime, Luis Eduardo
title Efecto de la superficie libre en el desempeño global de una turbina fluvial
title_short Efecto de la superficie libre en el desempeño global de una turbina fluvial
title_full Efecto de la superficie libre en el desempeño global de una turbina fluvial
title_fullStr Efecto de la superficie libre en el desempeño global de una turbina fluvial
title_full_unstemmed Efecto de la superficie libre en el desempeño global de una turbina fluvial
title_sort efecto de la superficie libre en el desempeño global de una turbina fluvial
publisher Universidad Nacional de Colombia
publishDate 2021
url https://repositorio.unal.edu.co/handle/unal/79569
https://repositorio.unal.edu.co/
long_lat ENVELOPE(-59.900,-59.900,-62.600,-62.600)
geographic Curva
geographic_facet Curva
genre Arctic
genre_facet Arctic
op_relation Abbot, I. (1959). Theory of wing sections. Including a summary of Airfoil Data. New York: Dover Publications.
Abuan, B., & Howell, R. (2019). The performance and hydrodynamis in unsteady flow of a horizontalaxis tidal turbine. Renewable Energy, 133: 1338-1351.
Adamski, S. J. (2013). Numerical Modeling of the Effects of a Free Surface on the Operating Characteristics of Marine Hydrokinetic Turbines. (Tesis de maestría). Washington: University of Washington.
Albernaz, J., Pinheiro, J., Amatante, A., Amatante, A., & Cavalcante, C. (2015). An Approach for the Dynamic Behavior of Hydrokinetic. Energy Procedia, 75: 271-276.
Almohammadi, K., Ingham, D., & Pourkashanian, M. (2015). Modeling dynamic stall of a straight blade vertical axis wind turbine. Journal of Fluids ans Structures, 57: 144-158.
ANSYS Inc. (2010). ANSYS FLUENT Users Guide, Release 13.0. Canonsburg, PA 15317.
Anyi, M., & Kirke, B. (2010). Evaluation of small axial flow hydrokinetic turbines for remote communities. Energy for Sustainable Development, 14: 110- 116.
Arab, A., Javadi, M., Anbarsooz, M., & Moghiman, M. (2017). A numerical study on the aerodynamic performance and the selfstarting characteristics of a Darrieus wind turbine considering its moment of inertia. Renewable Energy, 107: 298-311.
Asén, P. (2014). The Volume of Fluid Method. Kul, 34.4551.
Autodesk. (Noviembre de 2019). Autodesk Inventor Professional. Obtenido de https://latinoamerica.autodesk.com/products/inventor/overview?plc=INVP ROSA&term=1-EAR&support=ADVANCED&quantity=1
Bahaj, A. S., Myers, L., Rawlinson-Smith, R., & Thomson, M. (2012). The effects of boundary proximity upon the wake structure of horizontal axis marine 87 current turbines. Journal of Offshore Mechanics and Arctic Engineering., 134(2): 021104, 1-8.
Bahaj, A., & Batten, W. (2007). Experimental verifications of numerical predictions for the hydrodynamic performance of horizontal axis marine current turbines. Renewable Energy, 32: 2479-2490.
Bahaj, A., Molland, A., J.R., C., & Batten, W. (2007). Power and thrust measurements of marine current turbines under varios hydrodynamic flow conditions in a cavitatio tunnel and a towing tank. Renewable Energy, 32: 407-426.
Bai, X., Avital, E. J., Munjiza, A., & Williams, J. (2014). Numerical simulation of a marine current turbine in free surface flow. Renewable Energ, 63: 715-723.
Bangga, G. (2018). Comparison of Blade Element Method and CFD Simulations of a 10MWWind Turbine. Fluids, 3(4), 73.
Batten, W., Bahaj, A., Molland, A., & Chaplin, J. (2007). Experimentally validated numericalmethod for the hydrodynamic design of horizontal axis tidal turbines. Ocean Engineering, 34:1013-1020.
Benchikh, A. E., Jay, R., & Poncet, S. ((2019)). Multiphase modeling of the free surface flow through a Darrieus horizontal axis shallow-water turbine. Renewable Energy, 143: 1890-1901.
Betz, A. (1920). Das maximum der theoretisch moglichen ausnutzung des wiwinddurch. Z. Gesante Turbinenwesen, 26:307-309.
Consul, C., Wilden, H., & McIntosh, S. (2013). Blockage effects on the hydrodynamic performance of hydrodynamic performance of a marine cross-flow turbine. Philosophical Transactions of the Royal Society., 371:1- 16.
Contreras, L., López, O., & Lain, S. (2018). Computational Fluid Dynamics Modelling and Simulation of an Inclined Horizontal Axis Hydrokinetic Turbine. Energies, 11, 3151.
Crecium, P. (2013). The Effects of Blockage Ratio and Distance from a Free Surface on the Performance of a Hydrokinetic Turbine (Tesis de Maestría). Lehigh: Lehigh University.88
Danao, L. A., Abuan, B., & Howell, R. (2016). Design Analysis of a Horizontal Axis Tidal Turbine. Asian Wave and Tidal Conference 2016.
Daskiran, C., Riglin, J., & Oztekin, A. (2016). Numerical Analysis of Blockage Ratio Effect on a Portable Hydrokinetic Turbine. ASME 2016 International Mechanical Engineering Congress and Exposition.
DreeseCODE Software, L. (Septiembre de 2019). DesignFOIL Release 6 Features. Obtenido de https://www.dreesecode.com/designfoil/index.html
ESI Group. (Agosto de 2019). Scilab 6.0.2. Obtenido de https://www.scilab.org/download/6.0.2
Facritis, B., & Tabor, G. (2016). Improving the quality of finite volume meshes through genetic optimisation. Engineering with Computers., 32: 425-440.
Ferziger, J. H., & Peric, M. (2002). Computational Methods for Fluid Dynamics. Springer.
Franzke, R., Sebben, S., Bark, T., Willeson, E., & Broniewicz, A. (2019). Evaluation of the Multiple Reference Frame Approach for the Modelling of an Axial Cooling Fan. Energies, 12, 2934.
Gaden, D. (2007). An investigation of river kinetic turbines: performance enhancements, turbine modelling techniques, and an assessment of turbulence models. (Tesis de Maestría). Winnipeg: University of Manitoba.
Ghasemian, M., Najafian, A., Z., & Sedaghat, A. (2017). A review on computational fluid dynamic simulation techniques for Darrieus vertical axis wind turbines. Energy Conversion and Management, 147: 87-100.
Houghton, E., Carpenter, P., Collicott, S. H., & Valentine, D. T. (2013). Aerodynamics for Engineering Students. Waltham, MA 02451, USA: Elsevier, Ltd.
Katopodes, N. (2019). Free-Surface Flow. Chapter 12 - Volumen of Fluid Method. Computational Methods.
Ketabdari, M. (2016). Free Surface Flow Simulation Using VOF Method.
Kolekar, N., & Banerjee, A. (2015). Performance characterization and placement of a marine hydrokinetic turbine in a tidal channel under boundary proximity and blockage effects. Applied Energy, 148: 121-133.
Kolekar, N., Vinod, A., & Banerjee, A. (2019). On Blockage Effects for a Tidal Turbine in a Free Surface Proximity. Energies, 12, 3325.
Koshizuka, S., Tamako, H., & Oka, Y. (1995). A particle method for incompressible viscous flow withfluid fragmentation. J. Comput. Fluid Dyn., 4 (1): 29-46.
Laín, S., Taborda, M. A., & López, O. D. (2017). Numerical Study of the Effect ofWinglets on the Performance of a Straight Blade Darrieus Water Turbine. Energies, 11, 297.
Langtry, R., Menter, F., Likki, S., Suzen, Y., Huang, P., & and Völker, S. (s.f.). A Correlation based Transition Model using Local Variables Part 2 – Test Cases and Industrial Applications ASME-GT2004-53454. ASME TURBO EXPO 2004. Vienna, Austria.
Lanzafame, R., Mauro, S., & Messina, M. (2014). 2D CFD Modeling of H-Darrieus Wind Turbines using a Transition Turbulence Model. Energy Procedia, 45 : 131-140 .
Lopez, O., Quiñones, J., & Lain, S. (2018). RANS and Hybrid RANS-LES Simulations of an H-Type Darrieus Vertical AxisWater Turbine. Energies, 11, 2348.
López-González, A., Domenech, B., Gómez-Hernández, D., & Ferrer-Martí, L. (2017). Renewable microgrid projects for autonomous small-scale electrification in Andean countries. Renewable and Sustainable Energy Reviews, 79: 1255-1265.
Luo, J., Issa, R., & Gosman, A. (1994). Prediction of Impeller-Induced Flows in Mixing Vessels Using Multiple Frames of Reference. I ChemE Symposium Series, (págs. 136.549-556).
Manwell, J. F., & McGowan, J. D. (2009). Wind Energy Explained, Theory, design and application. Wiley. MatWorks. (6 de 11 de 2020). fft. Obtenido de https://la.mathworks.com/help/matlab/ref/fft.html
McNaughton, J., Afgan, I., Apsley, D., Rolfo, S., Stallard, T., & Stansby, P. (2014). A simple sliding-mesh interface procedure and its application to the CFD simulation of a tidal-stream turbine. Numerical Methods for fluids, 74 (4):250-269.
Menter, F. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA, 32 (8): 1598-605 .
Menter, F. R., Kuntz, M., & Langtry, R. (2003). Ten Years of Industrial Experience with the SST Turbulence Model. Fourth International Symposium on Turbulence, Heat and Mass Transfer.
Menter, F., Langtry, R., Likki, S., Suzen, Y., Huang, P., & Völker, S. (2004). A Correlation based Transition Model using Local Variables Part 1- Model Formulation ASME-GT2004-53452. ASME TURBO EXPO . Vienna, Austria.
Menter, R., & F.R., L. (2005). Transition Modeling for General CFD Applications in Aeronautics. American Institute of Aeronautics and Astronautics.
Morales, S., Álvarez, C., & Acevedo, C. (2015). An overview of small hydropower plants in Colombia: Status, potential, barriers and perspectives. Renewable and Sustainable Energy Reviews, 50: 1650-1657.
Mukherji, S. S. (2010). Design and critical performance evaluation of horizontal axis hydrokinetic turbines. (Tesis de Maestría). Missouri: Missouri University of Science and Technology.
op_rights Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
_version_ 1772810729518268416
spelling ftuncolombiair:oai:repositorio.unal.edu.co:unal/79569 2023-07-30T04:00:08+02:00 Efecto de la superficie libre en el desempeño global de una turbina fluvial Free surface effect on the overall performance of a river turbine Rodríguez Jaime, Luis Eduardo Benavides Morán, Aldo Germán Laín Beatove, Santiago 2021 1 recurso en línea (93 páginas) application/pdf https://repositorio.unal.edu.co/handle/unal/79569 https://repositorio.unal.edu.co/ spa spa Universidad Nacional de Colombia Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánica Facultad de Ingeniería Bogotá Universidad Nacional de Colombia - Sede Bogotá Abbot, I. (1959). Theory of wing sections. Including a summary of Airfoil Data. New York: Dover Publications. Abuan, B., & Howell, R. (2019). The performance and hydrodynamis in unsteady flow of a horizontalaxis tidal turbine. Renewable Energy, 133: 1338-1351. Adamski, S. J. (2013). Numerical Modeling of the Effects of a Free Surface on the Operating Characteristics of Marine Hydrokinetic Turbines. (Tesis de maestría). Washington: University of Washington. Albernaz, J., Pinheiro, J., Amatante, A., Amatante, A., & Cavalcante, C. (2015). An Approach for the Dynamic Behavior of Hydrokinetic. Energy Procedia, 75: 271-276. Almohammadi, K., Ingham, D., & Pourkashanian, M. (2015). Modeling dynamic stall of a straight blade vertical axis wind turbine. Journal of Fluids ans Structures, 57: 144-158. ANSYS Inc. (2010). ANSYS FLUENT Users Guide, Release 13.0. Canonsburg, PA 15317. Anyi, M., & Kirke, B. (2010). Evaluation of small axial flow hydrokinetic turbines for remote communities. Energy for Sustainable Development, 14: 110- 116. Arab, A., Javadi, M., Anbarsooz, M., & Moghiman, M. (2017). A numerical study on the aerodynamic performance and the selfstarting characteristics of a Darrieus wind turbine considering its moment of inertia. Renewable Energy, 107: 298-311. Asén, P. (2014). The Volume of Fluid Method. Kul, 34.4551. Autodesk. (Noviembre de 2019). Autodesk Inventor Professional. Obtenido de https://latinoamerica.autodesk.com/products/inventor/overview?plc=INVP ROSA&term=1-EAR&support=ADVANCED&quantity=1 Bahaj, A. S., Myers, L., Rawlinson-Smith, R., & Thomson, M. (2012). The effects of boundary proximity upon the wake structure of horizontal axis marine 87 current turbines. Journal of Offshore Mechanics and Arctic Engineering., 134(2): 021104, 1-8. Bahaj, A., & Batten, W. (2007). Experimental verifications of numerical predictions for the hydrodynamic performance of horizontal axis marine current turbines. Renewable Energy, 32: 2479-2490. Bahaj, A., Molland, A., J.R., C., & Batten, W. (2007). Power and thrust measurements of marine current turbines under varios hydrodynamic flow conditions in a cavitatio tunnel and a towing tank. Renewable Energy, 32: 407-426. Bai, X., Avital, E. J., Munjiza, A., & Williams, J. (2014). Numerical simulation of a marine current turbine in free surface flow. Renewable Energ, 63: 715-723. Bangga, G. (2018). Comparison of Blade Element Method and CFD Simulations of a 10MWWind Turbine. Fluids, 3(4), 73. Batten, W., Bahaj, A., Molland, A., & Chaplin, J. (2007). Experimentally validated numericalmethod for the hydrodynamic design of horizontal axis tidal turbines. Ocean Engineering, 34:1013-1020. Benchikh, A. E., Jay, R., & Poncet, S. ((2019)). Multiphase modeling of the free surface flow through a Darrieus horizontal axis shallow-water turbine. Renewable Energy, 143: 1890-1901. Betz, A. (1920). Das maximum der theoretisch moglichen ausnutzung des wiwinddurch. Z. Gesante Turbinenwesen, 26:307-309. Consul, C., Wilden, H., & McIntosh, S. (2013). Blockage effects on the hydrodynamic performance of hydrodynamic performance of a marine cross-flow turbine. Philosophical Transactions of the Royal Society., 371:1- 16. Contreras, L., López, O., & Lain, S. (2018). Computational Fluid Dynamics Modelling and Simulation of an Inclined Horizontal Axis Hydrokinetic Turbine. Energies, 11, 3151. Crecium, P. (2013). The Effects of Blockage Ratio and Distance from a Free Surface on the Performance of a Hydrokinetic Turbine (Tesis de Maestría). Lehigh: Lehigh University.88 Danao, L. A., Abuan, B., & Howell, R. (2016). Design Analysis of a Horizontal Axis Tidal Turbine. Asian Wave and Tidal Conference 2016. Daskiran, C., Riglin, J., & Oztekin, A. (2016). Numerical Analysis of Blockage Ratio Effect on a Portable Hydrokinetic Turbine. ASME 2016 International Mechanical Engineering Congress and Exposition. DreeseCODE Software, L. (Septiembre de 2019). DesignFOIL Release 6 Features. Obtenido de https://www.dreesecode.com/designfoil/index.html ESI Group. (Agosto de 2019). Scilab 6.0.2. Obtenido de https://www.scilab.org/download/6.0.2 Facritis, B., & Tabor, G. (2016). Improving the quality of finite volume meshes through genetic optimisation. Engineering with Computers., 32: 425-440. Ferziger, J. H., & Peric, M. (2002). Computational Methods for Fluid Dynamics. Springer. Franzke, R., Sebben, S., Bark, T., Willeson, E., & Broniewicz, A. (2019). Evaluation of the Multiple Reference Frame Approach for the Modelling of an Axial Cooling Fan. Energies, 12, 2934. Gaden, D. (2007). An investigation of river kinetic turbines: performance enhancements, turbine modelling techniques, and an assessment of turbulence models. (Tesis de Maestría). Winnipeg: University of Manitoba. Ghasemian, M., Najafian, A., Z., & Sedaghat, A. (2017). A review on computational fluid dynamic simulation techniques for Darrieus vertical axis wind turbines. Energy Conversion and Management, 147: 87-100. Houghton, E., Carpenter, P., Collicott, S. H., & Valentine, D. T. (2013). Aerodynamics for Engineering Students. Waltham, MA 02451, USA: Elsevier, Ltd. Katopodes, N. (2019). Free-Surface Flow. Chapter 12 - Volumen of Fluid Method. Computational Methods. Ketabdari, M. (2016). Free Surface Flow Simulation Using VOF Method. Kolekar, N., & Banerjee, A. (2015). Performance characterization and placement of a marine hydrokinetic turbine in a tidal channel under boundary proximity and blockage effects. Applied Energy, 148: 121-133. Kolekar, N., Vinod, A., & Banerjee, A. (2019). On Blockage Effects for a Tidal Turbine in a Free Surface Proximity. Energies, 12, 3325. Koshizuka, S., Tamako, H., & Oka, Y. (1995). A particle method for incompressible viscous flow withfluid fragmentation. J. Comput. Fluid Dyn., 4 (1): 29-46. Laín, S., Taborda, M. A., & López, O. D. (2017). Numerical Study of the Effect ofWinglets on the Performance of a Straight Blade Darrieus Water Turbine. Energies, 11, 297. Langtry, R., Menter, F., Likki, S., Suzen, Y., Huang, P., & and Völker, S. (s.f.). A Correlation based Transition Model using Local Variables Part 2 – Test Cases and Industrial Applications ASME-GT2004-53454. ASME TURBO EXPO 2004. Vienna, Austria. Lanzafame, R., Mauro, S., & Messina, M. (2014). 2D CFD Modeling of H-Darrieus Wind Turbines using a Transition Turbulence Model. Energy Procedia, 45 : 131-140 . Lopez, O., Quiñones, J., & Lain, S. (2018). RANS and Hybrid RANS-LES Simulations of an H-Type Darrieus Vertical AxisWater Turbine. Energies, 11, 2348. López-González, A., Domenech, B., Gómez-Hernández, D., & Ferrer-Martí, L. (2017). Renewable microgrid projects for autonomous small-scale electrification in Andean countries. Renewable and Sustainable Energy Reviews, 79: 1255-1265. Luo, J., Issa, R., & Gosman, A. (1994). Prediction of Impeller-Induced Flows in Mixing Vessels Using Multiple Frames of Reference. I ChemE Symposium Series, (págs. 136.549-556). Manwell, J. F., & McGowan, J. D. (2009). Wind Energy Explained, Theory, design and application. Wiley. MatWorks. (6 de 11 de 2020). fft. Obtenido de https://la.mathworks.com/help/matlab/ref/fft.html McNaughton, J., Afgan, I., Apsley, D., Rolfo, S., Stallard, T., & Stansby, P. (2014). A simple sliding-mesh interface procedure and its application to the CFD simulation of a tidal-stream turbine. Numerical Methods for fluids, 74 (4):250-269. Menter, F. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA, 32 (8): 1598-605 . Menter, F. R., Kuntz, M., & Langtry, R. (2003). Ten Years of Industrial Experience with the SST Turbulence Model. Fourth International Symposium on Turbulence, Heat and Mass Transfer. Menter, F., Langtry, R., Likki, S., Suzen, Y., Huang, P., & Völker, S. (2004). A Correlation based Transition Model using Local Variables Part 1- Model Formulation ASME-GT2004-53452. ASME TURBO EXPO . Vienna, Austria. Menter, R., & F.R., L. (2005). Transition Modeling for General CFD Applications in Aeronautics. American Institute of Aeronautics and Astronautics. Morales, S., Álvarez, C., & Acevedo, C. (2015). An overview of small hydropower plants in Colombia: Status, potential, barriers and perspectives. Renewable and Sustainable Energy Reviews, 50: 1650-1657. Mukherji, S. S. (2010). Design and critical performance evaluation of horizontal axis hydrokinetic turbines. (Tesis de Maestría). Missouri: Missouri University of Science and Technology. Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess 620 - Ingeniería y operaciones afines Turbina hidrocinética Dinámica de Fluidos Computacional (CFD) Coeficiente de potencia Superficie libre Hydrokinetic turbine Computational Fluid Dynamics (CFD) Power coefficient Free surface Turbina hidráulica Dinámica de fluidos Fluid dynamics Water turbines Trabajo de grado - Maestría info:eu-repo/semantics/masterThesis info:eu-repo/semantics/acceptedVersion http://purl.org/coar/resource_type/c_bdcc http://purl.org/coar/version/c_ab4af688f83e57aa Text http://purl.org/redcol/resource_type/TM 2021 ftuncolombiair 2023-07-16T00:06:43Z diagramas, ilustraciones a color, tablas Las turbinas hidrocinéticas son un importante campo de estudio en energías renovables. Uno de los aspectos menos estudiados computacionalmente hasta la fecha es el efecto de la superficie libre en el desempeño del rotor. En este trabajo se presenta el estudio numérico por medio de CFD de una turbina hidrocinética considerando la superficie libre. Se presentan simulaciones considerando dos profundidades de inmersión, definidas por la inmersión de la punta del aspa denominadas 0.19D y 0.55D (con D=diámetro). Los modelos de turbulencia k −w SST y SST Transition son implementados sin superficie libre, definiendo SST Transition para todas las simulaciones transitorias con superficie libre debido a su mejor predicción del coeficiente de potencia. Las variaciones en el coeficiente de potencia y de empuje son estudiadas en ambas inmersiones, así como la deformación de la superficie libre y el desarrollo de la estela. El comportamiento a distintas velocidades de rotación, bajo las dos condiciones de inmersión, es comparado con datos experimentales describiendo una curva similar a la experimental. Se presentan simulaciones cambiando la longitud del dominio y el coeficiente de bloqueo, evidenciando la validez del dominio computacional empleado. Finalmente, se estudia el comportamiento incluyendo el soporte que sostiene el rotor, lo que incrementa principalmente el coeficiente de empuje reportado. La mayor inmersión reporta coeficientes de potencia superiores, lo cual está de acuerdo con los datos experimentales y con estudios computacionales previos. Hydrokinetic turbines are an important field of study in renewable energy. Computationally, one of the least aspects studied is the effect of free surface on rotor performance. In this work, numerical study of a hydrokinetic turbine is presented by means of CFD considering the free surface. Simulations are presented considering two immersion depths, defined by the immersion of the blade tip, called 0.19D and 0.55D (with D = ... Master Thesis Arctic Repositorio Institucional Universidad Nacional de Colombia Curva ENVELOPE(-59.900,-59.900,-62.600,-62.600)