Evaluation of the influence of aerosols on radiative processes and turbulent surface flows within the Aburrá Valley

El Valle de Aburrá, un valle densamente poblado ubicado en Colombia, con una topografía de alta complejidad en la cordillera de los Andes, ha experimentado en los últimos cinco años la aparición de episodios críticos de contaminación atmosférica, caracterizados por un aumento en la concentración de...

Full description

Bibliographic Details
Main Author: Roldán Henao, Natalia
Other Authors: Hoyos, Carlos David, Herrera Mejía, Laura
Format: Text
Language:English
Published: Medellín - Minas - Maestría en Ingeniería - Recursos Hidráulicos 2020
Subjects:
Online Access:https://repositorio.unal.edu.co/handle/unal/79310
id ftuncolombiair:oai:repositorio.unal.edu.co:unal/79310
record_format openpolar
institution Open Polar
collection Repositorio Institucional Universidad Nacional de Colombia
op_collection_id ftuncolombiair
language English
topic 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
aerosols
atmospheric boundary layer
meteorology
radiation
absorption
scattering
cloud condensation nucleis
Contamination - Valle de Aburrá (Antioquia
Colombia)
aerosoles
capa límite atmosférica
meteorología
radiación
absorción
dispersión
núcleos de condensación de nubes
Contaminación industrial - Valle de Aburrá (Antioquia
spellingShingle 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
aerosols
atmospheric boundary layer
meteorology
radiation
absorption
scattering
cloud condensation nucleis
Contamination - Valle de Aburrá (Antioquia
Colombia)
aerosoles
capa límite atmosférica
meteorología
radiación
absorción
dispersión
núcleos de condensación de nubes
Contaminación industrial - Valle de Aburrá (Antioquia
Roldán Henao, Natalia
Evaluation of the influence of aerosols on radiative processes and turbulent surface flows within the Aburrá Valley
topic_facet 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
aerosols
atmospheric boundary layer
meteorology
radiation
absorption
scattering
cloud condensation nucleis
Contamination - Valle de Aburrá (Antioquia
Colombia)
aerosoles
capa límite atmosférica
meteorología
radiación
absorción
dispersión
núcleos de condensación de nubes
Contaminación industrial - Valle de Aburrá (Antioquia
description El Valle de Aburrá, un valle densamente poblado ubicado en Colombia, con una topografía de alta complejidad en la cordillera de los Andes, ha experimentado en los últimos cinco años la aparición de episodios críticos de contaminación atmosférica, caracterizados por un aumento en la concentración de aerosoles. Este estudio combina información en tierra y satelital para estudiar los impactos de los aerosoles troposféricos en la radiación, los flujos de energía, capa límite atmosférica, propiedades de las nubes y precipitación en la escala local (Valle de Aburrá) y regional (Colombia). En el valle de Aburrá, la dispersión y absorción de los aerosoles disminuyen la radiación en superficie hasta más de -40 W/m2; adicionalmente inhiben los flujos de calor latente y sensible, modificando de esta forma la evolución de la capa límite atmosférica. En Colombia, los efectos de los aerosoles están relacionados con los eventos de quema de biomasa que ocurren anualmente en el norte y el este de Colombia. Dado que cada gota de nube necesita una partícula de aerosol (un núcleo de condensación de la nube) para su activación, los aerosoles en Colombia y el Valle también han modificado las propiedades de las nubes. Este estudio encontró reducciones en el tamaño de las gotas de nubes para diferentes tipos de nubes. También investigamos los impactos de los aerosoles en la nube convectivas, y llegamos a la conclusión de que el proceso de difusión podría retrasarse durante episodios de alta concentración de aerosoles. Evaluamos las interacciones aerosoles-nube-precipitación, encontrando un aumento en los eventos de lluvia por la tarde debido a la presencia de aerosoles. Las modificaciones resultantes en las propiedades meteorológicas del Valle de Aburrá podrían inducir retroalimentaciones positivas que conducirían a mayores aumentos en la concentración de contaminantes. The Aburrá Valley, a densely populated valley in Colombia, with highly complex topography at the Andes mountain range, has experienced during the past five years the ...
author2 Hoyos, Carlos David
Herrera Mejía, Laura
format Text
author Roldán Henao, Natalia
author_facet Roldán Henao, Natalia
author_sort Roldán Henao, Natalia
title Evaluation of the influence of aerosols on radiative processes and turbulent surface flows within the Aburrá Valley
title_short Evaluation of the influence of aerosols on radiative processes and turbulent surface flows within the Aburrá Valley
title_full Evaluation of the influence of aerosols on radiative processes and turbulent surface flows within the Aburrá Valley
title_fullStr Evaluation of the influence of aerosols on radiative processes and turbulent surface flows within the Aburrá Valley
title_full_unstemmed Evaluation of the influence of aerosols on radiative processes and turbulent surface flows within the Aburrá Valley
title_sort evaluation of the influence of aerosols on radiative processes and turbulent surface flows within the aburrá valley
publisher Medellín - Minas - Maestría en Ingeniería - Recursos Hidráulicos
publishDate 2020
url https://repositorio.unal.edu.co/handle/unal/79310
long_lat ENVELOPE(-57.629,-57.629,-61.898,-61.898)
geographic Alta
Límite
geographic_facet Alta
Límite
genre Arctic
genre_facet Arctic
op_relation Albrecht, B. A. (1989). Aerosols, cloud microphysics, and fractional cloudiness. Science, 245(4923):1227–1230.
Altaratz, O., Koren, I., Remer, L., and Hirsch, E. (2014). Cloud invigoration by aerosols—coupling between microphysics and dynamics. Atmospheric Research, 140:38–60.
Andreae, M. O., Rosenfeld, D., Artaxo, P., Costa, A., Frank, G., Longo, K., and Silva-Dias, M. A. F. d. (2004). Smoking rain clouds over the amazon. science, 303(5662):1337–1342.
Arakawa, A. and Schubert, W. H. (1974). Interaction of a cumulus cloud ensemble with the large-scale environment, part i. Journal of the Atmospheric Sciences, 31(3):674–701.
Atwater, M. A. (1970). Planetary albedo changes due to aerosols. Science, 170(3953):64–66.
Bedoya-Soto, J. M., Aristizábal, E., Carmona, A. M., and Poveda, G. (2019). Seasonal shift of the diurnal cycle of rainfall over medellin’s valley, central andes of colombia (1998–2005). Frontiers in Earth Science, 7:92.
Bell, T. L., Rosenfeld, D., Kim, K.-M., Yoo, J.-M., Lee, M.-I., and Hahnenberger, M. (2008). Midweek increase in us summer rain and storm heights suggests air pollution invigorates rainstorms. Journal of Geophysical Research: Atmospheres, 113(D2).
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., et al. (2013). Clouds and aerosols. In Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pages 571–657. Cambridge University Press.
Boucher, O., Schwartz, S. o., Ackerman, T., Anderson, T., Bergstrom, B., Bonnel, B., Chỳlek, P., Dahlback, A., Fouquart, Y., Fu, Q., et al. (1998). Intercomparison of models representing direct shortwave radiative forcing by sulfate aerosols. Journal of Geophysical Research: Atmospheres, 103(D14):16979–16998.
Boucher, O. and Tanré, D. (2000). Estimation of the aerosol perturbation to the earth’s radiative budget over oceans using polder satellite aerosol retrievals. Geophysical research letters, 27(8):1103–1106.
Braslau, N. and Dave, J. (1973). Effect of aerosols on the transfer of solar energy through realistic model atmospheres. part i: Non-absorbing aerosols. Journal of applied meteorology, 12(4):601–615.
Bréon, F.-M., Tanré, D., and Generoso, S. (2002). Aerosol effect on cloud droplet size monitored from satellite. Science, 295(5556):834–838. Cess, R., Potter, G., Ghan, S., and Gates, W. (1985). The climatic effects of large injections of atmospheric smoke and dust: A study of climate feedback mechanisms with one-and three-dimensional climate models. Journal of Geophysical Research: Atmospheres, 90(D7):12937–12950.
Chandra, S., Dwivedi, A. K., and Kumar, M. (2014). Characterization of the atmospheric boundary layer from radiosonde observations along eastern end of monsoon trough of India. Journal Earth Syst. Sci, 123(6):1233–1240.
Charlock, T. P. and Sellers, W. D. (1980). Aerosol effects on climate: Calculations with time-dependent and steady-state radiative-convective models. Journal of the atmospheric sciences, 37(6):1327–1341.
Charlson, R. and Pilat, M. (1969). Climate: The influence of aerosols. Journal of Applied Meteorology, 8(6):1001–1002.
Christensen, M. W., Chen, Y.-C., and Stephens, G. L. (2016). Aerosol indirect effect dictated by liquid clouds. Journal of Geophysical Research: Atmospheres, 121(24):14–636.
Christopher, S. A. and Zhang, J. (2002). Shortwave aerosol radiative forcing from modis and ceres observations over the oceans. Geophysical Research Letters, 29(18):6–1.
Coakley, J. A., Bernstein, R. L., and Durkee, P. A. (1987). Effect of ship-stack effluents on cloud reflectivity. Science, 237(4818):1020–1022.
Coakley Jr, J. A., Cess, R. D., and Yurevich, F. B. (1983). The effect of tropospheric aerosols on the earth’s radiation budget: A parameterization for climate models. Journal of the Atmospheric Sciences, 40(1):116–138.
De Wekker, S. F. J. and Kossmann, M. (2015). Convective Boundary Layer Heights Over Mountainous Terrain—A Review of Concepts. Frontiers in Earth Science, 3:77.
DePuy, V., Berger, V. W., and Zhou, Y. (2014). Wilcoxon-mann-whitney test: Overview. Wiley StatsRef: Statistics Reference Online.
Dubovik, O., Holben, B., Eck, T. F., Smirnov, A., Kaufman, Y. J., King, M. D., Tanré, D., and Slutsker, I. (2002). Variability of absorption and optical properties of key aerosol types observed in worldwide locations. Journal of the atmospheric sciences, 59(3):590–608.
Emeis, S., Schäfer, K., Münkel, C., Friedl, R., and Suppan, P. (2012). Evaluation of the interpretation of ceilometer data with rass and radiosonde data. Boundary-layer meteorology, 143(1):25–35.
Fan, J., Rosenfeld, D., Zhang, Y., Giangrande, S. E., Li, Z., Machado, L. A., Martin, S. T., Yang, Y., Wang, J., Artaxo, P., et al. (2018). Substantial convection and precipitation enhancements by ultrafine aerosol particles. Science, 359(6374):411–418.
Feingold, G., Remer, L. A., Ramaprasad, J., and Kaufman, Y. J. (2001). Analysis of smoke impact on clouds in brazilian biomass burning regions: An extension of twomey’s approach. Journal of Geophysical Research: Atmospheres, 106(D19):22907–22922.
Feingold, G., Stevens, B., Cotton, W., and Walko, R. (1994). An explicit cloud microphysics/les model designed to simulate the twomey effect. Atmospheric Research, 33(1-4):207–233.
Freitas, S. R., Longo, K. M., Dias, M. A. S., Dias, P. L. S., Chatfield, R., Prins, E., Artaxo, P., Grell, G. A., and Recuero, F. S. (2005). Monitoring the transport of biomass burning emissions in south america. Environmental Fluid Mechanics, 5(1-2):135–167.
Garcı́a, O., Dı́az, A., Expósito, F., Dı́az, J., Dubovik, O., Dubuisson, P., Roger, J.-C., Eck, T., Sinyuk, A., Derimian, Y., et al. (2008). Validation of aeronet estimates of atmospheric solar fluxes and aerosol radiative forcing by ground-based broadband measurements. Journal of Geophysical Research: Atmospheres, 113(D21).
Garcı́a, O., Dı́az, J., Expósito, F., Dı́az, A., Dubovik, O., Dubuisson, P., Roger, J.-C., et al. (2012). Shortwave radiative forcing and efficiency of key aerosol types using aeronet data. Atmospheric Chemistry and Physics, 12(11):5129.
Garrett, T., Zhao, C., Dong, X., Mace, G., and Hobbs, P. (2004). Effects of varying aerosol regimes on low-level arctic stratus. Geophysical Research Letters, 31(17).
Gobbi, G., Kaufman, Y., Koren, I., and Eck, T. (2007). Classification of aerosol properties derived from aeronet direct sun data.
Grosvenor, D. P., Sourdeval, O., Zuidema, P., Ackerman, A., Alexandrov, M. D., Bennartz, R., Boers, R., Cairns, B., Chiu, J. C., Christensen, M., et al. (2018). Remote sensing of droplet number concentration in warm clouds: A review of the current state of knowledge and perspectives. Reviews of Geophysics, 56(2):409–453.
Guzman, G. (2018). Analisis de la influencia del diseño urbano en la meteorologia del valle de aburra. Master’s thesis, Universidad Nacional de Colombia - Sede Medellı́n.
Hansen, J. E. and Travis, L. D. (1974). Light scattering in planetary atmospheres. Space science reviews, 16(4):527–610.
Herrera-Mejı́a, L. and Hoyos, C. D. (2019a). Characterization of the atmospheric boundary layer in a narrow tropical valley using remote-sensing and radiosonde observations and the WRF model: the Aburrá Valley case-study. Quarterly Journal of the Royal Meteorological Society, 0(0).
Herrera-Mejı́a, L. and Hoyos, C. D. (2019b). Characterization of the atmospheric boundary layer in a narrow tropical valley using remote-sensing and radiosonde observations and the wrf model: the aburrá valley case-study. Quarterly Journal of the Royal Meteorological Society, 145(723):2641–2665.
Holanda, B. A., Pöhlker, M. L., Saturno, J., Sörgel, M., Ditas, J., Ditas, F., Wang, Q.,Donth, T., Artaxo, P., Barbosa, H. M., et al. (2020). Influx of african biomass burning aerosol during the amazonian dry season through layered transatlantic transport of black carbon-rich smoke. Atmospheric Chemistry and Physics, 20(8):4757–4785.
Hoyos, C. D., Herrera-Mejı́a, L., Roldán-Henao, N., and Isaza, A. (2020). Effects of fireworks on particulate matter concentration in a narrow valley: the case of the medellı́n metropolitan area. Environmental Monitoring and Assessment, 192(1):6.
Hulst, H. C. and van de Hulst, H. C. (1981). Light scattering by small particles. Courier Corporation.
Jacobson, M. Z. (2001). Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature, 409(6821):695–697.
Jia, H., Ma, X., Yu, F., Liu, Y., and Yin, Y. (2019). Distinct impacts of increased aerosols on cloud droplet number concentration of stratus/stratocumulus and cumulus. Geophysical Research Letters, 46(22):13517–13525.
Kaufman, Y. J. (1993). Aerosol optical thickness and atmospheric path radiance. Journal of Geophysical Research: Atmospheres, 98(D2):2677–2692.
King, M. D., Menzel, W. P., Kaufman, Y. J., Tanré, D., Gao, B.-C., Platnick, S., Ackerman, S. A., Remer, L. A., Pincus, R., and Hubanks, P. A. (2003). Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from modis. IEEE Transactions on Geoscience and Remote Sensing, 41(2):442–458.
Kleinman, L. I., Daum, P. H., Lee, Y.-N., Lewis, E. R., Sedlacek III, A., Senum, G., Springs-ton, S., Wang, J., Hubbe, J., Jayne, J., et al. (2012). Aerosol concentration and size distribution measured below, in, and above cloud from the doe g-1 during vocals-rex. Atmospheric Chemistry and Physics, 12(1):207.
Koren, I., Kaufman, Y. J., Remer, L. A., and Martins, J. V. (2004). Measurement of the effect of amazon smoke on inhibition of cloud formation. Science, 303(5662):1342–1345.
Koren, I., Kaufman, Y. J., Rosenfeld, D., Remer, L. A., and Rudich, Y. (2005). Aerosol invigoration and restructuring of atlantic convective clouds. Geophysical Research Letters, 32(14).
Lacagnina, C., Hasekamp, O. P., and Torres, O. (2017). Direct radiative effect of aerosols based on parasol and omi satellite observations. Journal of Geophysical Research: Atmospheres, 122(4):2366–2388.
Lacis, A. A. and Hansen, J. (1974). A parameterization for the absorption of solar radiation in the earth’s atmosphere. Journal of the atmospheric sciences, 31(1):118–133.
Levy, R., Mattoo, S., Munchak, L., Remer, L., Sayer, A., Patadia, F., and Hsu, N. (2013). The collection 6 modis aerosol products over land and ocean. Atmospheric Measurement Techniques, 6(11):2989.
Li, Z., Guo, J., Ding, A., Liao, H., Liu, J., Sun, Y., Wang, T., Xue, H., Zhang, H., and Zhu, B. (2017). Aerosol and boundary-layer interactions and impact on air quality. National Science Review, 4(6):810–833.
op_rights info:eu-repo/semantics/openAccessDerechos reservados - Universidad Nacional de Colombia
Atribución-SinDerivadas 4.0 Internacional
Acceso abierto
http://creativecommons.org/licenses/by-nd/4.0/
info:eu-repo/semantics/openAccess
_version_ 1772177846087712768
spelling ftuncolombiair:oai:repositorio.unal.edu.co:unal/79310 2023-07-23T04:16:42+02:00 Evaluation of the influence of aerosols on radiative processes and turbulent surface flows within the Aburrá Valley Evaluación de la influencia de aerosoles en procesos radiativos y flujos superficiales turbulentos dentro del Valle de Aburrá Roldán Henao, Natalia Hoyos, Carlos David Herrera Mejía, Laura 2020-11-20 application/pdf https://repositorio.unal.edu.co/handle/unal/79310 eng eng Medellín - Minas - Maestría en Ingeniería - Recursos Hidráulicos Departamento de Geociencias y Medo Ambiente Universidad Nacional de Colombia - Sede Medellín Albrecht, B. A. (1989). Aerosols, cloud microphysics, and fractional cloudiness. Science, 245(4923):1227–1230. Altaratz, O., Koren, I., Remer, L., and Hirsch, E. (2014). Cloud invigoration by aerosols—coupling between microphysics and dynamics. Atmospheric Research, 140:38–60. Andreae, M. O., Rosenfeld, D., Artaxo, P., Costa, A., Frank, G., Longo, K., and Silva-Dias, M. A. F. d. (2004). Smoking rain clouds over the amazon. science, 303(5662):1337–1342. Arakawa, A. and Schubert, W. H. (1974). Interaction of a cumulus cloud ensemble with the large-scale environment, part i. Journal of the Atmospheric Sciences, 31(3):674–701. Atwater, M. A. (1970). Planetary albedo changes due to aerosols. Science, 170(3953):64–66. Bedoya-Soto, J. M., Aristizábal, E., Carmona, A. M., and Poveda, G. (2019). Seasonal shift of the diurnal cycle of rainfall over medellin’s valley, central andes of colombia (1998–2005). Frontiers in Earth Science, 7:92. Bell, T. L., Rosenfeld, D., Kim, K.-M., Yoo, J.-M., Lee, M.-I., and Hahnenberger, M. (2008). Midweek increase in us summer rain and storm heights suggests air pollution invigorates rainstorms. Journal of Geophysical Research: Atmospheres, 113(D2). Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., et al. (2013). Clouds and aerosols. In Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pages 571–657. Cambridge University Press. Boucher, O., Schwartz, S. o., Ackerman, T., Anderson, T., Bergstrom, B., Bonnel, B., Chỳlek, P., Dahlback, A., Fouquart, Y., Fu, Q., et al. (1998). Intercomparison of models representing direct shortwave radiative forcing by sulfate aerosols. Journal of Geophysical Research: Atmospheres, 103(D14):16979–16998. Boucher, O. and Tanré, D. (2000). Estimation of the aerosol perturbation to the earth’s radiative budget over oceans using polder satellite aerosol retrievals. Geophysical research letters, 27(8):1103–1106. Braslau, N. and Dave, J. (1973). Effect of aerosols on the transfer of solar energy through realistic model atmospheres. part i: Non-absorbing aerosols. Journal of applied meteorology, 12(4):601–615. Bréon, F.-M., Tanré, D., and Generoso, S. (2002). Aerosol effect on cloud droplet size monitored from satellite. Science, 295(5556):834–838. Cess, R., Potter, G., Ghan, S., and Gates, W. (1985). The climatic effects of large injections of atmospheric smoke and dust: A study of climate feedback mechanisms with one-and three-dimensional climate models. Journal of Geophysical Research: Atmospheres, 90(D7):12937–12950. Chandra, S., Dwivedi, A. K., and Kumar, M. (2014). Characterization of the atmospheric boundary layer from radiosonde observations along eastern end of monsoon trough of India. Journal Earth Syst. Sci, 123(6):1233–1240. Charlock, T. P. and Sellers, W. D. (1980). Aerosol effects on climate: Calculations with time-dependent and steady-state radiative-convective models. Journal of the atmospheric sciences, 37(6):1327–1341. Charlson, R. and Pilat, M. (1969). Climate: The influence of aerosols. Journal of Applied Meteorology, 8(6):1001–1002. Christensen, M. W., Chen, Y.-C., and Stephens, G. L. (2016). Aerosol indirect effect dictated by liquid clouds. Journal of Geophysical Research: Atmospheres, 121(24):14–636. Christopher, S. A. and Zhang, J. (2002). Shortwave aerosol radiative forcing from modis and ceres observations over the oceans. Geophysical Research Letters, 29(18):6–1. Coakley, J. A., Bernstein, R. L., and Durkee, P. A. (1987). Effect of ship-stack effluents on cloud reflectivity. Science, 237(4818):1020–1022. Coakley Jr, J. A., Cess, R. D., and Yurevich, F. B. (1983). The effect of tropospheric aerosols on the earth’s radiation budget: A parameterization for climate models. Journal of the Atmospheric Sciences, 40(1):116–138. De Wekker, S. F. J. and Kossmann, M. (2015). Convective Boundary Layer Heights Over Mountainous Terrain—A Review of Concepts. Frontiers in Earth Science, 3:77. DePuy, V., Berger, V. W., and Zhou, Y. (2014). Wilcoxon-mann-whitney test: Overview. Wiley StatsRef: Statistics Reference Online. Dubovik, O., Holben, B., Eck, T. F., Smirnov, A., Kaufman, Y. J., King, M. D., Tanré, D., and Slutsker, I. (2002). Variability of absorption and optical properties of key aerosol types observed in worldwide locations. Journal of the atmospheric sciences, 59(3):590–608. Emeis, S., Schäfer, K., Münkel, C., Friedl, R., and Suppan, P. (2012). Evaluation of the interpretation of ceilometer data with rass and radiosonde data. Boundary-layer meteorology, 143(1):25–35. Fan, J., Rosenfeld, D., Zhang, Y., Giangrande, S. E., Li, Z., Machado, L. A., Martin, S. T., Yang, Y., Wang, J., Artaxo, P., et al. (2018). Substantial convection and precipitation enhancements by ultrafine aerosol particles. Science, 359(6374):411–418. Feingold, G., Remer, L. A., Ramaprasad, J., and Kaufman, Y. J. (2001). Analysis of smoke impact on clouds in brazilian biomass burning regions: An extension of twomey’s approach. Journal of Geophysical Research: Atmospheres, 106(D19):22907–22922. Feingold, G., Stevens, B., Cotton, W., and Walko, R. (1994). An explicit cloud microphysics/les model designed to simulate the twomey effect. Atmospheric Research, 33(1-4):207–233. Freitas, S. R., Longo, K. M., Dias, M. A. S., Dias, P. L. S., Chatfield, R., Prins, E., Artaxo, P., Grell, G. A., and Recuero, F. S. (2005). Monitoring the transport of biomass burning emissions in south america. Environmental Fluid Mechanics, 5(1-2):135–167. Garcı́a, O., Dı́az, A., Expósito, F., Dı́az, J., Dubovik, O., Dubuisson, P., Roger, J.-C., Eck, T., Sinyuk, A., Derimian, Y., et al. (2008). Validation of aeronet estimates of atmospheric solar fluxes and aerosol radiative forcing by ground-based broadband measurements. Journal of Geophysical Research: Atmospheres, 113(D21). Garcı́a, O., Dı́az, J., Expósito, F., Dı́az, A., Dubovik, O., Dubuisson, P., Roger, J.-C., et al. (2012). Shortwave radiative forcing and efficiency of key aerosol types using aeronet data. Atmospheric Chemistry and Physics, 12(11):5129. Garrett, T., Zhao, C., Dong, X., Mace, G., and Hobbs, P. (2004). Effects of varying aerosol regimes on low-level arctic stratus. Geophysical Research Letters, 31(17). Gobbi, G., Kaufman, Y., Koren, I., and Eck, T. (2007). Classification of aerosol properties derived from aeronet direct sun data. Grosvenor, D. P., Sourdeval, O., Zuidema, P., Ackerman, A., Alexandrov, M. D., Bennartz, R., Boers, R., Cairns, B., Chiu, J. C., Christensen, M., et al. (2018). Remote sensing of droplet number concentration in warm clouds: A review of the current state of knowledge and perspectives. Reviews of Geophysics, 56(2):409–453. Guzman, G. (2018). Analisis de la influencia del diseño urbano en la meteorologia del valle de aburra. Master’s thesis, Universidad Nacional de Colombia - Sede Medellı́n. Hansen, J. E. and Travis, L. D. (1974). Light scattering in planetary atmospheres. Space science reviews, 16(4):527–610. Herrera-Mejı́a, L. and Hoyos, C. D. (2019a). Characterization of the atmospheric boundary layer in a narrow tropical valley using remote-sensing and radiosonde observations and the WRF model: the Aburrá Valley case-study. Quarterly Journal of the Royal Meteorological Society, 0(0). Herrera-Mejı́a, L. and Hoyos, C. D. (2019b). Characterization of the atmospheric boundary layer in a narrow tropical valley using remote-sensing and radiosonde observations and the wrf model: the aburrá valley case-study. Quarterly Journal of the Royal Meteorological Society, 145(723):2641–2665. Holanda, B. A., Pöhlker, M. L., Saturno, J., Sörgel, M., Ditas, J., Ditas, F., Wang, Q.,Donth, T., Artaxo, P., Barbosa, H. M., et al. (2020). Influx of african biomass burning aerosol during the amazonian dry season through layered transatlantic transport of black carbon-rich smoke. Atmospheric Chemistry and Physics, 20(8):4757–4785. Hoyos, C. D., Herrera-Mejı́a, L., Roldán-Henao, N., and Isaza, A. (2020). Effects of fireworks on particulate matter concentration in a narrow valley: the case of the medellı́n metropolitan area. Environmental Monitoring and Assessment, 192(1):6. Hulst, H. C. and van de Hulst, H. C. (1981). Light scattering by small particles. Courier Corporation. Jacobson, M. Z. (2001). Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature, 409(6821):695–697. Jia, H., Ma, X., Yu, F., Liu, Y., and Yin, Y. (2019). Distinct impacts of increased aerosols on cloud droplet number concentration of stratus/stratocumulus and cumulus. Geophysical Research Letters, 46(22):13517–13525. Kaufman, Y. J. (1993). Aerosol optical thickness and atmospheric path radiance. Journal of Geophysical Research: Atmospheres, 98(D2):2677–2692. King, M. D., Menzel, W. P., Kaufman, Y. J., Tanré, D., Gao, B.-C., Platnick, S., Ackerman, S. A., Remer, L. A., Pincus, R., and Hubanks, P. A. (2003). Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from modis. IEEE Transactions on Geoscience and Remote Sensing, 41(2):442–458. Kleinman, L. I., Daum, P. H., Lee, Y.-N., Lewis, E. R., Sedlacek III, A., Senum, G., Springs-ton, S., Wang, J., Hubbe, J., Jayne, J., et al. (2012). Aerosol concentration and size distribution measured below, in, and above cloud from the doe g-1 during vocals-rex. Atmospheric Chemistry and Physics, 12(1):207. Koren, I., Kaufman, Y. J., Remer, L. A., and Martins, J. V. (2004). Measurement of the effect of amazon smoke on inhibition of cloud formation. Science, 303(5662):1342–1345. Koren, I., Kaufman, Y. J., Rosenfeld, D., Remer, L. A., and Rudich, Y. (2005). Aerosol invigoration and restructuring of atlantic convective clouds. Geophysical Research Letters, 32(14). Lacagnina, C., Hasekamp, O. P., and Torres, O. (2017). Direct radiative effect of aerosols based on parasol and omi satellite observations. Journal of Geophysical Research: Atmospheres, 122(4):2366–2388. Lacis, A. A. and Hansen, J. (1974). A parameterization for the absorption of solar radiation in the earth’s atmosphere. Journal of the atmospheric sciences, 31(1):118–133. Levy, R., Mattoo, S., Munchak, L., Remer, L., Sayer, A., Patadia, F., and Hsu, N. (2013). The collection 6 modis aerosol products over land and ocean. Atmospheric Measurement Techniques, 6(11):2989. Li, Z., Guo, J., Ding, A., Liao, H., Liu, J., Sun, Y., Wang, T., Xue, H., Zhang, H., and Zhu, B. (2017). Aerosol and boundary-layer interactions and impact on air quality. National Science Review, 4(6):810–833. info:eu-repo/semantics/openAccessDerechos reservados - Universidad Nacional de Colombia Atribución-SinDerivadas 4.0 Internacional Acceso abierto http://creativecommons.org/licenses/by-nd/4.0/ info:eu-repo/semantics/openAccess 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica aerosols atmospheric boundary layer meteorology radiation absorption scattering cloud condensation nucleis Contamination - Valle de Aburrá (Antioquia Colombia) aerosoles capa límite atmosférica meteorología radiación absorción dispersión núcleos de condensación de nubes Contaminación industrial - Valle de Aburrá (Antioquia Otro info:eu-repo/semantics/other info:eu-repo/semantics/acceptedVersion http://purl.org/coar/resource_type/c_1843 http://purl.org/coar/version/c_ab4af688f83e57aa Text 2020 ftuncolombiair 2023-07-02T00:07:10Z El Valle de Aburrá, un valle densamente poblado ubicado en Colombia, con una topografía de alta complejidad en la cordillera de los Andes, ha experimentado en los últimos cinco años la aparición de episodios críticos de contaminación atmosférica, caracterizados por un aumento en la concentración de aerosoles. Este estudio combina información en tierra y satelital para estudiar los impactos de los aerosoles troposféricos en la radiación, los flujos de energía, capa límite atmosférica, propiedades de las nubes y precipitación en la escala local (Valle de Aburrá) y regional (Colombia). En el valle de Aburrá, la dispersión y absorción de los aerosoles disminuyen la radiación en superficie hasta más de -40 W/m2; adicionalmente inhiben los flujos de calor latente y sensible, modificando de esta forma la evolución de la capa límite atmosférica. En Colombia, los efectos de los aerosoles están relacionados con los eventos de quema de biomasa que ocurren anualmente en el norte y el este de Colombia. Dado que cada gota de nube necesita una partícula de aerosol (un núcleo de condensación de la nube) para su activación, los aerosoles en Colombia y el Valle también han modificado las propiedades de las nubes. Este estudio encontró reducciones en el tamaño de las gotas de nubes para diferentes tipos de nubes. También investigamos los impactos de los aerosoles en la nube convectivas, y llegamos a la conclusión de que el proceso de difusión podría retrasarse durante episodios de alta concentración de aerosoles. Evaluamos las interacciones aerosoles-nube-precipitación, encontrando un aumento en los eventos de lluvia por la tarde debido a la presencia de aerosoles. Las modificaciones resultantes en las propiedades meteorológicas del Valle de Aburrá podrían inducir retroalimentaciones positivas que conducirían a mayores aumentos en la concentración de contaminantes. The Aburrá Valley, a densely populated valley in Colombia, with highly complex topography at the Andes mountain range, has experienced during the past five years the ... Text Arctic Repositorio Institucional Universidad Nacional de Colombia Alta Límite ENVELOPE(-57.629,-57.629,-61.898,-61.898)