Synchronization and interdependence between the cycles of Colombia's hydroclimatology and El Niño-Southern Oscillation

ilustraciones, mapas, tablas Hydroclimatology of Colombia is highly influenced by El Niño - Southern Oscillation (ENSO), which conditions the hydrological response over Colombia, increasing (decreasing) rainfall and streamflows during La Niña (El Niño) depending on the location in the country. This di...

Full description

Bibliographic Details
Published in:Theoretical and Applied Climatology
Main Author: Salas Parra, Hernán Darío
Other Authors: Poveda Jaramillo, Germán, Mesa Sánchez, Óscar José, Posgrado en Aprovechamiento de recursos hidráulicos
Format: Master Thesis
Language:English
Published: Universidad Nacional de Colombia 2020
Subjects:
Online Access:https://repositorio.unal.edu.co/handle/unal/78420
https://repositorio.unal.edu.co/
id ftuncolombiair:oai:repositorio.unal.edu.co:unal/78420
record_format openpolar
institution Open Polar
collection Repositorio Institucional Universidad Nacional de Colombia
op_collection_id ftuncolombiair
language English
topic 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
Hydrology
Climatology
Flow rates
El Niño - Southern Oscillation (ENSO)
Hidrología
Climatología
Fenómeno del niño
El Niño - Oscilación del Sur
Caudales
spellingShingle 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
Hydrology
Climatology
Flow rates
El Niño - Southern Oscillation (ENSO)
Hidrología
Climatología
Fenómeno del niño
El Niño - Oscilación del Sur
Caudales
Salas Parra, Hernán Darío
Synchronization and interdependence between the cycles of Colombia's hydroclimatology and El Niño-Southern Oscillation
topic_facet 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
Hydrology
Climatology
Flow rates
El Niño - Southern Oscillation (ENSO)
Hidrología
Climatología
Fenómeno del niño
El Niño - Oscilación del Sur
Caudales
description ilustraciones, mapas, tablas Hydroclimatology of Colombia is highly influenced by El Niño - Southern Oscillation (ENSO), which conditions the hydrological response over Colombia, increasing (decreasing) rainfall and streamflows during La Niña (El Niño) depending on the location in the country. This dissertation presents an approach based on synchronization techniques to study the interdependence between ENSO and hydrological variables in Colombia. To that end, we use synchronization techniques such as Phase synchronization (PS) that is based on the physical properties of weakly coupled periodic oscillators, and Generalized Synchronization (GS) that is based on properties of recurrence of non-linear dynamical systems. Furthermore, we quantify interannual hydroclimatic anomalies (HyAns) using diverse methods to evaluate the sensitivity of linear and non-linear interdependence quantifiers. Our main findings reveal that: (1) we need of quantifying the uncertainty of HyAns in terms of magnitude, sign, timing, and phases of ENSO, because HyAns methods induce an important error source and bias on the interdependence analysis and modeling of climate time series; (2) We find that the positive (negative) HyAns experienced in the Pacific, the Caribbean and the Andean regions of Colombia, during La Niña (El Niño), are phase-locked with the ENSO. Moreover, we provide evidence that the ENSO signal is phase-locked with the annual cycle of rainfall in some regions of Colombia. Furthermore, other macro-climatic processes also show significant PS such as the Pacific Decadal Oscillation (PDO) and the North Atlantic Oscillation (NAO); (3) The Caribbean, the CHOCO, and the Orinoco Low-Level Jets (LLJs), and the Cross-Equatorial Flow (CEF) constitute an interdependence mechanism and contribute to explaining hydrological anomalies in Colombia during the phases of ENSO. During La Niña (El Niño), GS is strong (weak) for the Caribbean and the CHOCO LLJs whereas GS is moderate (strong) for the Orinoco LLJ. Moreover, moisture advection by the ...
author2 Poveda Jaramillo, Germán
Mesa Sánchez, Óscar José
Posgrado en Aprovechamiento de recursos hidráulicos
format Master Thesis
author Salas Parra, Hernán Darío
author_facet Salas Parra, Hernán Darío
author_sort Salas Parra, Hernán Darío
title Synchronization and interdependence between the cycles of Colombia's hydroclimatology and El Niño-Southern Oscillation
title_short Synchronization and interdependence between the cycles of Colombia's hydroclimatology and El Niño-Southern Oscillation
title_full Synchronization and interdependence between the cycles of Colombia's hydroclimatology and El Niño-Southern Oscillation
title_fullStr Synchronization and interdependence between the cycles of Colombia's hydroclimatology and El Niño-Southern Oscillation
title_full_unstemmed Synchronization and interdependence between the cycles of Colombia's hydroclimatology and El Niño-Southern Oscillation
title_sort synchronization and interdependence between the cycles of colombia's hydroclimatology and el niño-southern oscillation
publisher Universidad Nacional de Colombia
publishDate 2020
url https://repositorio.unal.edu.co/handle/unal/78420
https://repositorio.unal.edu.co/
op_coverage Colombia
genre North Atlantic
North Atlantic oscillation
genre_facet North Atlantic
North Atlantic oscillation
op_relation Coelho, C., Uvo, C., and Ambrizzi, T. Exploring the impacts of the tropical Pacific SST on the precipitation patterns over South America during ENSO periods. Theor Appl Climatol 71, 185-197 (2002). https://doi.org/10.1007/s007040200004
Grimm, A. M., and M. T. Zilli, 2009: Interannual Variability and Seasonal Evolution of Summer Monsoon Rainfall in South America. J. Climate, 22, 2257-2275, https://doi.org/10.1175/2008JCLI2345.1.
Poveda, G., Mesa O.J. (1999) The low level westerly jet (Choco jet) and two other jets in Colombia: climatology and variability during ENSO phases (in Spanish), Revista Academia Colombiana de Ciencias Exactas, 23(89): 517-528.
Poveda, G., Jaramillo, L., Vallejo, L.F. (2014) Seasonal precipitation patterns along pathways of South American low‐level jets and aerial rivers, Water Resources Research, 50(1), 98-118.
Muñoz, P., Gorin, G., Parra, N., Vel\'asquez, C., Lemus, D., Monsalve-M, C., Jojoa, M., Holocene climatic variations in the Western Cordillera of Colombia: A multiproxy high-resolution record unravels the dual influence of ENSO and ITCZ, Quaternary Science Reviews, 155, 159-178.
Hoyos, I., Dominguez, F., Cañón-Barriga, J., Martínez, J.A., Nieto, R., Gimeno, L., Dirmeyer, P.A. (2017) Moisture origin and transport processes in Colombia, northern South America, Clim. Dyn., DOI 10.1007/s00382-017-3653-6.
Jaramillo, L., Poveda, G., Mejía, J.F. (2017) Mesoscale convective systems and other precipitation features over the tropical Americas and surrounding seas as seen by TRMM, Int. J. Climatol., DOI:10.1002/joc.5009
Carvajal, L.F., Salazar,J.E., Mesa, O. J., Poveda, G. (1998) Hydrological prediction in Colombia using singular spectral analysis and the maximum entropy method, Hydraulic Engineering in Mexico (in Spanish). Vol. XIII, 1, 07-16.
Poveda, G., Mesa O.J., Waylen, P. (2003) Non-linear forecasting of river flows in Colombia based upon ENSO and its associated economic value for hydropower generation, Kluwer Academic Publishers, Dordrecht, 351-371, ISBN 1-4020-1529-1, 424 p.
Hurtado, A. F., Poveda, G. (2009) Linear and global space‐time dependence and Taylor hypotheses for rainfall in the tropical Andes, Journal of Geophysical Research: Atmospheres, 114(D10).
Carmona, A.M., Poveda, G. (2014) Detection of long-term trends in monthly hydro-climatic series of Colombia through Empirical Mode Decomposition, Climatic Change, 123, 301-313.
Donner, R. V., Zou, Y., Donges, J. F., Marwan, N., and Kurths, J.: Recurrence networks -- a novel paradigm for nonlinear time series analysis, New J. Phys., 12, 033025, https://doi.org/10.1088/1367-2630/12/3/033025, 2010.
Arnhold, J., Grassberger, P., Lehnertz, K., and Elger, C. E.: A robust method for detecting interdependences: application to intracranially recorded EEG, Physica D, 134, 419-430, 1999.
Le Van Quyen, M., Martinerie, J., Adam, C., and Varela, F. J.: Non-linear analyses of interictal EEG map the brain interdependences in human focal epilepsy, Physica D, 127, 250-266, 1999.
Schiff, S. J., So, P., Chang, T., Burke, R. E., and Sauer, T.: Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble, Phys. Rev. E, 54, 6708-6724, https://doi.org/10.1103/PhysRevE.54.6708, 1996.
Rosenblum, M. G., Pikovsky, A. S., and Kurths, J.: From phase to lag synchronization in coupled chaotic oscillators, Phys. Rev. Lett., 78, 4193-4196, https://doi.org/10.1103/PhysRevLett.78.4193, 1997.
Pikovsky, A., Rosenblum, M., Kurths, J. (2001) Synchronization: A universal concept in nonlinear sciences. Cambridge University Press.
Stolbova, V., Martin, P., Bookhagen, B., Marwan, N., and Kurths, J.:Topology and seasonal evolution of the network of extreme precipitation over the Indian subcontinent and Sri Lanka, Nonlinear Proc. Geoph., 21, 901-917, 2014.
Malik, N., Bookhagen, B., Marwan, N., and Kurths, J.: Analysis of spatial and temporal extreme monsoonal rainfall over South Asia using complex networks, Clim. Dynam., 39, 971-987, 2012.
Rheinwalt, A., Boers, N., Marwan, N., Kurths, J., Hoffmann, P.,Gerstengarbe, F.-W., and Werner, P.: Non-linear time series analysis of precipitation events using regional climate networks for Germany, Clim. Dynam., 46, 1065-1074, 2016.
Agarwal, A., N. Marwan, M. Rathinasamy, B. Merz, and J. Kurths, Multi-scale event synchronization analysis for unravelling climate processes: A wavelet-based approach, Nonlinear Process. Geophys., 2017.
Marwan, N., Romano, M.C., Thiel, M., Kurths, J. (2007). Recurrence plots for the analysis of complex systems. Physics Reports. https://doi.org/10.1016/j.physrep.2006.11.001
Fraedrich, K., Muller, K., Climate anomalies in Europe associated with ENSO extremes, Int. J. Climatol., 12(1), 25-31 (1992).
Chandler, T. J. Teleconnections linking worldwie climate anomalies, Dyn. Atmos. Ocean., 17(1), 79-81 (1992).
Mason, S.L., Goddard, L. Probabilistic Precipitation Anomalies Associated with ENSO, Bull. Am. Meteorol. Soc., 82(4), 619-638 (2001).
Hegerl, G.C., Bronnimann, S., Schurer, A., \& Cowan, T. The early 20th century warming: Anomalies, causes, and consequences, Wiley Interdiscip. Rev. Clim. Chang., 9(4), 1-20 (2018).
Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B., Jones, P. D. Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850, J. Geophys. Res., 111(D12), D12106 (2006).
Lange, H., Sippel, S. Rosso, O. A. Nonlinear dynamics of river runoff elucidated by horizontal visibility graphs. Chaos An Interdiscip. J. Nonlinear Sci., 28(7),075520, doi:10.1063/1.5026491 (2018).
Salas, H. D., Poveda, G., Mesa, O. J. Marwan, N. Generalized Synchronization between ENSO and Hydrological variables in Colombia: A Recurrence Quantification Approach. Front. Appl. Math. Stat., 6(3), DOI:10.3389/fams.2020.00003 (2020).
Salas, J. D., Delleur, J. W., Yevjevich, V. L.Lane, W. Applied Modeling of Hydrologic Time Series (Water Resources Publications, 1980).
Douglass, D. H. The Pacific sea surface temperature, Phys. Lett. A, 376(2), 128-135, 10.1016/j.physleta.2011.10.042 (2011).
Douglass, D. H., Knox, R. S. The Sun is the climate pacemaker I. Equatorial Pacific Ocean temperatures, Phys. Lett. A, 379(9), 823-829 (2015).
Vautard, R., Yiou, P. Ghil, M. Singular-spectrum analysis: A toolkit for short, noisy chaotic signals, Phys. D Nonlinear Phenom., 58(1-4), 95-126 (1992).
Ghil, M. Advanced spectral methods for climatic time series, Rev. Geophys., 40(1), 1003 (2002).
Huang, N. E. et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. London. Ser. A Math. Phys. Eng. Sci., 454(1971), 903-995 (1998).
Wu, Z., Huang, N. E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal., DOI:10.1142/s1793536909000047 (2008).
Cai, W. et al. Climate impacts of the El Niño-Southern Oscillation on South America. Nat. Rev. Earth andEnviron., DOI:10.1038/s43017-020-0040-3 (2020).
Poveda, G. The hydro-climatology of Colombia: A synthesis from inter-decadal to diurnal timescales (in spanish). Rev. Acad. Colomb. Cienc., 28, 201-222 (2004).
Poveda, G., Mesa, O. J. Feedbacks between hydrological processes in tropical South America and large-scale ocean-atmospheric phenomena. J. Clim., 10(10), 2690-2702, 10.1175/1520-0442(1997)010\<2690:FBHPIT\>2.0.CO;2 (1997).
Poveda, G., Álvarez, D. M., Rueda, O. A. Hydro-climatic variability over the Andes of Colombia associated with ENSO: A review of climatic processes and their impact on one of the Earth's most important biodiversity hotspots, DOI:10.1007/s00382-010-0931-y (2011).
Andreoli, R. V. et al. The influence of different El Niño types on the South American rainfall. Int. J. Climatol., 37(3), 1374-1390, DOI:10.1002/joc.4783 (2017).
Bedoya-Soto, J. M., Poveda, G., Trenberth, K. E., Vélez-Upegui, J. J. Interannual hydroclimatic variability and the 2009-2011 extreme ENSO phases in Colombia: from Andean glaciers to Caribbean lowlands, Theor. Appl. Climatol., 135(3-4), 1531-1544, DOI:10.1007/s00704-018-2452-2 (2019).
Poveda, G. et al. High Impact Weather Events in the Andes. Front. Earth Sci., DOI:10.3389/feart.2020.00162 (2020).
Poveda, G. et al. The Diurnal Cycle of Precipitation in the Tropical Andes of Colombia. Mon. Weather. Rev., 133 (1), 228-240, DOI:10.1175/MWR-2853.1 (2005).
Bedoya-Soto, J. M., Poveda, G., Sauchyn, D. New insights on land surface-atmosphere feedbacks over tropical South America at interannual timescales. Water, 10(8), 1095, DOI:10.3390/w10081095 (2018).
Poveda, G., Jaramillo, A., Gil, M. M., Quiceno, N., Mantilla, R. I. Seasonality in ENSO-related precipitation, river discharges, soil moisture, and vegetation index in Colombia. Water Resour. Res., 37(8), 2169-2178, DOI:10.1029/2000WR900395 (2001).
Wu, Z. et al. The modulated annual cycle: An alternative reference frame for climate anomalies. Clim. Dyn., 31 (7-8), 823-841, DOI:10.1007/s00382-008-0437-z (2008).
Fedorov, A. V., Philander, S. G. Is El Nino changing?, Science, 288(5473), 1997-2002, DOI:10.1126/science.288.5473.1997 (2000).
Thoning, K. W., Tans, P. P. Atmospheric carbon dioxide at Mauna Loa Observatory. 2. Analysis of the NOAA GMCC data, 1974-1985. J. Geophys. Res., 94(D6), 8549-8565, DOI:10.1029/JD094iD06p08549 (1989).
Zhang, J., Wu, Y. k-Sample tests based on the likelihood ratio. Comput. Stat. Data Analysis, DOI:10.1016/j.csda.2006.08.029 (2007).
op_rights info:eu-repo/semantics/openAccessDerechos reservados - Universidad Nacional de Colombia
Atribución-NoComercial-SinDerivadas 4.0 Internacional
Acceso abierto
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.1007/s00704020000410.1175/2008JCLI2345.110.1002/joc.500910.1088/1367-2630/12/3/03302510.1103/PhysRevE.54.670810.1103/PhysRevLett.78.419310.1016/j.physrep.2006.11.00110.1063/1.502649110.3389/fams.2020.0000310.1016/j.physleta.2011.10.0421
container_title Theoretical and Applied Climatology
container_volume 71
container_issue 3-4
container_start_page 185
op_container_end_page 197
_version_ 1772185598968201216
spelling ftuncolombiair:oai:repositorio.unal.edu.co:unal/78420 2023-07-23T04:20:50+02:00 Synchronization and interdependence between the cycles of Colombia's hydroclimatology and El Niño-Southern Oscillation Sincronización e interdependencia entre los ciclos de la hidroclimatología de Colombia y El Niño-Oscilación del Sur Salas Parra, Hernán Darío Poveda Jaramillo, Germán Mesa Sánchez, Óscar José Posgrado en Aprovechamiento de recursos hidráulicos Colombia 2020-08-28 xiv, 119 páginas + 1 Anexo application/pdf https://repositorio.unal.edu.co/handle/unal/78420 https://repositorio.unal.edu.co/ eng eng Universidad Nacional de Colombia Medellín - Minas - Doctorado en Ingeniería - Recursos Hidráulicos Departamento de Geociencias y Medo Ambiente Facultad de Minas Medellín, Colombia Universidad Nacional de Colombia - Sede Medellín Coelho, C., Uvo, C., and Ambrizzi, T. Exploring the impacts of the tropical Pacific SST on the precipitation patterns over South America during ENSO periods. Theor Appl Climatol 71, 185-197 (2002). https://doi.org/10.1007/s007040200004 Grimm, A. M., and M. T. Zilli, 2009: Interannual Variability and Seasonal Evolution of Summer Monsoon Rainfall in South America. J. Climate, 22, 2257-2275, https://doi.org/10.1175/2008JCLI2345.1. Poveda, G., Mesa O.J. (1999) The low level westerly jet (Choco jet) and two other jets in Colombia: climatology and variability during ENSO phases (in Spanish), Revista Academia Colombiana de Ciencias Exactas, 23(89): 517-528. Poveda, G., Jaramillo, L., Vallejo, L.F. (2014) Seasonal precipitation patterns along pathways of South American low‐level jets and aerial rivers, Water Resources Research, 50(1), 98-118. Muñoz, P., Gorin, G., Parra, N., Vel\'asquez, C., Lemus, D., Monsalve-M, C., Jojoa, M., Holocene climatic variations in the Western Cordillera of Colombia: A multiproxy high-resolution record unravels the dual influence of ENSO and ITCZ, Quaternary Science Reviews, 155, 159-178. Hoyos, I., Dominguez, F., Cañón-Barriga, J., Martínez, J.A., Nieto, R., Gimeno, L., Dirmeyer, P.A. (2017) Moisture origin and transport processes in Colombia, northern South America, Clim. Dyn., DOI 10.1007/s00382-017-3653-6. Jaramillo, L., Poveda, G., Mejía, J.F. (2017) Mesoscale convective systems and other precipitation features over the tropical Americas and surrounding seas as seen by TRMM, Int. J. Climatol., DOI:10.1002/joc.5009 Carvajal, L.F., Salazar,J.E., Mesa, O. J., Poveda, G. (1998) Hydrological prediction in Colombia using singular spectral analysis and the maximum entropy method, Hydraulic Engineering in Mexico (in Spanish). Vol. XIII, 1, 07-16. Poveda, G., Mesa O.J., Waylen, P. (2003) Non-linear forecasting of river flows in Colombia based upon ENSO and its associated economic value for hydropower generation, Kluwer Academic Publishers, Dordrecht, 351-371, ISBN 1-4020-1529-1, 424 p. Hurtado, A. F., Poveda, G. (2009) Linear and global space‐time dependence and Taylor hypotheses for rainfall in the tropical Andes, Journal of Geophysical Research: Atmospheres, 114(D10). Carmona, A.M., Poveda, G. (2014) Detection of long-term trends in monthly hydro-climatic series of Colombia through Empirical Mode Decomposition, Climatic Change, 123, 301-313. Donner, R. V., Zou, Y., Donges, J. F., Marwan, N., and Kurths, J.: Recurrence networks -- a novel paradigm for nonlinear time series analysis, New J. Phys., 12, 033025, https://doi.org/10.1088/1367-2630/12/3/033025, 2010. Arnhold, J., Grassberger, P., Lehnertz, K., and Elger, C. E.: A robust method for detecting interdependences: application to intracranially recorded EEG, Physica D, 134, 419-430, 1999. Le Van Quyen, M., Martinerie, J., Adam, C., and Varela, F. J.: Non-linear analyses of interictal EEG map the brain interdependences in human focal epilepsy, Physica D, 127, 250-266, 1999. Schiff, S. J., So, P., Chang, T., Burke, R. E., and Sauer, T.: Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble, Phys. Rev. E, 54, 6708-6724, https://doi.org/10.1103/PhysRevE.54.6708, 1996. Rosenblum, M. G., Pikovsky, A. S., and Kurths, J.: From phase to lag synchronization in coupled chaotic oscillators, Phys. Rev. Lett., 78, 4193-4196, https://doi.org/10.1103/PhysRevLett.78.4193, 1997. Pikovsky, A., Rosenblum, M., Kurths, J. (2001) Synchronization: A universal concept in nonlinear sciences. Cambridge University Press. Stolbova, V., Martin, P., Bookhagen, B., Marwan, N., and Kurths, J.:Topology and seasonal evolution of the network of extreme precipitation over the Indian subcontinent and Sri Lanka, Nonlinear Proc. Geoph., 21, 901-917, 2014. Malik, N., Bookhagen, B., Marwan, N., and Kurths, J.: Analysis of spatial and temporal extreme monsoonal rainfall over South Asia using complex networks, Clim. Dynam., 39, 971-987, 2012. Rheinwalt, A., Boers, N., Marwan, N., Kurths, J., Hoffmann, P.,Gerstengarbe, F.-W., and Werner, P.: Non-linear time series analysis of precipitation events using regional climate networks for Germany, Clim. Dynam., 46, 1065-1074, 2016. Agarwal, A., N. Marwan, M. Rathinasamy, B. Merz, and J. Kurths, Multi-scale event synchronization analysis for unravelling climate processes: A wavelet-based approach, Nonlinear Process. Geophys., 2017. Marwan, N., Romano, M.C., Thiel, M., Kurths, J. (2007). Recurrence plots for the analysis of complex systems. Physics Reports. https://doi.org/10.1016/j.physrep.2006.11.001 Fraedrich, K., Muller, K., Climate anomalies in Europe associated with ENSO extremes, Int. J. Climatol., 12(1), 25-31 (1992). Chandler, T. J. Teleconnections linking worldwie climate anomalies, Dyn. Atmos. Ocean., 17(1), 79-81 (1992). Mason, S.L., Goddard, L. Probabilistic Precipitation Anomalies Associated with ENSO, Bull. Am. Meteorol. Soc., 82(4), 619-638 (2001). Hegerl, G.C., Bronnimann, S., Schurer, A., \& Cowan, T. The early 20th century warming: Anomalies, causes, and consequences, Wiley Interdiscip. Rev. Clim. Chang., 9(4), 1-20 (2018). Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B., Jones, P. D. Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850, J. Geophys. Res., 111(D12), D12106 (2006). Lange, H., Sippel, S. Rosso, O. A. Nonlinear dynamics of river runoff elucidated by horizontal visibility graphs. Chaos An Interdiscip. J. Nonlinear Sci., 28(7),075520, doi:10.1063/1.5026491 (2018). Salas, H. D., Poveda, G., Mesa, O. J. Marwan, N. Generalized Synchronization between ENSO and Hydrological variables in Colombia: A Recurrence Quantification Approach. Front. Appl. Math. Stat., 6(3), DOI:10.3389/fams.2020.00003 (2020). Salas, J. D., Delleur, J. W., Yevjevich, V. L.Lane, W. Applied Modeling of Hydrologic Time Series (Water Resources Publications, 1980). Douglass, D. H. The Pacific sea surface temperature, Phys. Lett. A, 376(2), 128-135, 10.1016/j.physleta.2011.10.042 (2011). Douglass, D. H., Knox, R. S. The Sun is the climate pacemaker I. Equatorial Pacific Ocean temperatures, Phys. Lett. A, 379(9), 823-829 (2015). Vautard, R., Yiou, P. Ghil, M. Singular-spectrum analysis: A toolkit for short, noisy chaotic signals, Phys. D Nonlinear Phenom., 58(1-4), 95-126 (1992). Ghil, M. Advanced spectral methods for climatic time series, Rev. Geophys., 40(1), 1003 (2002). Huang, N. E. et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. London. Ser. A Math. Phys. Eng. Sci., 454(1971), 903-995 (1998). Wu, Z., Huang, N. E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal., DOI:10.1142/s1793536909000047 (2008). Cai, W. et al. Climate impacts of the El Niño-Southern Oscillation on South America. Nat. Rev. Earth andEnviron., DOI:10.1038/s43017-020-0040-3 (2020). Poveda, G. The hydro-climatology of Colombia: A synthesis from inter-decadal to diurnal timescales (in spanish). Rev. Acad. Colomb. Cienc., 28, 201-222 (2004). Poveda, G., Mesa, O. J. Feedbacks between hydrological processes in tropical South America and large-scale ocean-atmospheric phenomena. J. Clim., 10(10), 2690-2702, 10.1175/1520-0442(1997)010\<2690:FBHPIT\>2.0.CO;2 (1997). Poveda, G., Álvarez, D. M., Rueda, O. A. Hydro-climatic variability over the Andes of Colombia associated with ENSO: A review of climatic processes and their impact on one of the Earth's most important biodiversity hotspots, DOI:10.1007/s00382-010-0931-y (2011). Andreoli, R. V. et al. The influence of different El Niño types on the South American rainfall. Int. J. Climatol., 37(3), 1374-1390, DOI:10.1002/joc.4783 (2017). Bedoya-Soto, J. M., Poveda, G., Trenberth, K. E., Vélez-Upegui, J. J. Interannual hydroclimatic variability and the 2009-2011 extreme ENSO phases in Colombia: from Andean glaciers to Caribbean lowlands, Theor. Appl. Climatol., 135(3-4), 1531-1544, DOI:10.1007/s00704-018-2452-2 (2019). Poveda, G. et al. High Impact Weather Events in the Andes. Front. Earth Sci., DOI:10.3389/feart.2020.00162 (2020). Poveda, G. et al. The Diurnal Cycle of Precipitation in the Tropical Andes of Colombia. Mon. Weather. Rev., 133 (1), 228-240, DOI:10.1175/MWR-2853.1 (2005). Bedoya-Soto, J. M., Poveda, G., Sauchyn, D. New insights on land surface-atmosphere feedbacks over tropical South America at interannual timescales. Water, 10(8), 1095, DOI:10.3390/w10081095 (2018). Poveda, G., Jaramillo, A., Gil, M. M., Quiceno, N., Mantilla, R. I. Seasonality in ENSO-related precipitation, river discharges, soil moisture, and vegetation index in Colombia. Water Resour. Res., 37(8), 2169-2178, DOI:10.1029/2000WR900395 (2001). Wu, Z. et al. The modulated annual cycle: An alternative reference frame for climate anomalies. Clim. Dyn., 31 (7-8), 823-841, DOI:10.1007/s00382-008-0437-z (2008). Fedorov, A. V., Philander, S. G. Is El Nino changing?, Science, 288(5473), 1997-2002, DOI:10.1126/science.288.5473.1997 (2000). Thoning, K. W., Tans, P. P. Atmospheric carbon dioxide at Mauna Loa Observatory. 2. Analysis of the NOAA GMCC data, 1974-1985. J. Geophys. Res., 94(D6), 8549-8565, DOI:10.1029/JD094iD06p08549 (1989). Zhang, J., Wu, Y. k-Sample tests based on the likelihood ratio. Comput. Stat. Data Analysis, DOI:10.1016/j.csda.2006.08.029 (2007). info:eu-repo/semantics/openAccessDerechos reservados - Universidad Nacional de Colombia Atribución-NoComercial-SinDerivadas 4.0 Internacional Acceso abierto http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica Hydrology Climatology Flow rates El Niño - Southern Oscillation (ENSO) Hidrología Climatología Fenómeno del niño El Niño - Oscilación del Sur Caudales Trabajo de grado - Maestría info:eu-repo/semantics/masterThesis info:eu-repo/semantics/acceptedVersion http://purl.org/coar/resource_type/c_1843 http://purl.org/coar/version/c_ab4af688f83e57aa Text 2020 ftuncolombiair https://doi.org/10.1007/s00704020000410.1175/2008JCLI2345.110.1002/joc.500910.1088/1367-2630/12/3/03302510.1103/PhysRevE.54.670810.1103/PhysRevLett.78.419310.1016/j.physrep.2006.11.00110.1063/1.502649110.3389/fams.2020.0000310.1016/j.physleta.2011.10.0421 2023-07-02T00:07:02Z ilustraciones, mapas, tablas Hydroclimatology of Colombia is highly influenced by El Niño - Southern Oscillation (ENSO), which conditions the hydrological response over Colombia, increasing (decreasing) rainfall and streamflows during La Niña (El Niño) depending on the location in the country. This dissertation presents an approach based on synchronization techniques to study the interdependence between ENSO and hydrological variables in Colombia. To that end, we use synchronization techniques such as Phase synchronization (PS) that is based on the physical properties of weakly coupled periodic oscillators, and Generalized Synchronization (GS) that is based on properties of recurrence of non-linear dynamical systems. Furthermore, we quantify interannual hydroclimatic anomalies (HyAns) using diverse methods to evaluate the sensitivity of linear and non-linear interdependence quantifiers. Our main findings reveal that: (1) we need of quantifying the uncertainty of HyAns in terms of magnitude, sign, timing, and phases of ENSO, because HyAns methods induce an important error source and bias on the interdependence analysis and modeling of climate time series; (2) We find that the positive (negative) HyAns experienced in the Pacific, the Caribbean and the Andean regions of Colombia, during La Niña (El Niño), are phase-locked with the ENSO. Moreover, we provide evidence that the ENSO signal is phase-locked with the annual cycle of rainfall in some regions of Colombia. Furthermore, other macro-climatic processes also show significant PS such as the Pacific Decadal Oscillation (PDO) and the North Atlantic Oscillation (NAO); (3) The Caribbean, the CHOCO, and the Orinoco Low-Level Jets (LLJs), and the Cross-Equatorial Flow (CEF) constitute an interdependence mechanism and contribute to explaining hydrological anomalies in Colombia during the phases of ENSO. During La Niña (El Niño), GS is strong (weak) for the Caribbean and the CHOCO LLJs whereas GS is moderate (strong) for the Orinoco LLJ. Moreover, moisture advection by the ... Master Thesis North Atlantic North Atlantic oscillation Repositorio Institucional Universidad Nacional de Colombia Theoretical and Applied Climatology 71 3-4 185 197