Equilibrium studies of ternary aluminium(III) hydroxo complexes with ligands related to conditions in natural waters

The thesis is a summary and discussion of eight papers. During the last decades, precipitation has become increasingly acidic due to the extensive use of fossil fuels. In areas of poorly buffered bedrocks, e.g. Scandinavia, northeastern United States, this phenomenon has resulted in elevated amounts...

Full description

Bibliographic Details
Main Author: Öhman, Lars-Olof
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Umeå universitet, Kemiska institutionen 1983
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-94116
Description
Summary:The thesis is a summary and discussion of eight papers. During the last decades, precipitation has become increasingly acidic due to the extensive use of fossil fuels. In areas of poorly buffered bedrocks, e.g. Scandinavia, northeastern United States, this phenomenon has resulted in elevated amounts of Al(III) being leached into streams and lakes. Recent findings reveal that these elevated Al-concentrations could cause fish death and decreasing forest production. In the present thesis, the importance of taking naturally occurring substances into consideration when discussing Al(III) in natural waters, is emphasized. On the basis of a chemical characterization of relevant ligand classes in a natural water, the complex formation between Al^+, hydroxide ions and the inorganic ligand carbonic acid, the low-molecular weight organic ligand citric acid and the high-molecular weight model substances gallic acid, 1,2-dihydroxynaphtha-lene-4-sulfonate, 1,2-naphthoquinone-4-sulfonate, pyrocatechol and salicylic acid were investigated. The investigations were performed as series of Potentiometrie titrations and data were processed by means of the least-squares computer program LETAGROPVRID using a technique called pqr-analysis, permitting an unbiased search for complex model (and corresponding equilibrium constants) to be made. In most systems studied, the complexation at high ligand excesses can be described by a series of mononuclear complexes AIL-AIL^. Tentatively, the whole series consists of octahedrally coordinated (water and ligand oxygens) AI(III). At lower ligand excesses, the significance and in some cases even predominance of ternary mono- and polynuclear hydroxo complexes is demonstrated. In two of the systems, binary aluminium hydroxo species are evaluated. The potential importance of the substances with respect to Al-com-plexation in natural waters are indicated in a number of model calculations. The solubility of the clay mineral kaolinite is calculated as a function of -lg[H+] and ligand concentration. It is ...