Remote Sensing of Cryospheric Surfaces : Small Scale Surface Roughness Signatures in Satellite Altimetry Data

The Arctic cryosphere is experiencing a higher rate of warming compared to the rest of the world due to Arctic amplification. As glacier elevation change provide reliable evidence of climate change it is routinely measured by satellite altimeters. Satellite altimetry, while a valuable tool for monit...

Full description

Bibliographic Details
Main Author: Ideström, Petter
Format: Bachelor Thesis
Language:English
Published: Umeå universitet, Institutionen för fysik 2023
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-214653
id ftumeauniv:oai:DiVA.org:umu-214653
record_format openpolar
spelling ftumeauniv:oai:DiVA.org:umu-214653 2023-10-29T02:33:09+01:00 Remote Sensing of Cryospheric Surfaces : Small Scale Surface Roughness Signatures in Satellite Altimetry Data Ideström, Petter 2023 application/pdf http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-214653 eng eng Umeå universitet, Institutionen för fysik http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-214653 info:eu-repo/semantics/openAccess Remote sensing Altimetry Arctic Cryosphere ICESat-2 Cryosat-2 Svalbard Fjärranalysteknik Student thesis info:eu-repo/semantics/bachelorThesis text 2023 ftumeauniv 2023-10-04T22:36:27Z The Arctic cryosphere is experiencing a higher rate of warming compared to the rest of the world due to Arctic amplification. As glacier elevation change provide reliable evidence of climate change it is routinely measured by satellite altimeters. Satellite altimetry, while a valuable tool for monitoring elevation change over time, is subject to inherent uncertainties caused by, among other factors, the small scale surface roughness of the target surfaces. Previous studies have identified surface roughness as a key source of uncertainty when measuring sea ice freeboard and studies suggest the surface roughness strongly influences the Synthetic Aperture Radar (SAR) signatures of sea ice. Similar studies over snow- and glacier surfaces, are rare. In this context, we attempt to conduct a small scale calibration and validation (cal/val) campaign over glacier surfaces, using the ideal location and infrastructure of the University Centre in Svalbard. We demonstrate the process, from planning through field data collection and data analysis. By doing so, we identify good as well as bad practices. Using high resolution in-situ LiDAR data, collected under two ICESat-2 (IS2) overpasses in Svalbard we generated Digital Elevation Models (DEM) and calculated surface roughness estimates across glacier- and snow surfaces. The surface roughness was quantified by calculating the Root Mean Square (RMS) of deviations from the overall topography of the surfaces. The DEMs were used for direct comparison with the satellite elevation retrievals and the observed elevation differences were tested for correlation with surface roughness at different length scales. We then investigated the effect of surface roughness on the photon cloud of the lower level ATL03 ICESat-2 data products, by quantifying the precision in the data. We found little to no correlation between RMS roughness and the observed elevation differences between in-situ and satellite data sets, possibly explained by errors in georeferencing the DEMs. We show moderate to ... Bachelor Thesis arctic cryosphere Arctic Climate change glacier Sea ice Svalbard University Centre in Svalbard Umeå University: Publications (DiVA)
institution Open Polar
collection Umeå University: Publications (DiVA)
op_collection_id ftumeauniv
language English
topic Remote sensing
Altimetry
Arctic
Cryosphere
ICESat-2
Cryosat-2
Svalbard
Fjärranalysteknik
spellingShingle Remote sensing
Altimetry
Arctic
Cryosphere
ICESat-2
Cryosat-2
Svalbard
Fjärranalysteknik
Ideström, Petter
Remote Sensing of Cryospheric Surfaces : Small Scale Surface Roughness Signatures in Satellite Altimetry Data
topic_facet Remote sensing
Altimetry
Arctic
Cryosphere
ICESat-2
Cryosat-2
Svalbard
Fjärranalysteknik
description The Arctic cryosphere is experiencing a higher rate of warming compared to the rest of the world due to Arctic amplification. As glacier elevation change provide reliable evidence of climate change it is routinely measured by satellite altimeters. Satellite altimetry, while a valuable tool for monitoring elevation change over time, is subject to inherent uncertainties caused by, among other factors, the small scale surface roughness of the target surfaces. Previous studies have identified surface roughness as a key source of uncertainty when measuring sea ice freeboard and studies suggest the surface roughness strongly influences the Synthetic Aperture Radar (SAR) signatures of sea ice. Similar studies over snow- and glacier surfaces, are rare. In this context, we attempt to conduct a small scale calibration and validation (cal/val) campaign over glacier surfaces, using the ideal location and infrastructure of the University Centre in Svalbard. We demonstrate the process, from planning through field data collection and data analysis. By doing so, we identify good as well as bad practices. Using high resolution in-situ LiDAR data, collected under two ICESat-2 (IS2) overpasses in Svalbard we generated Digital Elevation Models (DEM) and calculated surface roughness estimates across glacier- and snow surfaces. The surface roughness was quantified by calculating the Root Mean Square (RMS) of deviations from the overall topography of the surfaces. The DEMs were used for direct comparison with the satellite elevation retrievals and the observed elevation differences were tested for correlation with surface roughness at different length scales. We then investigated the effect of surface roughness on the photon cloud of the lower level ATL03 ICESat-2 data products, by quantifying the precision in the data. We found little to no correlation between RMS roughness and the observed elevation differences between in-situ and satellite data sets, possibly explained by errors in georeferencing the DEMs. We show moderate to ...
format Bachelor Thesis
author Ideström, Petter
author_facet Ideström, Petter
author_sort Ideström, Petter
title Remote Sensing of Cryospheric Surfaces : Small Scale Surface Roughness Signatures in Satellite Altimetry Data
title_short Remote Sensing of Cryospheric Surfaces : Small Scale Surface Roughness Signatures in Satellite Altimetry Data
title_full Remote Sensing of Cryospheric Surfaces : Small Scale Surface Roughness Signatures in Satellite Altimetry Data
title_fullStr Remote Sensing of Cryospheric Surfaces : Small Scale Surface Roughness Signatures in Satellite Altimetry Data
title_full_unstemmed Remote Sensing of Cryospheric Surfaces : Small Scale Surface Roughness Signatures in Satellite Altimetry Data
title_sort remote sensing of cryospheric surfaces : small scale surface roughness signatures in satellite altimetry data
publisher Umeå universitet, Institutionen för fysik
publishDate 2023
url http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-214653
genre arctic cryosphere
Arctic
Climate change
glacier
Sea ice
Svalbard
University Centre in Svalbard
genre_facet arctic cryosphere
Arctic
Climate change
glacier
Sea ice
Svalbard
University Centre in Svalbard
op_relation http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-214653
op_rights info:eu-repo/semantics/openAccess
_version_ 1781055075283632128