Electrocatalysts for sustainable hydrogen energy : disordered and heterogeneous nanomaterials

With the current global greenhouse gas emissions, our remaining carbon budget is depleted in only 7 years. After that, several biophysical systems are predicted to collapse such as the arctic ice, coral reefs and the permafrost, leading to potentially irreversible consequences. Our emissions are str...

Full description

Bibliographic Details
Main Author: Ekspong, Joakim
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Umeå universitet, Institutionen för fysik 2021
Subjects:
Ice
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-180130
Description
Summary:With the current global greenhouse gas emissions, our remaining carbon budget is depleted in only 7 years. After that, several biophysical systems are predicted to collapse such as the arctic ice, coral reefs and the permafrost, leading to potentially irreversible consequences. Our emissions are strongly correlated to access of energy and even if we are aware of the planetary emergency today, our emissions still continue to grow. Electrical vehicles have the possibility to reduce the emissions in the transportation sector significantly. However, these vehicles are still expensive and impractical for long-distance or heavy transportation. While political actions and technological development are essential to keep prices down, the driving dis- tance can be increased by replacing the batteries for onboard electricity production. In hydrogen fuel cells, electricity is produced by combining hydrogen gas (H2) and oxygen with only water as the by-product and if employed in electrical vehicles, distances of 500 km are enabled with a refueling time in 5 minutes. For other uses than in vehicles, H2 is also promising for large-scale electricity storage and for several industrial processes such as manufacturing CO2-free steel, ammonia and synthetic fuels. However, today most H2 production methods relies on fossil fuels and releases huge amounts of CO2. Electrolysis of water is an alternative production method where H2, along with oxygen are produced from water. To split the water, electricity has to be added and if renewable energy sources are used, the method has zero emissions and is considered most promising for a sustainable hydrogen energy economy. The tech- nique is relatively expensive compared to the fossil fuel-based methods and relies on rare noble metals such as platinum as catalysts for decreasing the required energy to split water. For large scale productions, these metals need to be replaced by more sustainable and abundant catalysts to lower the cost and minimize the environmental impacts. In this thesis we ...