Global Modeling of Secondary Organic Aerosol Formation: From Atmospheric Chemistry to Climate.

The radiative effect due to atmospheric aerosol particles still has large uncertainties. These uncertainties confound interpretation of climate change due to CO2 increase between pre-industrial and present times, and limit our ability to project future climate change. One factor causing these uncert...

Full description

Bibliographic Details
Main Author: Lin, Guangxing
Other Authors: Penner, Joyce E., Flanner, Mark G., Ivanov, Valeriy Y., Sillman, Sanford
Format: Thesis
Language:English
Published: 2013
Subjects:
Online Access:http://hdl.handle.net/2027.42/99876
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/99876
record_format openpolar
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/99876 2023-08-20T04:09:44+02:00 Global Modeling of Secondary Organic Aerosol Formation: From Atmospheric Chemistry to Climate. Lin, Guangxing Penner, Joyce E. Flanner, Mark G. Ivanov, Valeriy Y. Sillman, Sanford 2013 application/pdf http://hdl.handle.net/2027.42/99876 en_US eng http://hdl.handle.net/2027.42/99876 Atmospheric Chemistry Aerosol Radiation Geology and Earth Sciences Science Thesis 2013 ftumdeepblue 2023-07-31T20:58:52Z The radiative effect due to atmospheric aerosol particles still has large uncertainties. These uncertainties confound interpretation of climate change due to CO2 increase between pre-industrial and present times, and limit our ability to project future climate change. One factor causing these uncertainties is poor representation of the chemical and physical processes related to secondary organic aerosol (SOA) in current models. Therefore, I develop different mechanisms to simulate the SOA formation in a global 3-d model (IMPACT). The basic mechanism includes SOA formation from organic nitrates and peroxides produced from an explicit chemical formulation, using partition coefficients based on thermodynamic principles together with assumptions for the rate of formation of low-volatility oligomers. I also include the formation of low-volatility SOA from the reaction of glyoxal and methylglyoxal on aqueous aerosols and cloud droplets as well as from the reaction of epoxides on aqueous aerosols, using a simple reactive uptake parameterization. In addition, I develop a multiphase process scheme with detail reactions in cloud water and aerosol water to simulate the SOA formation in the aqueous phase. The model using these mechanisms is shown to be able to predict the observed SOA reasonably well. Finally, I use this fully explicit SOA formation model to investigate the change in SOA between present day and pre-industrial conditions and to assess the radiative forcing associated with both anthropogenic and biogenic SOA. The increase of biogenic and anthropogenic SOA results in a global average direct forcing ranging from -0.06 to -0.21 Wm-2 and a first indirect forcing ranging from -0.24 to -0.32 Wm-2, depending on the size distribution and refractive index of SOA. Moreover, the radiative forcing of present-day organic aerosol in snow and sea-ice is estimated and is shown to cause a warming effect comparable to that due to black carbon in snow and sea-ice. PhD Atmospheric, Oceanic and Space Sciences University of ... Thesis Sea ice University of Michigan: Deep Blue
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language English
topic Atmospheric Chemistry
Aerosol
Radiation
Geology and Earth Sciences
Science
spellingShingle Atmospheric Chemistry
Aerosol
Radiation
Geology and Earth Sciences
Science
Lin, Guangxing
Global Modeling of Secondary Organic Aerosol Formation: From Atmospheric Chemistry to Climate.
topic_facet Atmospheric Chemistry
Aerosol
Radiation
Geology and Earth Sciences
Science
description The radiative effect due to atmospheric aerosol particles still has large uncertainties. These uncertainties confound interpretation of climate change due to CO2 increase between pre-industrial and present times, and limit our ability to project future climate change. One factor causing these uncertainties is poor representation of the chemical and physical processes related to secondary organic aerosol (SOA) in current models. Therefore, I develop different mechanisms to simulate the SOA formation in a global 3-d model (IMPACT). The basic mechanism includes SOA formation from organic nitrates and peroxides produced from an explicit chemical formulation, using partition coefficients based on thermodynamic principles together with assumptions for the rate of formation of low-volatility oligomers. I also include the formation of low-volatility SOA from the reaction of glyoxal and methylglyoxal on aqueous aerosols and cloud droplets as well as from the reaction of epoxides on aqueous aerosols, using a simple reactive uptake parameterization. In addition, I develop a multiphase process scheme with detail reactions in cloud water and aerosol water to simulate the SOA formation in the aqueous phase. The model using these mechanisms is shown to be able to predict the observed SOA reasonably well. Finally, I use this fully explicit SOA formation model to investigate the change in SOA between present day and pre-industrial conditions and to assess the radiative forcing associated with both anthropogenic and biogenic SOA. The increase of biogenic and anthropogenic SOA results in a global average direct forcing ranging from -0.06 to -0.21 Wm-2 and a first indirect forcing ranging from -0.24 to -0.32 Wm-2, depending on the size distribution and refractive index of SOA. Moreover, the radiative forcing of present-day organic aerosol in snow and sea-ice is estimated and is shown to cause a warming effect comparable to that due to black carbon in snow and sea-ice. PhD Atmospheric, Oceanic and Space Sciences University of ...
author2 Penner, Joyce E.
Flanner, Mark G.
Ivanov, Valeriy Y.
Sillman, Sanford
format Thesis
author Lin, Guangxing
author_facet Lin, Guangxing
author_sort Lin, Guangxing
title Global Modeling of Secondary Organic Aerosol Formation: From Atmospheric Chemistry to Climate.
title_short Global Modeling of Secondary Organic Aerosol Formation: From Atmospheric Chemistry to Climate.
title_full Global Modeling of Secondary Organic Aerosol Formation: From Atmospheric Chemistry to Climate.
title_fullStr Global Modeling of Secondary Organic Aerosol Formation: From Atmospheric Chemistry to Climate.
title_full_unstemmed Global Modeling of Secondary Organic Aerosol Formation: From Atmospheric Chemistry to Climate.
title_sort global modeling of secondary organic aerosol formation: from atmospheric chemistry to climate.
publishDate 2013
url http://hdl.handle.net/2027.42/99876
genre Sea ice
genre_facet Sea ice
op_relation http://hdl.handle.net/2027.42/99876
_version_ 1774723391405686784