Idealized tropical cyclone simulations of intermediate complexity: A test case for AGCMs

Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/96307/1/jame57.pdf

Bibliographic Details
Published in:Journal of Advances in Modeling Earth Systems
Main Authors: Reed, Kevin A., Jablonowski, Christiane
Other Authors: Department of Atmospheric, Oceanic and Space Sciences, University of Michigan,Ann Arbor, Michigan, USA.
Format: Article in Journal/Newspaper
Language:unknown
Published: Cambridge Univ. Press 2012
Subjects:
Online Access:http://hdl.handle.net/2027.42/96307
https://doi.org/10.1029/2011MS000099
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/96307
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic Model Development
Tropical Cyclone
General Circulation Modeling
Geological Sciences
Science
spellingShingle Model Development
Tropical Cyclone
General Circulation Modeling
Geological Sciences
Science
Reed, Kevin A.
Jablonowski, Christiane
Idealized tropical cyclone simulations of intermediate complexity: A test case for AGCMs
topic_facet Model Development
Tropical Cyclone
General Circulation Modeling
Geological Sciences
Science
description Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/96307/1/jame57.pdf
author2 Department of Atmospheric, Oceanic and Space Sciences, University of Michigan,Ann Arbor, Michigan, USA.
format Article in Journal/Newspaper
author Reed, Kevin A.
Jablonowski, Christiane
author_facet Reed, Kevin A.
Jablonowski, Christiane
author_sort Reed, Kevin A.
title Idealized tropical cyclone simulations of intermediate complexity: A test case for AGCMs
title_short Idealized tropical cyclone simulations of intermediate complexity: A test case for AGCMs
title_full Idealized tropical cyclone simulations of intermediate complexity: A test case for AGCMs
title_fullStr Idealized tropical cyclone simulations of intermediate complexity: A test case for AGCMs
title_full_unstemmed Idealized tropical cyclone simulations of intermediate complexity: A test case for AGCMs
title_sort idealized tropical cyclone simulations of intermediate complexity: a test case for agcms
publisher Cambridge Univ. Press
publishDate 2012
url http://hdl.handle.net/2027.42/96307
https://doi.org/10.1029/2011MS000099
genre Arctic
genre_facet Arctic
op_relation Reed, Kevin A.; Jablonowski, Christiane (2012). "Idealized tropical cyclone simulations of intermediate complexity: A test case for AGCMs." Journal of Advances in Modeling Earth Systems 4(2): n/a-n/a. <http://hdl.handle.net/2027.42/96307>
1942-2466
http://hdl.handle.net/2027.42/96307
doi:10.1029/2011MS000099
Journal of Advances in Modeling Earth Systems
Smith, R. K., and S. Vogl ( 2008 ), A simple model of the hurricane boundary layer revisited, Q. J. R. Meteorol. Soc., 134, 337 – 351, doi:10.1002/qj.216.
Reed, K. A., and C. Jablonowski ( 2011 b), Assessing the uncertainty of tropical cyclone simulations in NCAR's Community Atmosphere Model, J. Adv. Model. Earth Syst., 3, M08002, doi:10.1029/2011MS000076.
Reed, K. A., and C. Jablonowski ( 2011 c), Impact of physical parameterizations on idealized tropical cyclones in the Community Atmosphere Model, Geophys. Res. Lett., 38, L04805, doi:10.1029/2010GL046297.
Rosenthal, S. L. ( 1978 ), Numerical simulation of tropical cyclone development with latent heat release by the resolvable scales I: Model description and preliminary results, J. Atmos. Sci., 35, 258 – 271, doi:10.1175/1520‐0469(1978)035<0258:NSOTCD>2.0.CO;2.
Simmons, A. J., and D. M. Burridge ( 1981 ), An energy and angular‐momentum conserving vertical finite‐difference scheme and hybrid vertical coordinates, Mon. Weather Rev., 109, 758 – 766, doi:10.1175/1520‐0493(1981)109<0758:AEAAMC>2.0.CO;2.
Taylor, M., J. Tribbia, and M. Iskandarani ( 1997 ), The spectral element method for the shallow water equations on the sphere, J. Comput. Phys., 130, 92 – 108, doi:10.1006/jcph.1996.5554.
Taylor, M. A. ( 2011 ), Conservation of mass and energy for the moist atmospheric primitive equations on unstructured grids, in Numerical Techniques for Global Atmospheric Models, Lect. Notes Comput. Sci. Eng., vol. 80, edited by P. H. Lauritzen, and et al., pp. 357 – 380, Springer, Berlin, doi:10.1007/978‐3‐642‐11640‐7_12.
Taylor, M. A., and A. Fournier ( 2010 ), A compatible and conservative spectral element method on unstructured grids, J. Comput. Phys., 229, 5879 – 5895, doi:10.1016/j.jcp.2010.04.008.
Taylor, M. A., J. Edwards, S. Thomas, and R. D. Nair ( 2007 ), A mass and energy conserving spectral element atmospheric dynamical core on the cubed‐sphere grid, J. Phys. Conf. Ser., 78, 012074, doi:10.1088/1742‐6596/78/1/012074.
Taylor, M. A., J. Edwards, and A. St‐Cyr ( 2008 ), Petascale atmospheric models for the Community Climate System Model: New developments and evaluation of scalable dynamical cores, J. Phys. Conf. Ser., 125, 012023, doi:10.1088/1742‐6596/125/1/012023.
Tiedtke, M. ( 1987 ), Parametrization of Non‐convective Condensation Processes, Meteorol. Train. Course Lect. Ser., Eur. Cent. for Medium‐Range Weather Forecasts, Reading, U. K.
Ullrich, P. A., P. H. Lauritzen, and C. Jablonowski ( 2009 ), Geometrically Exact Conservative Remapping (GECoRe): Regular latitude‐longitude and cubed‐sphere grids, Mon. Weather Rev., 137, 1721 – 1741, doi:10.1175/2008MWR2817.1.
White, A. A., B. J. Hoskins, I. Roulstone, and A. Staniforth ( 2005 ), Consistent approximate models of the global atmosphere: Shallow, deep, hydrostatic, quasi‐hydrostatic and non‐hydrostatic, Q. J. R. Meteorol. Soc., 131, 2081 – 2107, doi:10.1256/qj.04.49.
Whitehead, J., C. Jablonowski, R. B. Rood, and P. H. Lauritzen ( 2011 ), A stability analysis of divergence damping on a latitude‐longitude grid, Mon. Weather Rev., 139, 2976 – 2993, doi:10.1175/2011MWR3607.1.
Williamson, D. L. ( 2002 ), Time‐split versus process‐split coupling of parameterizations and dynamical core, Mon. Weather Rev., 130, 2024 – 2041, doi:10.1175/1520‐0493(2002)130<2024:TSVPSC>2.0.CO;2.
Williamson, D. L. ( 2008 a), Convergence of aqua‐planet simulations with increasing resolution in the Community Atmospheric Model, Version 3, Tellus, Ser. A, 60, 848 – 862, doi:10.1111/j.1600‐0870.2008.00339.x.
Williamson, D. L. ( 2008 b), Equivalent finite volume and Eulerian spectral transform horizontal resolutions established from aqua‐planet simulations, Tellus, Ser. A, 60, 839 – 847, doi:10.1111/j.1600‐0870.2008.00340.x.
Williamson, D. L., J. B. Drake, J. J. Hack, R. Jakob, and P. N. Swarztrauber ( 1992 ), A standard test set for numerical approximations to the shallow water equations in spherical geometry, J. Comput. Phys., 102, 211 – 224, doi:10.1016/S0021‐9991(05)80016‐6.
Williamson, D. L., and J. G. Olson ( 1994 ), Climate simulations with a semi‐Lagrangian version of the NCAR Community Climate Model, Mon. Weather Rev., 122, 1594 – 1610, doi:10.1175/1520‐0493(1994)122<1594:CSWASL>2.0.CO;2.
Arakawa, A., and V. R. Lamb ( 1977 ), Computational design of the basic dynamical process of the UCLA general circulation model, Methods Comput. Phys., 17, 173 – 265.
Betts, A. K., and M. J. Miller ( 1986 ), A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and Arctic air‐mass data sets, Q. J. R. Meteorol. Soc., 112, 693 – 709, doi:10.1002/qj.49711247308.
Black, P. G., and et al., ( 2007 ), Air sea exchange in hurricanes: Synthesis of observations from the coupled boundary layer air sea transfer experiment, Bull. Am. Meteorol. Soc., 88, 357 – 374, doi:10.1175/BAMS‐88‐3‐357.
Bode, L., and R. K. Smith ( 1975 ), A parameterization of the boundary layer of a tropical cyclone, Boundary Layer Meteorol., 8, 3 – 19, doi:10.1007/BF02579390.
Boer, G. J., and B. Denis ( 1997 ), Numerical covergence of the dynamics of a GCM, Clim. Dyn., 13, 359 – 374, doi:10.1007/s003820050171.
Boville, B. A. ( 1991 ), Sensitivity of simulated climate to model resolution, J. Clim., 4, 469 – 485, doi:10.1175/1520‐0442(1991)004<0469:SOSCTM>2.0.CO;2.
Boville, B. A., and C. S. Bretherton ( 2003 ), Heating and kinetic energy dissipation in the NCAR Community Atmosphere Model, J. Clim., 16, 3877 – 3887, doi:10.1175/1520‐0442(2003)016<3877:HAKEDI>2.0.CO;2.
Charney, J. G., and N. A. Phillips ( 1953 ), Numerical integration of the quasi‐geostrophic equations for barotropic and simple baroclinic flows, J. Atmos. Sci., 10, 71 – 99, doi:10.1175/1520‐0469(1953)010<0071:NIOTQG>2.0.CO;2.
Claussen, M., and et al., ( 2002 ), Earth system models of intermediate complexity: Closing the gap in the spectrum of climate system models, Clim. Dyn., 18 ( 7 ), 579 – 586, doi:10.1007/s00382‐001‐0200‐1.
Colella, P., and P. R. Woodward ( 1984 ), The Piecewise Parabolic Method (PPM) for gas‐dynamical simulations, J. Comput. Phys., 54, 174 – 201, doi:10.1016/0021‐9991(84)90143‐8.
Dennis, J., and et al., ( 2012 ), CAM‐SE: A scalable spectral element dynamical core for the Community Atmosphere Model, Int. J. High Perform. Comput. Appl., doi:10.1177/1094342011428142, in press.
Fournier, A., M. A. Taylor, and J. J. Tribbia ( 2004 ), The spectral element atmospheric model: High‐resolution parallel computation and response to regional forcing, Mon. Weather Rev., 132, 726 – 748, doi:10.1175/1520‐0493(2004)132<0726:TSEAMS>2.0.CO;2.
Frierson, D. M. W., I. M. Held, and P. Zurita‐Gotor ( 2006 ), A gray‐radiation aquaplanet moist GCM. Part I: Static stability and eddy scale, J. Atmos. Sci., 63, 2548 – 2566, doi:10.1175/JAS3753.1.
Galewsky, J., L. M. Polvani, and R. K. Scott ( 2004 ), An initial‐value problem to test numerical models of the shallow water equations, Tellus, Ser. A, 56, 429 – 440, doi:10.1111/j.1600‐0870.2004.00071.x.
Garratt, J. R. ( 1992 ), The Atmospheric Boundary Layer, 316 pp., Cambridge Univ. Press, Cambrige, U. K.
Gates, W. L. ( 1992 ), AMIP: The Atmospheric Model Intercomparison Project, Bull. Am. Meteorol. Soc., 73, 1962 – 1970, doi:10.1175/1520‐0477(1992)073<1962:ATAMIP>2.0.CO;2.
Gates, W. L., and et al., ( 1999 ), An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I), Bull. Am. Meteorol. Soc., 80, 29 – 55, doi:10.1175/1520‐0477(1999)080<0029:AOOTRO>2.0.CO;2.
Giraldo, F. X., and T. E. Rosmond ( 2004 ), A scalable Spectral Element Eulerian Atmospheric Model (SEE‐AM) for NWP: Dynamical core tests, Mon. Weather Rev., 132, 133 – 153, doi:10.1175/1520‐0493(2004)132<0133:ASSEEA>2.0.CO;2.
Hasse, L., and S. D. Smith ( 1997 ), Local sea surface wind, wind stress, and sensible and latent heat fluxes, J. Clim., 10, 2711 – 2724, doi:10.1175/1520‐0442(1997)010<2711:LSSWWS>2.0.CO;2.
Held, I. M., and M. J. Suarez ( 1994 ), A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models, Bull. Am. Meteorol. Soc., 75, 1825 – 1830, doi:10.1175/1520‐0477(1994)075<1825:APFTIO>2.0.CO;2.
Holton, J. R. ( 2004 ), An Introduction to Dynamic Meteorology,, 4th ed., 535 pp., Academic, New York.
Jablonowski, C., and D. L. Williamson ( 2006 ), A baroclinic instabilitiy test case for atmospheric model dynamical cores, Q. J. R. Meteorol. Soc., 132, 2943 – 2975, doi:10.1256/qj.06.12.
Jablonowski, C., and D. L. Williamson ( 2011 ), The pros and cons of diffusion, filters and fixers in atmospheric general circulation models, in Numerical Techniques for Global Atmospheric Models, Lect. Notes Comput. Sci. Eng., vol. 80, edited by P. H. Lauritzen, and et al., pp. 381 – 493, Springer, Berlindoi, doi:10.1007/978‐3‐642‐11640‐7_13.
Jablonowski, C., P. H. Lauritzen, R. D. Nair, and M. Taylor ( 2008 ), Idealized test cases for the dynamical cores of atmospheric general circulation models: A proposal for the NCAR ASP 2008 summer colloquium, technical report, Natl. Cent. for Atmos. Res., Boulder, Colo.
Jordan, C. L. ( 1958 ), Mean soundings for the West Indies area, J. Atmos. Sci., 15, 91 – 97, doi:10.1175/1520‐0469(1958)015.
Lauritzen, P. H., C. Jablonowski, M. A. Taylor, and R. D. Nair ( 2010 ), Rotated versions of the Jablonowski steady‐state and baroclinic wave test cases: A dynamical core intercomparison, J. Adv. Model. Earth Syst., 2, 15, doi:10.3894/JAMES.2010.2.15.
op_rights IndexNoFollow
op_doi https://doi.org/10.1029/2011MS00009910.1002/qj.21610.1029/2011MS00007610.1029/2010GL04629710.1175/1520‐0469(1978)035<0258:NSOTCD>2.0.CO;210.1175/1520‐0493(1981)109<0758:AEAAMC>2.0.CO;210.1006/jcph.1996.555410.1007/978‐3‐642‐11640‐7_1210.1016/j.jcp.2010.04
container_title Journal of Advances in Modeling Earth Systems
container_volume 4
container_issue 2
container_start_page n/a
op_container_end_page n/a
_version_ 1774713609205579776
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/96307 2023-08-20T04:03:12+02:00 Idealized tropical cyclone simulations of intermediate complexity: A test case for AGCMs Reed, Kevin A. Jablonowski, Christiane Department of Atmospheric, Oceanic and Space Sciences, University of Michigan,Ann Arbor, Michigan, USA. 2012-02 application/pdf http://hdl.handle.net/2027.42/96307 https://doi.org/10.1029/2011MS000099 unknown Cambridge Univ. Press Wiley Periodicals, Inc. Reed, Kevin A.; Jablonowski, Christiane (2012). "Idealized tropical cyclone simulations of intermediate complexity: A test case for AGCMs." Journal of Advances in Modeling Earth Systems 4(2): n/a-n/a. <http://hdl.handle.net/2027.42/96307> 1942-2466 http://hdl.handle.net/2027.42/96307 doi:10.1029/2011MS000099 Journal of Advances in Modeling Earth Systems Smith, R. K., and S. Vogl ( 2008 ), A simple model of the hurricane boundary layer revisited, Q. J. R. Meteorol. Soc., 134, 337 – 351, doi:10.1002/qj.216. Reed, K. A., and C. Jablonowski ( 2011 b), Assessing the uncertainty of tropical cyclone simulations in NCAR's Community Atmosphere Model, J. Adv. Model. Earth Syst., 3, M08002, doi:10.1029/2011MS000076. Reed, K. A., and C. Jablonowski ( 2011 c), Impact of physical parameterizations on idealized tropical cyclones in the Community Atmosphere Model, Geophys. Res. Lett., 38, L04805, doi:10.1029/2010GL046297. Rosenthal, S. L. ( 1978 ), Numerical simulation of tropical cyclone development with latent heat release by the resolvable scales I: Model description and preliminary results, J. Atmos. Sci., 35, 258 – 271, doi:10.1175/1520‐0469(1978)035<0258:NSOTCD>2.0.CO;2. Simmons, A. J., and D. M. Burridge ( 1981 ), An energy and angular‐momentum conserving vertical finite‐difference scheme and hybrid vertical coordinates, Mon. Weather Rev., 109, 758 – 766, doi:10.1175/1520‐0493(1981)109<0758:AEAAMC>2.0.CO;2. Taylor, M., J. Tribbia, and M. Iskandarani ( 1997 ), The spectral element method for the shallow water equations on the sphere, J. Comput. Phys., 130, 92 – 108, doi:10.1006/jcph.1996.5554. Taylor, M. A. ( 2011 ), Conservation of mass and energy for the moist atmospheric primitive equations on unstructured grids, in Numerical Techniques for Global Atmospheric Models, Lect. Notes Comput. Sci. Eng., vol. 80, edited by P. H. Lauritzen, and et al., pp. 357 – 380, Springer, Berlin, doi:10.1007/978‐3‐642‐11640‐7_12. Taylor, M. A., and A. Fournier ( 2010 ), A compatible and conservative spectral element method on unstructured grids, J. Comput. Phys., 229, 5879 – 5895, doi:10.1016/j.jcp.2010.04.008. Taylor, M. A., J. Edwards, S. Thomas, and R. D. Nair ( 2007 ), A mass and energy conserving spectral element atmospheric dynamical core on the cubed‐sphere grid, J. Phys. Conf. Ser., 78, 012074, doi:10.1088/1742‐6596/78/1/012074. Taylor, M. A., J. Edwards, and A. St‐Cyr ( 2008 ), Petascale atmospheric models for the Community Climate System Model: New developments and evaluation of scalable dynamical cores, J. Phys. Conf. Ser., 125, 012023, doi:10.1088/1742‐6596/125/1/012023. Tiedtke, M. ( 1987 ), Parametrization of Non‐convective Condensation Processes, Meteorol. Train. Course Lect. Ser., Eur. Cent. for Medium‐Range Weather Forecasts, Reading, U. K. Ullrich, P. A., P. H. Lauritzen, and C. Jablonowski ( 2009 ), Geometrically Exact Conservative Remapping (GECoRe): Regular latitude‐longitude and cubed‐sphere grids, Mon. Weather Rev., 137, 1721 – 1741, doi:10.1175/2008MWR2817.1. White, A. A., B. J. Hoskins, I. Roulstone, and A. Staniforth ( 2005 ), Consistent approximate models of the global atmosphere: Shallow, deep, hydrostatic, quasi‐hydrostatic and non‐hydrostatic, Q. J. R. Meteorol. Soc., 131, 2081 – 2107, doi:10.1256/qj.04.49. Whitehead, J., C. Jablonowski, R. B. Rood, and P. H. Lauritzen ( 2011 ), A stability analysis of divergence damping on a latitude‐longitude grid, Mon. Weather Rev., 139, 2976 – 2993, doi:10.1175/2011MWR3607.1. Williamson, D. L. ( 2002 ), Time‐split versus process‐split coupling of parameterizations and dynamical core, Mon. Weather Rev., 130, 2024 – 2041, doi:10.1175/1520‐0493(2002)130<2024:TSVPSC>2.0.CO;2. Williamson, D. L. ( 2008 a), Convergence of aqua‐planet simulations with increasing resolution in the Community Atmospheric Model, Version 3, Tellus, Ser. A, 60, 848 – 862, doi:10.1111/j.1600‐0870.2008.00339.x. Williamson, D. L. ( 2008 b), Equivalent finite volume and Eulerian spectral transform horizontal resolutions established from aqua‐planet simulations, Tellus, Ser. A, 60, 839 – 847, doi:10.1111/j.1600‐0870.2008.00340.x. Williamson, D. L., J. B. Drake, J. J. Hack, R. Jakob, and P. N. Swarztrauber ( 1992 ), A standard test set for numerical approximations to the shallow water equations in spherical geometry, J. Comput. Phys., 102, 211 – 224, doi:10.1016/S0021‐9991(05)80016‐6. Williamson, D. L., and J. G. Olson ( 1994 ), Climate simulations with a semi‐Lagrangian version of the NCAR Community Climate Model, Mon. Weather Rev., 122, 1594 – 1610, doi:10.1175/1520‐0493(1994)122<1594:CSWASL>2.0.CO;2. Arakawa, A., and V. R. Lamb ( 1977 ), Computational design of the basic dynamical process of the UCLA general circulation model, Methods Comput. Phys., 17, 173 – 265. Betts, A. K., and M. J. Miller ( 1986 ), A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and Arctic air‐mass data sets, Q. J. R. Meteorol. Soc., 112, 693 – 709, doi:10.1002/qj.49711247308. Black, P. G., and et al., ( 2007 ), Air sea exchange in hurricanes: Synthesis of observations from the coupled boundary layer air sea transfer experiment, Bull. Am. Meteorol. Soc., 88, 357 – 374, doi:10.1175/BAMS‐88‐3‐357. Bode, L., and R. K. Smith ( 1975 ), A parameterization of the boundary layer of a tropical cyclone, Boundary Layer Meteorol., 8, 3 – 19, doi:10.1007/BF02579390. Boer, G. J., and B. Denis ( 1997 ), Numerical covergence of the dynamics of a GCM, Clim. Dyn., 13, 359 – 374, doi:10.1007/s003820050171. Boville, B. A. ( 1991 ), Sensitivity of simulated climate to model resolution, J. Clim., 4, 469 – 485, doi:10.1175/1520‐0442(1991)004<0469:SOSCTM>2.0.CO;2. Boville, B. A., and C. S. Bretherton ( 2003 ), Heating and kinetic energy dissipation in the NCAR Community Atmosphere Model, J. Clim., 16, 3877 – 3887, doi:10.1175/1520‐0442(2003)016<3877:HAKEDI>2.0.CO;2. Charney, J. G., and N. A. Phillips ( 1953 ), Numerical integration of the quasi‐geostrophic equations for barotropic and simple baroclinic flows, J. Atmos. Sci., 10, 71 – 99, doi:10.1175/1520‐0469(1953)010<0071:NIOTQG>2.0.CO;2. Claussen, M., and et al., ( 2002 ), Earth system models of intermediate complexity: Closing the gap in the spectrum of climate system models, Clim. Dyn., 18 ( 7 ), 579 – 586, doi:10.1007/s00382‐001‐0200‐1. Colella, P., and P. R. Woodward ( 1984 ), The Piecewise Parabolic Method (PPM) for gas‐dynamical simulations, J. Comput. Phys., 54, 174 – 201, doi:10.1016/0021‐9991(84)90143‐8. Dennis, J., and et al., ( 2012 ), CAM‐SE: A scalable spectral element dynamical core for the Community Atmosphere Model, Int. J. High Perform. Comput. Appl., doi:10.1177/1094342011428142, in press. Fournier, A., M. A. Taylor, and J. J. Tribbia ( 2004 ), The spectral element atmospheric model: High‐resolution parallel computation and response to regional forcing, Mon. Weather Rev., 132, 726 – 748, doi:10.1175/1520‐0493(2004)132<0726:TSEAMS>2.0.CO;2. Frierson, D. M. W., I. M. Held, and P. Zurita‐Gotor ( 2006 ), A gray‐radiation aquaplanet moist GCM. Part I: Static stability and eddy scale, J. Atmos. Sci., 63, 2548 – 2566, doi:10.1175/JAS3753.1. Galewsky, J., L. M. Polvani, and R. K. Scott ( 2004 ), An initial‐value problem to test numerical models of the shallow water equations, Tellus, Ser. A, 56, 429 – 440, doi:10.1111/j.1600‐0870.2004.00071.x. Garratt, J. R. ( 1992 ), The Atmospheric Boundary Layer, 316 pp., Cambridge Univ. Press, Cambrige, U. K. Gates, W. L. ( 1992 ), AMIP: The Atmospheric Model Intercomparison Project, Bull. Am. Meteorol. Soc., 73, 1962 – 1970, doi:10.1175/1520‐0477(1992)073<1962:ATAMIP>2.0.CO;2. Gates, W. L., and et al., ( 1999 ), An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I), Bull. Am. Meteorol. Soc., 80, 29 – 55, doi:10.1175/1520‐0477(1999)080<0029:AOOTRO>2.0.CO;2. Giraldo, F. X., and T. E. Rosmond ( 2004 ), A scalable Spectral Element Eulerian Atmospheric Model (SEE‐AM) for NWP: Dynamical core tests, Mon. Weather Rev., 132, 133 – 153, doi:10.1175/1520‐0493(2004)132<0133:ASSEEA>2.0.CO;2. Hasse, L., and S. D. Smith ( 1997 ), Local sea surface wind, wind stress, and sensible and latent heat fluxes, J. Clim., 10, 2711 – 2724, doi:10.1175/1520‐0442(1997)010<2711:LSSWWS>2.0.CO;2. Held, I. M., and M. J. Suarez ( 1994 ), A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models, Bull. Am. Meteorol. Soc., 75, 1825 – 1830, doi:10.1175/1520‐0477(1994)075<1825:APFTIO>2.0.CO;2. Holton, J. R. ( 2004 ), An Introduction to Dynamic Meteorology,, 4th ed., 535 pp., Academic, New York. Jablonowski, C., and D. L. Williamson ( 2006 ), A baroclinic instabilitiy test case for atmospheric model dynamical cores, Q. J. R. Meteorol. Soc., 132, 2943 – 2975, doi:10.1256/qj.06.12. Jablonowski, C., and D. L. Williamson ( 2011 ), The pros and cons of diffusion, filters and fixers in atmospheric general circulation models, in Numerical Techniques for Global Atmospheric Models, Lect. Notes Comput. Sci. Eng., vol. 80, edited by P. H. Lauritzen, and et al., pp. 381 – 493, Springer, Berlindoi, doi:10.1007/978‐3‐642‐11640‐7_13. Jablonowski, C., P. H. Lauritzen, R. D. Nair, and M. Taylor ( 2008 ), Idealized test cases for the dynamical cores of atmospheric general circulation models: A proposal for the NCAR ASP 2008 summer colloquium, technical report, Natl. Cent. for Atmos. Res., Boulder, Colo. Jordan, C. L. ( 1958 ), Mean soundings for the West Indies area, J. Atmos. Sci., 15, 91 – 97, doi:10.1175/1520‐0469(1958)015. Lauritzen, P. H., C. Jablonowski, M. A. Taylor, and R. D. Nair ( 2010 ), Rotated versions of the Jablonowski steady‐state and baroclinic wave test cases: A dynamical core intercomparison, J. Adv. Model. Earth Syst., 2, 15, doi:10.3894/JAMES.2010.2.15. IndexNoFollow Model Development Tropical Cyclone General Circulation Modeling Geological Sciences Science Article 2012 ftumdeepblue https://doi.org/10.1029/2011MS00009910.1002/qj.21610.1029/2011MS00007610.1029/2010GL04629710.1175/1520‐0469(1978)035<0258:NSOTCD>2.0.CO;210.1175/1520‐0493(1981)109<0758:AEAAMC>2.0.CO;210.1006/jcph.1996.555410.1007/978‐3‐642‐11640‐7_1210.1016/j.jcp.2010.04 2023-07-31T20:32:47Z Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/96307/1/jame57.pdf Article in Journal/Newspaper Arctic University of Michigan: Deep Blue Journal of Advances in Modeling Earth Systems 4 2 n/a n/a