Cyanobacterial life at low O 2 : community genomics and function reveal metabolic versatility and extremely low diversity in a Great Lakes sinkhole mat

Cyanobacteria are renowned as the mediators of Earth’s oxygenation. However, little is known about the cyanobacterial communities that flourished under the low‐O 2 conditions that characterized most of their evolutionary history. Microbial mats in the submerged Middle Island Sinkhole of Lake Huron p...

Full description

Bibliographic Details
Published in:Geobiology
Main Authors: Voorhies, A. A., Biddanda, B. A., Kendall, S. T., Jain, S., Marcus, D. N., Nold, S. C., Sheldon, Nathan D., Dick, G. J.
Other Authors: Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA, Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA, Deptartment of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA, Biology Department, University of Wisconsin‐Stout, Menomonie, WI, USA, Annis Water Resources Institute, Grand Valley State University, Muskegon, MI, USA
Format: Article in Journal/Newspaper
Language:unknown
Published: Blackwell Publishing Ltd 2012
Subjects:
Online Access:https://hdl.handle.net/2027.42/90535
https://doi.org/10.1111/j.1472-4669.2012.00322.x
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/90535
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic Geology and Earth Sciences
Ecology and Evolutionary Biology
Science
spellingShingle Geology and Earth Sciences
Ecology and Evolutionary Biology
Science
Voorhies, A. A.
Biddanda, B. A.
Kendall, S. T.
Jain, S.
Marcus, D. N.
Nold, S. C.
Sheldon, Nathan D.
Dick, G. J.
Cyanobacterial life at low O 2 : community genomics and function reveal metabolic versatility and extremely low diversity in a Great Lakes sinkhole mat
topic_facet Geology and Earth Sciences
Ecology and Evolutionary Biology
Science
description Cyanobacteria are renowned as the mediators of Earth’s oxygenation. However, little is known about the cyanobacterial communities that flourished under the low‐O 2 conditions that characterized most of their evolutionary history. Microbial mats in the submerged Middle Island Sinkhole of Lake Huron provide opportunities to investigate cyanobacteria under such persistent low‐O 2 conditions. Here, venting groundwater rich in sulfate and low in O 2 supports a unique benthic ecosystem of purple‐colored cyanobacterial mats. Beneath the mat is a layer of carbonate that is enriched in calcite and to a lesser extent dolomite. In situ benthic metabolism chambers revealed that the mats are net sinks for O 2 , suggesting primary production mechanisms other than oxygenic photosynthesis. Indeed, 14 C‐bicarbonate uptake studies of autotrophic production show variable contributions from oxygenic and anoxygenic photosynthesis and chemosynthesis, presumably because of supply of sulfide. These results suggest the presence of either facultatively anoxygenic cyanobacteria or a mix of oxygenic/anoxygenic types of cyanobacteria. Shotgun metagenomic sequencing revealed a remarkably low‐diversity mat community dominated by just one genotype most closely related to the cyanobacterium Phormidium autumnale , for which an essentially complete genome was reconstructed. Also recovered were partial genomes from a second genotype of Phormidium and several Oscillatoria . Despite the taxonomic simplicity, diverse cyanobacterial genes putatively involved in sulfur oxidation were identified, suggesting a diversity of sulfide physiologies. The dominant Phormidium genome reflects versatile metabolism and physiology that is specialized for a communal lifestyle under fluctuating redox conditions and light availability. Overall, this study provides genomic and physiologic insights into low‐O 2 cyanobacterial mat ecosystems that played crucial geobiological roles over long stretches of Earth history. Peer Reviewed ...
author2 Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
Deptartment of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
Biology Department, University of Wisconsin‐Stout, Menomonie, WI, USA
Annis Water Resources Institute, Grand Valley State University, Muskegon, MI, USA
format Article in Journal/Newspaper
author Voorhies, A. A.
Biddanda, B. A.
Kendall, S. T.
Jain, S.
Marcus, D. N.
Nold, S. C.
Sheldon, Nathan D.
Dick, G. J.
author_facet Voorhies, A. A.
Biddanda, B. A.
Kendall, S. T.
Jain, S.
Marcus, D. N.
Nold, S. C.
Sheldon, Nathan D.
Dick, G. J.
author_sort Voorhies, A. A.
title Cyanobacterial life at low O 2 : community genomics and function reveal metabolic versatility and extremely low diversity in a Great Lakes sinkhole mat
title_short Cyanobacterial life at low O 2 : community genomics and function reveal metabolic versatility and extremely low diversity in a Great Lakes sinkhole mat
title_full Cyanobacterial life at low O 2 : community genomics and function reveal metabolic versatility and extremely low diversity in a Great Lakes sinkhole mat
title_fullStr Cyanobacterial life at low O 2 : community genomics and function reveal metabolic versatility and extremely low diversity in a Great Lakes sinkhole mat
title_full_unstemmed Cyanobacterial life at low O 2 : community genomics and function reveal metabolic versatility and extremely low diversity in a Great Lakes sinkhole mat
title_sort cyanobacterial life at low o 2 : community genomics and function reveal metabolic versatility and extremely low diversity in a great lakes sinkhole mat
publisher Blackwell Publishing Ltd
publishDate 2012
url https://hdl.handle.net/2027.42/90535
https://doi.org/10.1111/j.1472-4669.2012.00322.x
long_lat ENVELOPE(-57.600,-57.600,-61.966,-61.966)
geographic Middle Island
geographic_facet Middle Island
genre Polar Biology
genre_facet Polar Biology
op_relation Voorhies, A. A.
Biddanda, B. A.
Kendall, S. T.
Jain, S.
Marcus, D. N.
Nold, S. C.
Sheldon, N. D.
Dick, G. J. (2012). "Cyanobacterial life at low O 2 : community genomics and function reveal metabolic versatility and extremely low diversity in a Great Lakes sinkhole mat." Geobiology 10(3). <http://hdl.handle.net/2027.42/90535>
1472-4677
1472-4669
https://hdl.handle.net/2027.42/90535
22404795
doi:10.1111/j.1472-4669.2012.00322.x
Geobiology
Riding R ( 2011 ) Calcified cyanobacteria. In Encyclopedia of Geobiology (eds Reitner J, Thiel V ). Springer, Heidelberg, pp. 211 – 223.
Ruberg SA, Kendall ST, Biddanda BA, Black T, Nold SC, Lusardi WR, Green R, Casserley T, Smith E, Sanders TG, Lang GA, Constant SA ( 2008 ) Observations of the Middle Island Sinkhole in Lake Huron – a unique hydrogeologic and glacial creation of 400 million years. Marine Technology Society Journal 42, 12 – 21.
Rye R, Holland HD ( 2000 ) Life associated with a 2.76 Ga ephemeral pond?: evidence from Mount Roe #2 paleosol. Geology, 28, 483 – 486.
Sanders JTG, Biddanda BA, Stricker CA, Nold SC ( 2011 ) Stable isotope analysis reveals benthic macroinvertebrate and fish communities linked to submerged groundwater vents in Lake Huron. Aquatic Biology 12, 1 – 11.
Schidlowski M ( 2000 ) Carbon isotopes and microbial sediments. In Microbial Sediments (eds Riding RE, Awramik SM ). Springer‐Verlag, Berlin, pp. 84 – 95.
Schütz M, Shahak Y, Padan E, Hauska G ( 1997 ) Sulfide‐quinone reductase from Rhodobacter capsulatus. Purification, cloning, and expression. Journal of Biological Chemistry 272, 9890 – 9894.
Sheldon N (in press) Microbially induced sedimentary structures in the ca. 1100 Ma terrestrial Midcontinental Rift of North America. In Microbial Mats in Siliciclastic Depositional Systems Through Time (eds Noffke N, Chafetz H ). SEPM Special Publication No. 11. (ISBN: 978‐1‐56576‐314‐2).
Shen Y, Knoll AH, Walter MR ( 2003 ) Evidence for low sulphate and anoxia in a mid‐Proterozoic marine basin. Nature 423, 632 – 635.
Stal LJ ( 1995 ) Tansley Review No. 84. Physiological ecology of cyanobacteria in microbial mats and other communities. New Phytologist 131, 1 – 32.
Stal LJ ( 2000 ) Cyanobacterial mats and stromatolites. In The Ecology of Cyanobacteria (eds Whitton B, Potts M ). Kluwer Academic Publishers, Dordrecht/London/Boston, pp. 61 – 120.
Stal LJ, Moezelaar R ( 1997 ) Fermentation in cyanobacteria. FEMS Microbiology Reviews 21, 179 – 211.
Stamatakis A ( 2006 ) RAxML‐VI‐HPC: maximum likelihood‐based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688 – 2690.
Strunecký O, Elster J, Komárek J ( 2010 ) Phylogenetic relationships between geographically separate Phormidium cyanobacteria: is there a link between north and south polar regions? Polar Biology 33, 1419 – 1428.
Summons RE, Jahnke LL, Hope JM, Logan GA ( 1999 ) 2‐Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400, 554 – 557.
Tamura K, Dudley J, Nei M, Kumar S ( 2007 ) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 1596 – 1599.
Taton A, Grubisic S, Balthasart P, Hodgson DA, Laybourn‐Parry J, Wilmotte A ( 2006a ) Biogeographical distribution and ecological ranges of benthic cyanobacteria in East Antarctic lakes. FEMS Microbiology Ecology 57, 272 – 289.
Taton A, Grubisic S, Ertz D, Hodgson DA, Piccardi R, Biondi N, Tredici MR, Mainini M, Losi D, Marinelli F, Wilmotte A ( 2006b ) Polyphasic study of Antarctic cyanobacterial strains. Journal of Phycology 42, 1257 – 1270.
Van Lith Y, Warthmann R, Vasconcelos C, Mckenzie JA ( 2003 ) Sulphate‐reducing bacteria induce low‐temperature Ca‐dolomite and high Mg‐calcite formation. Geobiology 1, 71 – 79.
Vasconcelos C, Mckenzie JA, Bernasconi S, Grujic D, Tien AJ ( 1995 ) Microbial mediation as a possible mechanism for natural dolomite formation at low‐temperatures. Nature 377, 220 – 222.
Vincent WF ( 2000 ) Cyanobacterial dominance in the polar regions. In The Ecology of Cyanobacteria (eds Whitton BA, Potts M ). Kluver Academic Publishers, Amsterdam, 321 – 340.
Walter MR, Bauld J ( 1983 ) The association of sulphate evaporites, stromatolitic carbonates and glacial sediments: examples from the Proterozoic of Australia and the Cainzoic of Antarctica. Precambrian Research 21, 129 – 148.
Walter LM, Ku TCW, Muehlenbacks K, Patterson WP, Bonnell L ( 2007 ) Controls on δ13C of dissolved inorganic carbon in marine pore waters: an integrated case study of isotope exchange during syndepositional recrystallization of biogenic carbonate sediments (South Florida Platform, USA). Deep Sea Research Part II: Topical Studies in Oceanography 54, 1163 – 1200.
Wang Y, Kern SE, Newman DK ( 2010 ) Endogenous phenazine antibiotics promote anaerobic survival of Pseudomonas aeruginosa via extracellular electron transfer. Journal of Bacteriology 192, 365 – 369.
Warthmann R, Van Lith Y, Vasconcelos C, Mckenzie JA, Karpoff AM ( 2000 ) Bacterially induced dolomite precipitation in anoxic culture experiments. Geology 28, 1091 – 1094.
Welander PV, Hunter RC, Zhang L, Sessions AL, Summons RE, Newman DK ( 2009 ) Hopanoids play a role in membrane integrity and pH homeostasis in Rhodopseudomonas palustris TIE‐1. Journal of Bacteriology 191, 6145 – 6156.
Welander PV, Coleman ML, Sessions AL, Summons RE, Newman DK ( 2010 ) Identification of a methylase required for 2‐methylhopanoid production and implications for the interpretation of sedimentary hopanes. Proceedings of the National Academy of Sciences of the United States of America 107, 8537 – 8542.
Wharton RA, Parker BC, Simmons GM ( 1983 ) Distribution, species composition and morphology of algal mats in Antarctic dry valley lakes. Phycologia 22, 355 – 365.
Wittebolle L, Marzorati M, Clement L, Balloi A, Daffonchio D, Heylen K, De Vos P, Verstraete W, Boon N ( 2009 ) Initial community evenness favours functionality under selective stress. Nature 458, 623 – 626.
Andersen DT, Sumner DY, Hawes I, Webster‐Brown J, Mckay CP ( 2011 ) Discovery of large conical stromatolites in Lake Untersee, Antarctica. Geobiology 9, 280 – 293.
Arieli B, Shahak Y, Taglicht D, Hauska G, Padan E ( 1994 ) Purification and characterization of sulfide‐quinone reductase, a novel enzyme driving anoxygenic photosynthesis in Oscillatoria limnetica. Journal of Biological Chemistry 269, 5705 – 5711.
Bachar A, Omoregie E, De Wit R, Jonkers HM ( 2007 ) Diversity and function of Chloroflexus‐like bacteria in a hypersaline microbial mat: phylogenetic characterization and impact on aerobic respiration. Applied and Environment Microbiology 73, 3975 – 3983.
Bekker A, Holland HD, Wang PL, Rumble D, Stein HJ, Hannah JL, Coetzee LL, Beukes NJ ( 2004 ) Dating the rise of atmospheric oxygen. Nature 427, 117 – 120.
Belkin S, Padan E ( 1978 ) Hydrogen metabolism in the facultative anoxygenic Cyanobacteria (Blue‐Green Algae) Oscillatoria limnetica and Aphanothece halophytica. Archives of Microbiology 116, 109 – 111.
Bertrand EM, Saito MA, Rose JM, Riesselman CR, Lohan MC, Noble AE, Lee PA, Ditullio GR ( 2007 ) Vitamin B‐12 and iron colimitation of phytoplankton growth in the Ross Sea. Limnology and Oceanography 52, 1079 – 1093.
Biddanda BA, Opsahl S, Benner R ( 1994 ) Plankton respiration and carbon flux through bacterioplankton on the Louisiana Shelf. Limnology and Oceanography 39, 1259 – 1275.
Biddanda BA, Coleman DF, Johengen TH, Ruberg SA, Meadows GA, Vansumeran HW, Rediske RR, Kendall ST ( 2006 ) Exploration of a submerged sinkhole ecosystem in Lake Huron. Ecosystems 9, 828 – 842.
op_rights IndexNoFollow
op_doi https://doi.org/10.1111/j.1472-4669.2012.00322.x
container_title Geobiology
container_volume 10
container_issue 3
container_start_page 250
op_container_end_page 267
_version_ 1774722263596138496
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/90535 2023-08-20T04:09:22+02:00 Cyanobacterial life at low O 2 : community genomics and function reveal metabolic versatility and extremely low diversity in a Great Lakes sinkhole mat Voorhies, A. A. Biddanda, B. A. Kendall, S. T. Jain, S. Marcus, D. N. Nold, S. C. Sheldon, Nathan D. Dick, G. J. Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA Deptartment of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA Biology Department, University of Wisconsin‐Stout, Menomonie, WI, USA Annis Water Resources Institute, Grand Valley State University, Muskegon, MI, USA 2012-05 application/pdf https://hdl.handle.net/2027.42/90535 https://doi.org/10.1111/j.1472-4669.2012.00322.x unknown Blackwell Publishing Ltd Wiley Periodicals, Inc. Voorhies, A. A. Biddanda, B. A. Kendall, S. T. Jain, S. Marcus, D. N. Nold, S. C. Sheldon, N. D. Dick, G. J. (2012). "Cyanobacterial life at low O 2 : community genomics and function reveal metabolic versatility and extremely low diversity in a Great Lakes sinkhole mat." Geobiology 10(3). <http://hdl.handle.net/2027.42/90535> 1472-4677 1472-4669 https://hdl.handle.net/2027.42/90535 22404795 doi:10.1111/j.1472-4669.2012.00322.x Geobiology Riding R ( 2011 ) Calcified cyanobacteria. In Encyclopedia of Geobiology (eds Reitner J, Thiel V ). Springer, Heidelberg, pp. 211 – 223. Ruberg SA, Kendall ST, Biddanda BA, Black T, Nold SC, Lusardi WR, Green R, Casserley T, Smith E, Sanders TG, Lang GA, Constant SA ( 2008 ) Observations of the Middle Island Sinkhole in Lake Huron – a unique hydrogeologic and glacial creation of 400 million years. Marine Technology Society Journal 42, 12 – 21. Rye R, Holland HD ( 2000 ) Life associated with a 2.76 Ga ephemeral pond?: evidence from Mount Roe #2 paleosol. Geology, 28, 483 – 486. Sanders JTG, Biddanda BA, Stricker CA, Nold SC ( 2011 ) Stable isotope analysis reveals benthic macroinvertebrate and fish communities linked to submerged groundwater vents in Lake Huron. Aquatic Biology 12, 1 – 11. Schidlowski M ( 2000 ) Carbon isotopes and microbial sediments. In Microbial Sediments (eds Riding RE, Awramik SM ). Springer‐Verlag, Berlin, pp. 84 – 95. Schütz M, Shahak Y, Padan E, Hauska G ( 1997 ) Sulfide‐quinone reductase from Rhodobacter capsulatus. Purification, cloning, and expression. Journal of Biological Chemistry 272, 9890 – 9894. Sheldon N (in press) Microbially induced sedimentary structures in the ca. 1100 Ma terrestrial Midcontinental Rift of North America. In Microbial Mats in Siliciclastic Depositional Systems Through Time (eds Noffke N, Chafetz H ). SEPM Special Publication No. 11. (ISBN: 978‐1‐56576‐314‐2). Shen Y, Knoll AH, Walter MR ( 2003 ) Evidence for low sulphate and anoxia in a mid‐Proterozoic marine basin. Nature 423, 632 – 635. Stal LJ ( 1995 ) Tansley Review No. 84. Physiological ecology of cyanobacteria in microbial mats and other communities. New Phytologist 131, 1 – 32. Stal LJ ( 2000 ) Cyanobacterial mats and stromatolites. In The Ecology of Cyanobacteria (eds Whitton B, Potts M ). Kluwer Academic Publishers, Dordrecht/London/Boston, pp. 61 – 120. Stal LJ, Moezelaar R ( 1997 ) Fermentation in cyanobacteria. FEMS Microbiology Reviews 21, 179 – 211. Stamatakis A ( 2006 ) RAxML‐VI‐HPC: maximum likelihood‐based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688 – 2690. Strunecký O, Elster J, Komárek J ( 2010 ) Phylogenetic relationships between geographically separate Phormidium cyanobacteria: is there a link between north and south polar regions? Polar Biology 33, 1419 – 1428. Summons RE, Jahnke LL, Hope JM, Logan GA ( 1999 ) 2‐Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400, 554 – 557. Tamura K, Dudley J, Nei M, Kumar S ( 2007 ) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 1596 – 1599. Taton A, Grubisic S, Balthasart P, Hodgson DA, Laybourn‐Parry J, Wilmotte A ( 2006a ) Biogeographical distribution and ecological ranges of benthic cyanobacteria in East Antarctic lakes. FEMS Microbiology Ecology 57, 272 – 289. Taton A, Grubisic S, Ertz D, Hodgson DA, Piccardi R, Biondi N, Tredici MR, Mainini M, Losi D, Marinelli F, Wilmotte A ( 2006b ) Polyphasic study of Antarctic cyanobacterial strains. Journal of Phycology 42, 1257 – 1270. Van Lith Y, Warthmann R, Vasconcelos C, Mckenzie JA ( 2003 ) Sulphate‐reducing bacteria induce low‐temperature Ca‐dolomite and high Mg‐calcite formation. Geobiology 1, 71 – 79. Vasconcelos C, Mckenzie JA, Bernasconi S, Grujic D, Tien AJ ( 1995 ) Microbial mediation as a possible mechanism for natural dolomite formation at low‐temperatures. Nature 377, 220 – 222. Vincent WF ( 2000 ) Cyanobacterial dominance in the polar regions. In The Ecology of Cyanobacteria (eds Whitton BA, Potts M ). Kluver Academic Publishers, Amsterdam, 321 – 340. Walter MR, Bauld J ( 1983 ) The association of sulphate evaporites, stromatolitic carbonates and glacial sediments: examples from the Proterozoic of Australia and the Cainzoic of Antarctica. Precambrian Research 21, 129 – 148. Walter LM, Ku TCW, Muehlenbacks K, Patterson WP, Bonnell L ( 2007 ) Controls on δ13C of dissolved inorganic carbon in marine pore waters: an integrated case study of isotope exchange during syndepositional recrystallization of biogenic carbonate sediments (South Florida Platform, USA). Deep Sea Research Part II: Topical Studies in Oceanography 54, 1163 – 1200. Wang Y, Kern SE, Newman DK ( 2010 ) Endogenous phenazine antibiotics promote anaerobic survival of Pseudomonas aeruginosa via extracellular electron transfer. Journal of Bacteriology 192, 365 – 369. Warthmann R, Van Lith Y, Vasconcelos C, Mckenzie JA, Karpoff AM ( 2000 ) Bacterially induced dolomite precipitation in anoxic culture experiments. Geology 28, 1091 – 1094. Welander PV, Hunter RC, Zhang L, Sessions AL, Summons RE, Newman DK ( 2009 ) Hopanoids play a role in membrane integrity and pH homeostasis in Rhodopseudomonas palustris TIE‐1. Journal of Bacteriology 191, 6145 – 6156. Welander PV, Coleman ML, Sessions AL, Summons RE, Newman DK ( 2010 ) Identification of a methylase required for 2‐methylhopanoid production and implications for the interpretation of sedimentary hopanes. Proceedings of the National Academy of Sciences of the United States of America 107, 8537 – 8542. Wharton RA, Parker BC, Simmons GM ( 1983 ) Distribution, species composition and morphology of algal mats in Antarctic dry valley lakes. Phycologia 22, 355 – 365. Wittebolle L, Marzorati M, Clement L, Balloi A, Daffonchio D, Heylen K, De Vos P, Verstraete W, Boon N ( 2009 ) Initial community evenness favours functionality under selective stress. Nature 458, 623 – 626. Andersen DT, Sumner DY, Hawes I, Webster‐Brown J, Mckay CP ( 2011 ) Discovery of large conical stromatolites in Lake Untersee, Antarctica. Geobiology 9, 280 – 293. Arieli B, Shahak Y, Taglicht D, Hauska G, Padan E ( 1994 ) Purification and characterization of sulfide‐quinone reductase, a novel enzyme driving anoxygenic photosynthesis in Oscillatoria limnetica. Journal of Biological Chemistry 269, 5705 – 5711. Bachar A, Omoregie E, De Wit R, Jonkers HM ( 2007 ) Diversity and function of Chloroflexus‐like bacteria in a hypersaline microbial mat: phylogenetic characterization and impact on aerobic respiration. Applied and Environment Microbiology 73, 3975 – 3983. Bekker A, Holland HD, Wang PL, Rumble D, Stein HJ, Hannah JL, Coetzee LL, Beukes NJ ( 2004 ) Dating the rise of atmospheric oxygen. Nature 427, 117 – 120. Belkin S, Padan E ( 1978 ) Hydrogen metabolism in the facultative anoxygenic Cyanobacteria (Blue‐Green Algae) Oscillatoria limnetica and Aphanothece halophytica. Archives of Microbiology 116, 109 – 111. Bertrand EM, Saito MA, Rose JM, Riesselman CR, Lohan MC, Noble AE, Lee PA, Ditullio GR ( 2007 ) Vitamin B‐12 and iron colimitation of phytoplankton growth in the Ross Sea. Limnology and Oceanography 52, 1079 – 1093. Biddanda BA, Opsahl S, Benner R ( 1994 ) Plankton respiration and carbon flux through bacterioplankton on the Louisiana Shelf. Limnology and Oceanography 39, 1259 – 1275. Biddanda BA, Coleman DF, Johengen TH, Ruberg SA, Meadows GA, Vansumeran HW, Rediske RR, Kendall ST ( 2006 ) Exploration of a submerged sinkhole ecosystem in Lake Huron. Ecosystems 9, 828 – 842. IndexNoFollow Geology and Earth Sciences Ecology and Evolutionary Biology Science Article 2012 ftumdeepblue https://doi.org/10.1111/j.1472-4669.2012.00322.x 2023-07-31T20:34:29Z Cyanobacteria are renowned as the mediators of Earth’s oxygenation. However, little is known about the cyanobacterial communities that flourished under the low‐O 2 conditions that characterized most of their evolutionary history. Microbial mats in the submerged Middle Island Sinkhole of Lake Huron provide opportunities to investigate cyanobacteria under such persistent low‐O 2 conditions. Here, venting groundwater rich in sulfate and low in O 2 supports a unique benthic ecosystem of purple‐colored cyanobacterial mats. Beneath the mat is a layer of carbonate that is enriched in calcite and to a lesser extent dolomite. In situ benthic metabolism chambers revealed that the mats are net sinks for O 2 , suggesting primary production mechanisms other than oxygenic photosynthesis. Indeed, 14 C‐bicarbonate uptake studies of autotrophic production show variable contributions from oxygenic and anoxygenic photosynthesis and chemosynthesis, presumably because of supply of sulfide. These results suggest the presence of either facultatively anoxygenic cyanobacteria or a mix of oxygenic/anoxygenic types of cyanobacteria. Shotgun metagenomic sequencing revealed a remarkably low‐diversity mat community dominated by just one genotype most closely related to the cyanobacterium Phormidium autumnale , for which an essentially complete genome was reconstructed. Also recovered were partial genomes from a second genotype of Phormidium and several Oscillatoria . Despite the taxonomic simplicity, diverse cyanobacterial genes putatively involved in sulfur oxidation were identified, suggesting a diversity of sulfide physiologies. The dominant Phormidium genome reflects versatile metabolism and physiology that is specialized for a communal lifestyle under fluctuating redox conditions and light availability. Overall, this study provides genomic and physiologic insights into low‐O 2 cyanobacterial mat ecosystems that played crucial geobiological roles over long stretches of Earth history. Peer Reviewed ... Article in Journal/Newspaper Polar Biology University of Michigan: Deep Blue Middle Island ENVELOPE(-57.600,-57.600,-61.966,-61.966) Geobiology 10 3 250 267