id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/86918
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic Magnetic Mineralogy and Petrology
Rock and Mineral Magnetism
Hydrothermal Systems
Geology and Earth Sciences
Science
spellingShingle Magnetic Mineralogy and Petrology
Rock and Mineral Magnetism
Hydrothermal Systems
Geology and Earth Sciences
Science
Oliva‐urcia, Belén
Kontny, Agnes
Vahle, Carsten
Schleicher, Anja M.
Modification of the magnetic mineralogy in basalts due to fluid–rock interactions in a high‐temperature geothermal system (Krafla, Iceland)
topic_facet Magnetic Mineralogy and Petrology
Rock and Mineral Magnetism
Hydrothermal Systems
Geology and Earth Sciences
Science
description Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/86918/1/j.1365-246X.2011.05029.x.pdf
author2 Geological Sciences, University of Michigan, 1100 CC, Little Building, Ann Arbor, MI, USA
Institute of Applied Geosciences, Karlsruher Institute of Technology, Hertzstrasse 16, 76187 Germany. E‐mail: boliva@unizar.es
Dpto. Ciencias de la Tierra, Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
Eriksfiord AS, Kunnskapsparken, Postboks 8034, 4068 Stavanger, Norway
format Article in Journal/Newspaper
author Oliva‐urcia, Belén
Kontny, Agnes
Vahle, Carsten
Schleicher, Anja M.
author_facet Oliva‐urcia, Belén
Kontny, Agnes
Vahle, Carsten
Schleicher, Anja M.
author_sort Oliva‐urcia, Belén
title Modification of the magnetic mineralogy in basalts due to fluid–rock interactions in a high‐temperature geothermal system (Krafla, Iceland)
title_short Modification of the magnetic mineralogy in basalts due to fluid–rock interactions in a high‐temperature geothermal system (Krafla, Iceland)
title_full Modification of the magnetic mineralogy in basalts due to fluid–rock interactions in a high‐temperature geothermal system (Krafla, Iceland)
title_fullStr Modification of the magnetic mineralogy in basalts due to fluid–rock interactions in a high‐temperature geothermal system (Krafla, Iceland)
title_full_unstemmed Modification of the magnetic mineralogy in basalts due to fluid–rock interactions in a high‐temperature geothermal system (Krafla, Iceland)
title_sort modification of the magnetic mineralogy in basalts due to fluid–rock interactions in a high‐temperature geothermal system (krafla, iceland)
publisher Blackwell Publishing Ltd
publishDate 2011
url https://hdl.handle.net/2027.42/86918
https://doi.org/10.1111/j.1365-246X.2011.05029.x
long_lat ENVELOPE(-16.747,-16.747,65.713,65.713)
geographic Krafla
geographic_facet Krafla
genre Iceland
genre_facet Iceland
op_relation Oliva‐urcia, Belén
Kontny, Agnes; Vahle, Carsten; Schleicher, Anja M. (2011). "Modification of the magnetic mineralogy in basalts due to fluidâ rock interactions in a highâ temperature geothermal system (Krafla, Iceland)." Geophysical Journal International 186(1). <http://hdl.handle.net/2027.42/86918>
0956-540X
1365-246X
https://hdl.handle.net/2027.42/86918
doi:10.1111/j.1365-246X.2011.05029.x
Geophysical Journal International
Ade‐Hall, J.M., Palmer, H.C. & Hubbard, T.P., 1971. The magnetic and opaque petrological response of basalts to regional hydrothermal alteration, Geophys. J. R. astr. Soc., 24 ( 2 ), 137 – 174.
Airo, M.L., 2002. Aeromagnetic and aeroradiometric reponse to hydrothermal alteration, Surv. Geophys., 23, 273 – 302.
Aragón, R., Buttrey, D.J., Sheperd, J.P. & Honig, J.M., 1985. Influence of nonstoichiometry on the Verwey transition, Phys. Rev., B31, 430 – 436.
Ármannsson, H., Benjamínsson, J. &. Jeffrey, A.W.A., 1989. Gas changes in the Krafla geothermal system, Iceland, Chem. Geol., 76, 175 – 196.
Arnórsson, S., 1995. Geothermal systems in Iceland: structure and conceptual models‐I. High temperature areas, Geothermics, 24 ( 5–6 ), 561 – 602.
Banerjee, S.K., 1971. Decay of marine magnetic anomalies by ferrous ion diffusion, Nature Phys. Sci. (Lond.), 229 ( 6 ), 181 – 183.
Bitter, F., 1931. On inhomogeneities in the magnetization of ferromagnetic materials, Phys. Rev., 38, 1903 – 1905, doi:10.1103/PhysRev.38.1903.
Bleil U. & Petersen, N., 1983. Variations in magnetization intensity and low temperature titanomagnetite oxidation of ocean floor basalts, Nature, 301, 384 – 387.
Bödvarsson, G.S., Benson, S.M., Sigurdsson, Ó., Stéfansson, V. & Elíasson, E.T., 1984. The Krafla geothermal field, Iceland 1. Analyses of well test data, Water Resour. Res., 20, 1515 – 1530.
Brachfeld, S.A., & Hammer, J., 2006. Rock‐magnetic and remanence properties of synthetic Fe‐rich basalts: implications for Mars crustal anomalies, Earth planet. Sci. Letters, 248, 599 – 617.
Brown, A.P., & O’Reilly, W., 1999. The magnetism and microstructure of pulverized titanomagnetite, Fe 2.4 Ti 0.6 O 4: the effect of annealing, maghemitization and inversion, Phys. Earth planet. Int., 116 ( 1–4 ), 19 – 30.
Carlut, J., Horena, H. & Janotsa D., 2007. Impact of micro‐organisms activity on the natural remanent magnetization of the young oceanic crust, Earth planet. Sci. Lett., 253 ( 3–4 ), 497 – 506.
Chen, T., Xu, H., Xie, Q., Chen, J., Ji, J. & Lu H., 2005. Characteristics and genesis of maghemite in Chinese loess and paleosols: mechanism for magnetic susceptibility enhancement in paleosols, Earth planet. Sci. Lett., 240, 790 – 802.
Cui, Y., Verosub, K.L. & Roberts A., 1994. The effect of low‐temperature oxidation on large multi‐domain magnetite, Geophys. Res. Lett., 21 ( 9 ), 757 – 760.
Deng, C., Zhu, R., Jackson, M.J., Verosub, K.L. & Singer, M.J., 2001. Variability of the temperature‐dependent susceptibility of the Holocene eolian deposits in the Chinese loess plateau: a pedogenesis indicator, Phys. Chem. Earth, 26 ( 11–12 ), 873 – 878.
Dietze, F., Kontny, A., Heyde, I. & Vahle C., 2011. Magnetic anomalies and rock magnetism of basalts from Reykjanes (SW‐Iceland), Stud. Geophys. Geodaet., 55 ( 1 ), i – xxii.
Fridleifsson, I.B. & Kristjansson, L., 1972. The Stardalur magnetic anomaly, Jökull, 22, 69 – 78.
Gaillot, Ph., Saint‐Blanquant, M. & Bouchez, J.L., 2006. Effects of magnetic interactions in anisotropy of magnetic susceptibility: models, experiments and implications for igneous rock fabric quantification, Tectonophysics, 418, 3 – 19.
Gee J. & Kent D.V., 1994. Variations in layer 2A thickness and the origin of the central anomaly magnetic high, Geophys. Res. Lett., 21, 297 – 300.
Gee, J. & Kent D.V., 1997. Magnetization of axial lavas from the southern East Pacific Rise (14 degrees ‐23 degrees S); geochemical controls on magnetic properties, J. geophys. Res., B, Solid Earth and Planets 102, 24 873 – 24 886.
Gee, J., Schneider, D.A. & Kent, D.V., 1996. Marine magnetic anomalies as recorders of geomagnetic intensity variations, Earth planet. Sci. Lett., 144 ( 3–4 ), 327 – 335.
Gíslason, S.R. & Arnórsson S., 1993. Dissolution of primary basaltic minerals in natural waters: saturation state and kinetics, Chem. Geol., 105, 117 – 135.
Gudmundsson, Á., 1993. Cross section between wells BJ‐11 and BJ‐12 in Bjarnarflag, National Energy Authority Report OS‐93071/JHD‐35 B, 46 pp (in Icelandic).
Gudmundsson, B.T. & Arnórsson S., 2002. Geochemical monitoring of the Krafla and Námafjall geothermal areas, N‐Iceland. Geothermics, 31, 195 – 243.
Gudmundsson, B.T. & Arnórsson S., 2005. Secondary mineral: fluid equilibria in the Krafla and Námafjall geothermal systems, Iceland. Appl. Geochem., 20 ( 9 ), 1607 – 1625.
Gudmundsson, G., Pálmason, G., Grönvold, K., Ragnars, K., Saemundsson, K. & Arnórsson, S., 1971. Námafjall – Krafla: progress report on the investigation of the geothermal areas, N.E.A. Geothermal division, p. 81.
Haggerty, S.E., 1991. Oxide textures: a mini‐atlas, in Oxide Minerals: Petrologic and Magnetic Significance, Vol. 25, pp. 129 – 219, ed. Lindsley, D.H., Mineralogical Society of America, (Reviews in Mineralogy) Chantilly, VA, USA.
Hall, J.M., 1985. The Iceland Research Drilling Project crustal section: variation of magnetic properties with depth in Icelandic‐type oceanic crust, Canadian J. Earth Sci., 22 ( 1 ), 85 – 101.
Hrouda, F., Clupácová, M. & Mrázová S., 2006. Low‐field variation of magnetic susceptibility as a tool for magnetic mineralogy of rocks, Phys. Earth planet. Inter., 154, 323 – 336.
Irving, E., 1970. The Mid‐Atlantic ridge at 45 degrees N.: XIV. Oxidation and magnetic properties of basalt: review and discussion, Canadian J. Earth Sci., 7 ( 6 ), 1528 – 1538.
Jackson, M., Moskowitz, B., Rosenbaum, J., Kissel, C., 1998. Field‐dependence of AC susceptibility in titanomagnetites, Earth planet. Sci. Lett., 157, 129 – 139.
John, C.M., 2004. Plotting and analyzing data trends in ternary diagrams made easy, EOS, Trans. Am. geophys. Un., 85 ( 16 ), 158. http://www.agu.org/eos_elec/000562e.shtml.
Jónsson, S.S., Gudmundsson, A. & Thordarson S., 2003. Krafla. Borun kjarnaholu KH‐3 milli Jörundar og Háganga. Íslenskar orkurannsóknir, ÍSOR‐2003/015. Unnid fyrir Landsvirkjun.
Juárez, M.T., Tauxe, L., Gee, J.S. & Pick T., 1998. The intensity of the Earth's magnetic field over the past 160 million years, Nature, 304, 878 – 881.
Just, J., 2005. Modification of magnetic properties in granite during hydrothermal alteration (EPS‐1 borehole, Upper Rhine Graben), PhD thesis. University of Heidelberg.
Kadko, D., Gronvold, K. & Butterfield, D., 2007. Application of radium isotopes to determine crustal times of hydrothermal fluids from two sites of Reykjanes Peninsula, Iceland, Geochim. Cosmochim. Acta, 71, 6019 – 6029.
Kent, D.V. & Gee, J., 1994. Grain size‐dependent alteration and the magnetization of ocean basalts, Science, 265, 1561 – 1563.
Kletetschka, G. & Kontny, A., 2005. Identification of magnetic minerals by scanning electron microscope and application of ferrofluid, in The Castle Meeting, Studia Geophysica et Geodetica, Vol. 49 ( 2 ), pp. 153 – 162, ed. Petrovsky, E., Springer, Dordrecht.
Kontny A., Vahle, C. & de Wall H., 2003. Characteristic magnetic behaviour of subaerial and submarine lava units from the Hawaiian Scientific Drilling Project (HSDP‐2), Geochem. Geophys. Geosyst., 4 ( 1 ), doi:10.1029/2002GC000304.
Krása, D. & Herrero‐Bervera E., 2005. Alteration induced changes of magnetic fabric as exemplified by dykes of the Koolau volcanic range, Earth planet. Sci. Lett., 240, 445 – 453.
Kristjansson, L. & Jonsson, G., 2007. Paleomagnetism and magnetic anomalies in Iceland, J. Geodyn., 43, 30 – 54.
Lattard, D., Engelmann, R., Kontny, A. & Suerzapf, U., 2006. Curie temperatures of synthetic titanomagnetites in the Fe‐Ti‐O system: effects of composition, crystal chemistry, and thermomagnetic methods, J. geophys. Res., 111, B12S28, doi:10.1029/2006JB004591.
Marshall, M. & Cox, A., 1972. Magnetic changes in Pillow Basalt due to sea floor weathering, J. geophys. Res., 77 ( 32 ), 6459 – 6469.
op_rights IndexNoFollow
op_doi https://doi.org/10.1111/j.1365-246X.2011.05029.x10.1103/PhysRev.38.1903
container_title Geophysical Journal International
container_volume 186
container_issue 1
container_start_page 155
op_container_end_page 174
_version_ 1774718947869851648
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/86918 2023-08-20T04:07:22+02:00 Modification of the magnetic mineralogy in basalts due to fluid–rock interactions in a high‐temperature geothermal system (Krafla, Iceland) Oliva‐urcia, Belén Kontny, Agnes Vahle, Carsten Schleicher, Anja M. Geological Sciences, University of Michigan, 1100 CC, Little Building, Ann Arbor, MI, USA Institute of Applied Geosciences, Karlsruher Institute of Technology, Hertzstrasse 16, 76187 Germany. E‐mail: boliva@unizar.es Dpto. Ciencias de la Tierra, Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain Eriksfiord AS, Kunnskapsparken, Postboks 8034, 4068 Stavanger, Norway 2011-07 application/pdf https://hdl.handle.net/2027.42/86918 https://doi.org/10.1111/j.1365-246X.2011.05029.x unknown Blackwell Publishing Ltd Wiley Periodicals, Inc. Oliva‐urcia, Belén Kontny, Agnes; Vahle, Carsten; Schleicher, Anja M. (2011). "Modification of the magnetic mineralogy in basalts due to fluidâ rock interactions in a highâ temperature geothermal system (Krafla, Iceland)." Geophysical Journal International 186(1). <http://hdl.handle.net/2027.42/86918> 0956-540X 1365-246X https://hdl.handle.net/2027.42/86918 doi:10.1111/j.1365-246X.2011.05029.x Geophysical Journal International Ade‐Hall, J.M., Palmer, H.C. & Hubbard, T.P., 1971. The magnetic and opaque petrological response of basalts to regional hydrothermal alteration, Geophys. J. R. astr. Soc., 24 ( 2 ), 137 – 174. Airo, M.L., 2002. Aeromagnetic and aeroradiometric reponse to hydrothermal alteration, Surv. Geophys., 23, 273 – 302. Aragón, R., Buttrey, D.J., Sheperd, J.P. & Honig, J.M., 1985. Influence of nonstoichiometry on the Verwey transition, Phys. Rev., B31, 430 – 436. Ármannsson, H., Benjamínsson, J. &. Jeffrey, A.W.A., 1989. Gas changes in the Krafla geothermal system, Iceland, Chem. Geol., 76, 175 – 196. Arnórsson, S., 1995. Geothermal systems in Iceland: structure and conceptual models‐I. High temperature areas, Geothermics, 24 ( 5–6 ), 561 – 602. Banerjee, S.K., 1971. Decay of marine magnetic anomalies by ferrous ion diffusion, Nature Phys. Sci. (Lond.), 229 ( 6 ), 181 – 183. Bitter, F., 1931. On inhomogeneities in the magnetization of ferromagnetic materials, Phys. Rev., 38, 1903 – 1905, doi:10.1103/PhysRev.38.1903. Bleil U. & Petersen, N., 1983. Variations in magnetization intensity and low temperature titanomagnetite oxidation of ocean floor basalts, Nature, 301, 384 – 387. Bödvarsson, G.S., Benson, S.M., Sigurdsson, Ó., Stéfansson, V. & Elíasson, E.T., 1984. The Krafla geothermal field, Iceland 1. Analyses of well test data, Water Resour. Res., 20, 1515 – 1530. Brachfeld, S.A., & Hammer, J., 2006. Rock‐magnetic and remanence properties of synthetic Fe‐rich basalts: implications for Mars crustal anomalies, Earth planet. Sci. Letters, 248, 599 – 617. Brown, A.P., & O’Reilly, W., 1999. The magnetism and microstructure of pulverized titanomagnetite, Fe 2.4 Ti 0.6 O 4: the effect of annealing, maghemitization and inversion, Phys. Earth planet. Int., 116 ( 1–4 ), 19 – 30. Carlut, J., Horena, H. & Janotsa D., 2007. Impact of micro‐organisms activity on the natural remanent magnetization of the young oceanic crust, Earth planet. Sci. Lett., 253 ( 3–4 ), 497 – 506. Chen, T., Xu, H., Xie, Q., Chen, J., Ji, J. & Lu H., 2005. Characteristics and genesis of maghemite in Chinese loess and paleosols: mechanism for magnetic susceptibility enhancement in paleosols, Earth planet. Sci. Lett., 240, 790 – 802. Cui, Y., Verosub, K.L. & Roberts A., 1994. The effect of low‐temperature oxidation on large multi‐domain magnetite, Geophys. Res. Lett., 21 ( 9 ), 757 – 760. Deng, C., Zhu, R., Jackson, M.J., Verosub, K.L. & Singer, M.J., 2001. Variability of the temperature‐dependent susceptibility of the Holocene eolian deposits in the Chinese loess plateau: a pedogenesis indicator, Phys. Chem. Earth, 26 ( 11–12 ), 873 – 878. Dietze, F., Kontny, A., Heyde, I. & Vahle C., 2011. Magnetic anomalies and rock magnetism of basalts from Reykjanes (SW‐Iceland), Stud. Geophys. Geodaet., 55 ( 1 ), i – xxii. Fridleifsson, I.B. & Kristjansson, L., 1972. The Stardalur magnetic anomaly, Jökull, 22, 69 – 78. Gaillot, Ph., Saint‐Blanquant, M. & Bouchez, J.L., 2006. Effects of magnetic interactions in anisotropy of magnetic susceptibility: models, experiments and implications for igneous rock fabric quantification, Tectonophysics, 418, 3 – 19. Gee J. & Kent D.V., 1994. Variations in layer 2A thickness and the origin of the central anomaly magnetic high, Geophys. Res. Lett., 21, 297 – 300. Gee, J. & Kent D.V., 1997. Magnetization of axial lavas from the southern East Pacific Rise (14 degrees ‐23 degrees S); geochemical controls on magnetic properties, J. geophys. Res., B, Solid Earth and Planets 102, 24 873 – 24 886. Gee, J., Schneider, D.A. & Kent, D.V., 1996. Marine magnetic anomalies as recorders of geomagnetic intensity variations, Earth planet. Sci. Lett., 144 ( 3–4 ), 327 – 335. Gíslason, S.R. & Arnórsson S., 1993. Dissolution of primary basaltic minerals in natural waters: saturation state and kinetics, Chem. Geol., 105, 117 – 135. Gudmundsson, Á., 1993. Cross section between wells BJ‐11 and BJ‐12 in Bjarnarflag, National Energy Authority Report OS‐93071/JHD‐35 B, 46 pp (in Icelandic). Gudmundsson, B.T. & Arnórsson S., 2002. Geochemical monitoring of the Krafla and Námafjall geothermal areas, N‐Iceland. Geothermics, 31, 195 – 243. Gudmundsson, B.T. & Arnórsson S., 2005. Secondary mineral: fluid equilibria in the Krafla and Námafjall geothermal systems, Iceland. Appl. Geochem., 20 ( 9 ), 1607 – 1625. Gudmundsson, G., Pálmason, G., Grönvold, K., Ragnars, K., Saemundsson, K. & Arnórsson, S., 1971. Námafjall – Krafla: progress report on the investigation of the geothermal areas, N.E.A. Geothermal division, p. 81. Haggerty, S.E., 1991. Oxide textures: a mini‐atlas, in Oxide Minerals: Petrologic and Magnetic Significance, Vol. 25, pp. 129 – 219, ed. Lindsley, D.H., Mineralogical Society of America, (Reviews in Mineralogy) Chantilly, VA, USA. Hall, J.M., 1985. The Iceland Research Drilling Project crustal section: variation of magnetic properties with depth in Icelandic‐type oceanic crust, Canadian J. Earth Sci., 22 ( 1 ), 85 – 101. Hrouda, F., Clupácová, M. & Mrázová S., 2006. Low‐field variation of magnetic susceptibility as a tool for magnetic mineralogy of rocks, Phys. Earth planet. Inter., 154, 323 – 336. Irving, E., 1970. The Mid‐Atlantic ridge at 45 degrees N.: XIV. Oxidation and magnetic properties of basalt: review and discussion, Canadian J. Earth Sci., 7 ( 6 ), 1528 – 1538. Jackson, M., Moskowitz, B., Rosenbaum, J., Kissel, C., 1998. Field‐dependence of AC susceptibility in titanomagnetites, Earth planet. Sci. Lett., 157, 129 – 139. John, C.M., 2004. Plotting and analyzing data trends in ternary diagrams made easy, EOS, Trans. Am. geophys. Un., 85 ( 16 ), 158. http://www.agu.org/eos_elec/000562e.shtml. Jónsson, S.S., Gudmundsson, A. & Thordarson S., 2003. Krafla. Borun kjarnaholu KH‐3 milli Jörundar og Háganga. Íslenskar orkurannsóknir, ÍSOR‐2003/015. Unnid fyrir Landsvirkjun. Juárez, M.T., Tauxe, L., Gee, J.S. & Pick T., 1998. The intensity of the Earth's magnetic field over the past 160 million years, Nature, 304, 878 – 881. Just, J., 2005. Modification of magnetic properties in granite during hydrothermal alteration (EPS‐1 borehole, Upper Rhine Graben), PhD thesis. University of Heidelberg. Kadko, D., Gronvold, K. & Butterfield, D., 2007. Application of radium isotopes to determine crustal times of hydrothermal fluids from two sites of Reykjanes Peninsula, Iceland, Geochim. Cosmochim. Acta, 71, 6019 – 6029. Kent, D.V. & Gee, J., 1994. Grain size‐dependent alteration and the magnetization of ocean basalts, Science, 265, 1561 – 1563. Kletetschka, G. & Kontny, A., 2005. Identification of magnetic minerals by scanning electron microscope and application of ferrofluid, in The Castle Meeting, Studia Geophysica et Geodetica, Vol. 49 ( 2 ), pp. 153 – 162, ed. Petrovsky, E., Springer, Dordrecht. Kontny A., Vahle, C. & de Wall H., 2003. Characteristic magnetic behaviour of subaerial and submarine lava units from the Hawaiian Scientific Drilling Project (HSDP‐2), Geochem. Geophys. Geosyst., 4 ( 1 ), doi:10.1029/2002GC000304. Krása, D. & Herrero‐Bervera E., 2005. Alteration induced changes of magnetic fabric as exemplified by dykes of the Koolau volcanic range, Earth planet. Sci. Lett., 240, 445 – 453. Kristjansson, L. & Jonsson, G., 2007. Paleomagnetism and magnetic anomalies in Iceland, J. Geodyn., 43, 30 – 54. Lattard, D., Engelmann, R., Kontny, A. & Suerzapf, U., 2006. Curie temperatures of synthetic titanomagnetites in the Fe‐Ti‐O system: effects of composition, crystal chemistry, and thermomagnetic methods, J. geophys. Res., 111, B12S28, doi:10.1029/2006JB004591. Marshall, M. & Cox, A., 1972. Magnetic changes in Pillow Basalt due to sea floor weathering, J. geophys. Res., 77 ( 32 ), 6459 – 6469. IndexNoFollow Magnetic Mineralogy and Petrology Rock and Mineral Magnetism Hydrothermal Systems Geology and Earth Sciences Science Article 2011 ftumdeepblue https://doi.org/10.1111/j.1365-246X.2011.05029.x10.1103/PhysRev.38.1903 2023-07-31T20:40:43Z Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/86918/1/j.1365-246X.2011.05029.x.pdf Article in Journal/Newspaper Iceland University of Michigan: Deep Blue Krafla ENVELOPE(-16.747,-16.747,65.713,65.713) Geophysical Journal International 186 1 155 174