Seasonal Variations in Triple Oxygen Isotope Ratios of Precipitation in the Western and Central United States

Triple oxygen isotope ratios (∆′17O) offer new opportunities to improve reconstructions of past climate by quantifying evaporation, relative humidity, and diagenesis in geologic archives. However, the utility of ∆′17O in paleoclimate applications is hampered by a limited understanding of how precipi...

Full description

Bibliographic Details
Main Authors: Aron, P. G., Li, S., Brooks, J. R., Welker, J. M., Levin, N. E.
Format: Article in Journal/Newspaper
Language:unknown
Published: USGS 2023
Subjects:
Online Access:https://hdl.handle.net/2027.42/176279
https://doi.org/10.1029/2022PA004458
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/176279
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic paleoclimate
evaporation
precipitation
triple oxygen isotopes
Geological Sciences
Science
spellingShingle paleoclimate
evaporation
precipitation
triple oxygen isotopes
Geological Sciences
Science
Aron, P. G.
Li, S.
Brooks, J. R.
Welker, J. M.
Levin, N. E.
Seasonal Variations in Triple Oxygen Isotope Ratios of Precipitation in the Western and Central United States
topic_facet paleoclimate
evaporation
precipitation
triple oxygen isotopes
Geological Sciences
Science
description Triple oxygen isotope ratios (∆′17O) offer new opportunities to improve reconstructions of past climate by quantifying evaporation, relative humidity, and diagenesis in geologic archives. However, the utility of ∆′17O in paleoclimate applications is hampered by a limited understanding of how precipitation ∆′17O values vary across time and space. To improve applications of ∆′17O, we present δ18O, d-excess, and ∆′17O data from 26 precipitation sites in the western and central United States and three streams from the Willamette River Basin in western Oregon. In this data set, we find that precipitation ∆′17O tracks evaporation but appears insensitive to many controls that govern variation in δ18O, including Rayleigh distillation, elevation, latitude, longitude, and local precipitation amount. Seasonality has a large effect on ∆′17O variation in the data set and we observe higher seasonally amount-weighted average precipitation ∆′17O values in the winter (40 ± 15 per meg [± standard deviation]) than in the summer (18 ± 18 per meg). This seasonal precipitation ∆′17O variability likely arises from a combination of sub-cloud evaporation, atmospheric mixing, moisture recycling, sublimation, and/or relative humidity, but the data set is not well suited to quantitatively assess isotopic variability associated with each of these processes. The seasonal ∆′17O pattern, which is absent in d-excess and opposite in sign from δ18O, appears in other data sets globally; it showcases the influence of seasonality on ∆′17O values of precipitation and highlights the need for further systematic studies to understand variation in ∆′17O values of precipitation.Key PointsPrecipitation δ′18O-δ′17O slopes often differ from the 0.528 reference valuePrecipitation ∆′17O values are typically higher in the winter and lower in the summerDifferent controls on ∆′17O and δ18O mean that ∆′17O provides new information for paleoclimate reconstructions Peer Reviewed ...
format Article in Journal/Newspaper
author Aron, P. G.
Li, S.
Brooks, J. R.
Welker, J. M.
Levin, N. E.
author_facet Aron, P. G.
Li, S.
Brooks, J. R.
Welker, J. M.
Levin, N. E.
author_sort Aron, P. G.
title Seasonal Variations in Triple Oxygen Isotope Ratios of Precipitation in the Western and Central United States
title_short Seasonal Variations in Triple Oxygen Isotope Ratios of Precipitation in the Western and Central United States
title_full Seasonal Variations in Triple Oxygen Isotope Ratios of Precipitation in the Western and Central United States
title_fullStr Seasonal Variations in Triple Oxygen Isotope Ratios of Precipitation in the Western and Central United States
title_full_unstemmed Seasonal Variations in Triple Oxygen Isotope Ratios of Precipitation in the Western and Central United States
title_sort seasonal variations in triple oxygen isotope ratios of precipitation in the western and central united states
publisher USGS
publishDate 2023
url https://hdl.handle.net/2027.42/176279
https://doi.org/10.1029/2022PA004458
genre The Cryosphere
genre_facet The Cryosphere
op_relation Aron, P. G.; Li, S.; Brooks, J. R.; Welker, J. M.; Levin, N. E. (2023). "Seasonal Variations in Triple Oxygen Isotope Ratios of Precipitation in the Western and Central United States." Paleoceanography and Paleoclimatology 38(4): n/a-n/a.
2572-4517
2572-4525
https://hdl.handle.net/2027.42/176279
doi:10.1029/2022PA004458
Paleoceanography and Paleoclimatology
Quade, J., Rech, J. A., Latorre, C., Betancourt, J. L., Gleeson, E., & Kalin, M. T. K. ( 2007 ). Soils at the hyperarid margin: The isotopic composition of soil carbonate from the Atacama Desert, Northern Chile. Geochimica et Cosmochimica Acta, 71 ( 15 ), 3772 – 3795. https://doi.org/10.1016/j.gca.2007.02.016
Sengupta, S., & Pack, A. ( 2018 ). Triple oxygen isotope mass balance for the Earth’s oceans with application to Archean cherts. Chemical Geology, 495, 18 – 26. https://doi.org/10.1016/j.chemgeo.2018.07.012
Sha, L., Mahata, S., Duan, P., Luz, B., Zhang, P., Baker, J., et al. ( 2020 ). A novel application of triple oxygen isotope ratios of speleothems. Geochimica et Cosmochimica Acta, 270, 360 – 378. https://doi.org/10.1016/j.gca.2019.12.003
Sharp, Z. D., Wostbrock, J. A. G., & Pack, A. ( 2018 ). Mass-dependent triple oxygen isotope variations in terrestrial materials. Geochemical Perspectives Letters, 7, 27 – 31. https://doi.org/10.7185/geochemlet.1815
Surma, J., Assonov, S., Bolourchi, M. J., & Staubwasser, M. ( 2015 ). Triple oxygen isotope signatures in evaporated water bodies from the Sistan Oasis, Iran. Geophysical Research Letters, 42 ( 20 ), 8456 – 8462. https://doi.org/10.1002/2015GL066475
Surma, J., Assonov, S., Herwartz, D., Voigt, C., & Staubwasser, M. ( 2018 ). The evolution of 17 O-excess in surface water of the arid environment during recharge and evaporation. Scientific Reports, 8, 1 – 10. https://doi.org/10.1038/s41598-018-23151-6
Surma, J., Assonov, S., & Staubwasser, M. ( 2021 ). Triple oxygen isotope systematics in the hydrologic cycle. Reviews in Mineralogy and Geochemistry, 86 ( 1 ), 401 – 428. https://doi.org/10.2138/rmg.2021.86.12
Tappa, D. J., Kohn, M. J., Mcnamara, J. P., Benner, S. G., & Flores, A. N. ( 2016 ). Isotopic composition of precipitation in a topographically steep, seasonally snow-dominated watershed and implications of variations from the global meteoric water. 4592, 4582 – 4592. Hydrological%20Processes, https://doi.org/10.1002/hyp.10940
Thompson, L. G., Mosley-Thompson, E., & Henderson, K. A. ( 2000 ). Ice-core palaeoclimate records in tropical South America since the last glacial maximum. Journal of Quaternary Science, 15 ( 4 ), 377 – 394. https://doi.org/10.1002/1099-1417(200005)15:4<377::AID-JQS542>3.0.CO;2-L
Tian, C., Jiao, W., Beysens, D., Farai Kaseke, K., Medici, M. G., Li, F., & Wang, L. ( 2021 ). Investigating the role of evaporation in dew formation under different climates using 17 O-excess. Journal of Hydrology, 592, 125847. https://doi.org/10.1016/j.jhydrol.2020.125847
Tian, C., & Wang, L. ( 2019 ). Data Descriptor: Stable isotope variations of daily precipitation from 2014 to 2018 in the central United States. Scientific Data, 6, 1 – 8. https://doi.org/10.1038/sdata.2019.18
Tian, C., Wang, L., Kaseke, K. F., & Bird, B. W. ( 2018 ). Stable isotope compositions ( δ 2 H, δ 18 O, and δ 17 O) of rainfall and snowfall in the central United States. Scientific Reports, 8, 1 – 15. https://doi.org/10.1038/s41598-018-25102-7
Tian, C., Wang, L., Tian, F., Zhao, S., & Jiao, W. ( 2019 ). Spatial and temporal variations of tap water 17 O-excess in China. Geochimica et Cosmochimica Acta, 260, 1 – 14. https://doi.org/10.1016/j.gca.2019.06.015
Touzeau, A., Landais, A., Stenni, B., Uemura, R., Fukui, K., Fujita, S., et al. ( 2016 ). Acquisition of isotopic composition for surface snow in East Antarctica and the links to climatic parameters. The Cryosphere, 10 ( 2 ), 837 – 852. https://doi.org/10.5194/tc-10-837-2016
Uechi, Y., & Uemura, R. ( 2019 ). Dominant influence of the humidity in the moisture source region on the 17 O-excess in precipitation on a subtropical island. Earth and Planetary Science Letters, 513, 20 – 28. https://doi.org/10.1016/j.epsl.2019.02.012
Voigt, C., Herwartz, D., Dorador, C., & Staubwasser, M. ( 2021 ). Triple oxygen isotope systematics of evaporation and mixing processes in a dynamic desert lake system. Hydrology and Earth System Sciences, 25 ( 3 ), 1211 – 1228. https://doi.org/10.5194/hess-25-1211-2021
Welker, J. M. ( 2012 ). ENSO effects on δ 18 O, δ 2 H, and d -excess values in precipitation across the U.S. using a high-density, long-term network (USNIP). Rapid Communications in Mass Spectrometry, 26 ( 17 ), 1893 – 1898. https://doi.org/10.1002/rcm.6298
Welp, L. R., Lee, X., Griffis, T. J., Wen, X. F., Xiao, W., Li, S., et al. ( 2012 ). A meta-analysis of water vapor deuterium-excess in the midlatitude atmospheric surface layer. Global Biogeochemical Cycles, 26 ( 3 ), 1 – 12. https://doi.org/10.1029/2011GB004246
Winkler, R., Landais, A., Sodemann, H., Dümbgen, L., Prié, F., Masson-Delmotte, V., et al. ( 2012 ). Deglaciation records of 17 O-excess in East Antarctica: Reliable reconstruction of oceanic normalized relative humidity from coastal sites. Climate of the Past, 8, 1 – 16. https://doi.org/10.5194/cp-8-1-2012
Wortham, B. E., Montañez, I. P., Swart, P. K., Vonhof, H., & Tabor, C. ( 2022 ). Variability in effective moisture inferred from inclusion fluid δ 18 O and δ 2 H values in a central Sierra Nevada stalagmite (CA). Quaternary Science Reviews, 279, 107399. https://doi.org/10.1016/j.quascirev.2022.107399
Wostbrock, J. A. G., Brand, U., Coplen, T. B., Swart, P. K., Carlson, S. J., Brearley, A. J., & Sharp, Z. D. ( 2020 ). Calibration of carbonate-water triple oxygen isotope fractionation: Seeing through diagenesis in ancient carbonates. Geochimica et Cosmochimica Acta, 288, 369 – 388. https://doi.org/10.1016/j.gca.2020.07.045
Wostbrock, J. A. G., & Sharp, Z. D. ( 2021 ). Triple oxygen isotopes in silica—Water and carbonate—Water systems. Reviews in Mineralogy and Geochemistry, 86 ( 1 ), 367 – 400. https://doi.org/10.2138/rmg.2021.86.11
Xia, Z., & Winnick, M. J. ( 2021 ). The competing effects of terrestrial evapotranspiration and raindrop re-evaporation on the deuterium excess of continental precipitation. Earth and Planetary Science Letters, 572, 117120. https://doi.org/10.1016/j.epsl.2021.117120
Young, E. D., Galy, A., & Nagahara, H. ( 2002 ). Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance. Geochimica et Cosmochimica Acta, 66 ( 6 ), 1095 – 1104. https://doi.org/10.1016/S0016-7037(01)00832-8
Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. ( 2001 ). Trends, rhythms, and aberrations in global climate 65 Ma to present (Vol. 292, pp. 686 – 693 ). https://doi.org/10.1126/science.1059412
Affolter, S., Häuselmann, A. D., Fleitmann, D., Häuselmann, P., & Leuenberger, M. ( 2015 ). Triple isotope ( δ D, δ 17 O, δ 18 O) study on precipitation, drip water, and speleothem fluid inclusions for a Western Central European cave (NW Switzerland). Quaternary Science Reviews, 127, 73 – 89. https://doi.org/10.1016/j.quascirev.2015.08.030
Alexandre, A., Landais, A., Vallet-Coulomb, C., Piel, C., Devidal, S., Pauchet, S., et al. ( 2018 ). The triple oxygen isotope composition of phytoliths as a proxy of continental atmospheric humidity: Insights from climate chamber and climate transect calibrations. Biogeosciences, 15 ( 10 ), 3223 – 3241. https://doi.org/10.5194/bg-15-3223-2018
Allen, S. T., Kirchner, J. W., Braun, S., Siegwolf, R. T. W., & Goldsmith, G. R. ( 2019 ). Seasonal origins of soil water used by trees. Hydrology and Earth System Sciences, 23 ( 2 ), 1199 – 1210. https://doi.org/10.5194/hess-23-1199-2019
Aron, P. G., Li, S., Brooks, J. R., Welker, J. M., & Levin, N. E. ( 2023 ). Seasonal variations in triple oxygen isotope ratios of precipitation in the western and central United States—Final Data. [Dataset]. University of Utah Water Isotope Database. Retrieved from https://wateriso.utah.edu/waterisotopes/pages/spatial_db/SPATIAL_DB.html
Aron, P. G., Levin, N. E., Beverly, E. J., Huth, T. E., Passey, B. H., Pelletier, E. M., et al. ( 2021a ). Triple oxygen isotopes in the water cycle. Chemical Geology, 565, 120026. https://doi.org/10.1016/j.chemgeo.2020.120026
Aron, P. G., Poulsen, C. J., Fiorella, R. P., Levin, N. E., Acosta, R. P., Yanites, J. B., & Cassel, E. J. ( 2021b ). Variability and controls on δ 18 O, d -excess, and ∆′ 17 O in southern Peruvian precipitation. Journal of Geophysical Research: Atmospheres, 126 ( 23 ), 1 – 18. https://doi.org/10.1029/2020jd034009
Baker, L., Franchi, I. A., Maynard, J., Wright, I. P., & Pillinger, C. T. ( 2002 ). A technique for the determination of 18 O/ 16 O and 17 O/ 16 O isotopic ratios in water from small liquid and solid samples. Analytical Chemistry, 74 ( 7 ), 1665 – 1673. https://doi.org/10.1021/ac010509s
Barkan, E., & Luz, B. ( 2005 ). High-precision measurements of 17 O/ 16 O and 18 O/ 16 O ratios in H 2 O. Rapid Communications in Mass Spectrometry, 19 ( 24 ), 3737 – 3742. https://doi.org/10.1002/rcm.2250
Barkan, E., & Luz, B. ( 2007 ). Diffusivity fractionations of H 2 16 O/H 2 17 O and H 2 16 O/H 2 18 O in air and their implications for isotope hydrology. Rapid Communications in Mass Spectrometry, 21 ( 18 ), 2999 – 3005. https://doi.org/10.1002/rcm.3180
Benjamin, L., Knobel, L. L., Hall, L. F., Cecil, L. D., & Green, J. R. ( 2004 ). Development of a local meteoric water line for Southeastern Idaho, Western Wyoming, and South-Central Montana (pp. 1 – 23 ). USGS.
Bergel, S. J., Barkan, E., Stein, M., & Affek, H. P. ( 2020 ). Carbonate 17 O-excess as a paleo-hydrology proxy: Triple oxygen isotope fractionation between H 2 O and biogenic aragonite, derived from freshwater mollusks. Geochimica et Cosmochimica Acta, 275, 36 – 47. https://doi.org/10.1016/j.gca.2020.02.005
Berman, E. S. F., Levin, N. E., Landais, A., Li, S., & Owano, T. ( 2013 ). Measurement of δ 18 O, δ 17 O, and 17 O-excess in water by off-axis integrated cavity output spectroscopy and isotope ratio mass spectrometry. Analytical Chemistry, 85 ( 21 ), 10392 – 10398. https://doi.org/10.1021/ac402366t
Bershaw, J., Hansen, D. D., & Schauer, A. J. ( 2020 ). Deuterium excess and 17 O-excess variability in meteoric water across the Pacific Northwest, USA. Tellus Series B Chemical and Physical Meteorology, 72, 1 – 17. https://doi.org/10.1080/16000889.2020.1773722
Beverly, E. J., Levin, N. E., Passey, B. H., Aron, P. G., Yarian, D. A., Page, M., & Pelletier, E. M. ( 2021 ). Triple oxygen and clumped isotopes in modern soil carbonate along an aridity gradient in the Serengeti, Tanzania. Earth and Planetary Science Letters, 567, 116952. https://doi.org/10.1016/j.epsl.2021.116952
Bindeman, I. N. ( 2021 ). Triple oxygen isotopes in evolving continental crust, granites, and clastic sediments. Reviews in Mineralogy and Geochemistry, 86 ( 1 ), 241 – 290. https://doi.org/10.2138/rmg.2021.86.08
Bowen, G. J., Cai, Z., Fiorella, R. P., & Putman, A. L. ( 2019 ). Isotopes in the water cycle: Regional-to global-scale patterns and applications. Annual Review of Earth and Planetary Sciences., 47 ( 1 ), 453 – 479. https://doi.org/10.1146/annurev-earth-053018-060220
Bowen, G. J., Putman, A., Brooks, J. R., Bowling, D. R., Oerter, E. J., & Good, S. P. ( 2018 ). Inferring the source of evaporated waters using stable H and O isotopes. Oecologia, 187 ( 4 ), 1025 – 1039. https://doi.org/10.1007/s00442-018-4192-5
Brady, M. P., & Hodell, D. A. ( 2021 ). Continuous and simultaneous measurement of triple-oxygen and hydrogen isotopes of liquid and vapor during evaporation experiments. Rapid Communications in Mass Spectrometry, 35 ( 10 ). https://doi.org/10.1002/rcm.9078
Breecker, D. O., Sharp, Z. D., & McFadden, L. D. ( 2009 ). Seasonal bias in the formation and stable isotopic composition of pedogenic carbonate in modern soils from central New Mexico, USA. Bulletin of the Geological Society of America, 121 ( 3–4 ), 630 – 640. https://doi.org/10.1130/B26413.1
op_rights IndexNoFollow
op_doi https://doi.org/10.1029/2022PA00445810.1016/j.gca.2019.12.00310.5194/tc-10-837-201610.1002/rcm.629810.1029/2011GB00424610.5194/cp-8-1-201210.5194/bg-15-3223-201810.1016/j.chemgeo.2020.12002610.2138/rmg.2021.86.0810.1126/science.133.3465.170210.3402/tellus
_version_ 1800739333016125440
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/176279 2024-06-02T08:15:14+00:00 Seasonal Variations in Triple Oxygen Isotope Ratios of Precipitation in the Western and Central United States Aron, P. G. Li, S. Brooks, J. R. Welker, J. M. Levin, N. E. 2023-04 application/pdf https://hdl.handle.net/2027.42/176279 https://doi.org/10.1029/2022PA004458 unknown USGS Wiley Periodicals, Inc. Aron, P. G.; Li, S.; Brooks, J. R.; Welker, J. M.; Levin, N. E. (2023). "Seasonal Variations in Triple Oxygen Isotope Ratios of Precipitation in the Western and Central United States." Paleoceanography and Paleoclimatology 38(4): n/a-n/a. 2572-4517 2572-4525 https://hdl.handle.net/2027.42/176279 doi:10.1029/2022PA004458 Paleoceanography and Paleoclimatology Quade, J., Rech, J. A., Latorre, C., Betancourt, J. L., Gleeson, E., & Kalin, M. T. K. ( 2007 ). Soils at the hyperarid margin: The isotopic composition of soil carbonate from the Atacama Desert, Northern Chile. Geochimica et Cosmochimica Acta, 71 ( 15 ), 3772 – 3795. https://doi.org/10.1016/j.gca.2007.02.016 Sengupta, S., & Pack, A. ( 2018 ). Triple oxygen isotope mass balance for the Earth’s oceans with application to Archean cherts. Chemical Geology, 495, 18 – 26. https://doi.org/10.1016/j.chemgeo.2018.07.012 Sha, L., Mahata, S., Duan, P., Luz, B., Zhang, P., Baker, J., et al. ( 2020 ). A novel application of triple oxygen isotope ratios of speleothems. Geochimica et Cosmochimica Acta, 270, 360 – 378. https://doi.org/10.1016/j.gca.2019.12.003 Sharp, Z. D., Wostbrock, J. A. G., & Pack, A. ( 2018 ). Mass-dependent triple oxygen isotope variations in terrestrial materials. Geochemical Perspectives Letters, 7, 27 – 31. https://doi.org/10.7185/geochemlet.1815 Surma, J., Assonov, S., Bolourchi, M. J., & Staubwasser, M. ( 2015 ). Triple oxygen isotope signatures in evaporated water bodies from the Sistan Oasis, Iran. Geophysical Research Letters, 42 ( 20 ), 8456 – 8462. https://doi.org/10.1002/2015GL066475 Surma, J., Assonov, S., Herwartz, D., Voigt, C., & Staubwasser, M. ( 2018 ). The evolution of 17 O-excess in surface water of the arid environment during recharge and evaporation. Scientific Reports, 8, 1 – 10. https://doi.org/10.1038/s41598-018-23151-6 Surma, J., Assonov, S., & Staubwasser, M. ( 2021 ). Triple oxygen isotope systematics in the hydrologic cycle. Reviews in Mineralogy and Geochemistry, 86 ( 1 ), 401 – 428. https://doi.org/10.2138/rmg.2021.86.12 Tappa, D. J., Kohn, M. J., Mcnamara, J. P., Benner, S. G., & Flores, A. N. ( 2016 ). Isotopic composition of precipitation in a topographically steep, seasonally snow-dominated watershed and implications of variations from the global meteoric water. 4592, 4582 – 4592. Hydrological%20Processes, https://doi.org/10.1002/hyp.10940 Thompson, L. G., Mosley-Thompson, E., & Henderson, K. A. ( 2000 ). Ice-core palaeoclimate records in tropical South America since the last glacial maximum. Journal of Quaternary Science, 15 ( 4 ), 377 – 394. https://doi.org/10.1002/1099-1417(200005)15:4<377::AID-JQS542>3.0.CO;2-L Tian, C., Jiao, W., Beysens, D., Farai Kaseke, K., Medici, M. G., Li, F., & Wang, L. ( 2021 ). Investigating the role of evaporation in dew formation under different climates using 17 O-excess. Journal of Hydrology, 592, 125847. https://doi.org/10.1016/j.jhydrol.2020.125847 Tian, C., & Wang, L. ( 2019 ). Data Descriptor: Stable isotope variations of daily precipitation from 2014 to 2018 in the central United States. Scientific Data, 6, 1 – 8. https://doi.org/10.1038/sdata.2019.18 Tian, C., Wang, L., Kaseke, K. F., & Bird, B. W. ( 2018 ). Stable isotope compositions ( δ 2 H, δ 18 O, and δ 17 O) of rainfall and snowfall in the central United States. Scientific Reports, 8, 1 – 15. https://doi.org/10.1038/s41598-018-25102-7 Tian, C., Wang, L., Tian, F., Zhao, S., & Jiao, W. ( 2019 ). Spatial and temporal variations of tap water 17 O-excess in China. Geochimica et Cosmochimica Acta, 260, 1 – 14. https://doi.org/10.1016/j.gca.2019.06.015 Touzeau, A., Landais, A., Stenni, B., Uemura, R., Fukui, K., Fujita, S., et al. ( 2016 ). Acquisition of isotopic composition for surface snow in East Antarctica and the links to climatic parameters. The Cryosphere, 10 ( 2 ), 837 – 852. https://doi.org/10.5194/tc-10-837-2016 Uechi, Y., & Uemura, R. ( 2019 ). Dominant influence of the humidity in the moisture source region on the 17 O-excess in precipitation on a subtropical island. Earth and Planetary Science Letters, 513, 20 – 28. https://doi.org/10.1016/j.epsl.2019.02.012 Voigt, C., Herwartz, D., Dorador, C., & Staubwasser, M. ( 2021 ). Triple oxygen isotope systematics of evaporation and mixing processes in a dynamic desert lake system. Hydrology and Earth System Sciences, 25 ( 3 ), 1211 – 1228. https://doi.org/10.5194/hess-25-1211-2021 Welker, J. M. ( 2012 ). ENSO effects on δ 18 O, δ 2 H, and d -excess values in precipitation across the U.S. using a high-density, long-term network (USNIP). Rapid Communications in Mass Spectrometry, 26 ( 17 ), 1893 – 1898. https://doi.org/10.1002/rcm.6298 Welp, L. R., Lee, X., Griffis, T. J., Wen, X. F., Xiao, W., Li, S., et al. ( 2012 ). A meta-analysis of water vapor deuterium-excess in the midlatitude atmospheric surface layer. Global Biogeochemical Cycles, 26 ( 3 ), 1 – 12. https://doi.org/10.1029/2011GB004246 Winkler, R., Landais, A., Sodemann, H., Dümbgen, L., Prié, F., Masson-Delmotte, V., et al. ( 2012 ). Deglaciation records of 17 O-excess in East Antarctica: Reliable reconstruction of oceanic normalized relative humidity from coastal sites. Climate of the Past, 8, 1 – 16. https://doi.org/10.5194/cp-8-1-2012 Wortham, B. E., Montañez, I. P., Swart, P. K., Vonhof, H., & Tabor, C. ( 2022 ). Variability in effective moisture inferred from inclusion fluid δ 18 O and δ 2 H values in a central Sierra Nevada stalagmite (CA). Quaternary Science Reviews, 279, 107399. https://doi.org/10.1016/j.quascirev.2022.107399 Wostbrock, J. A. G., Brand, U., Coplen, T. B., Swart, P. K., Carlson, S. J., Brearley, A. J., & Sharp, Z. D. ( 2020 ). Calibration of carbonate-water triple oxygen isotope fractionation: Seeing through diagenesis in ancient carbonates. Geochimica et Cosmochimica Acta, 288, 369 – 388. https://doi.org/10.1016/j.gca.2020.07.045 Wostbrock, J. A. G., & Sharp, Z. D. ( 2021 ). Triple oxygen isotopes in silica—Water and carbonate—Water systems. Reviews in Mineralogy and Geochemistry, 86 ( 1 ), 367 – 400. https://doi.org/10.2138/rmg.2021.86.11 Xia, Z., & Winnick, M. J. ( 2021 ). The competing effects of terrestrial evapotranspiration and raindrop re-evaporation on the deuterium excess of continental precipitation. Earth and Planetary Science Letters, 572, 117120. https://doi.org/10.1016/j.epsl.2021.117120 Young, E. D., Galy, A., & Nagahara, H. ( 2002 ). Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance. Geochimica et Cosmochimica Acta, 66 ( 6 ), 1095 – 1104. https://doi.org/10.1016/S0016-7037(01)00832-8 Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. ( 2001 ). Trends, rhythms, and aberrations in global climate 65 Ma to present (Vol. 292, pp. 686 – 693 ). https://doi.org/10.1126/science.1059412 Affolter, S., Häuselmann, A. D., Fleitmann, D., Häuselmann, P., & Leuenberger, M. ( 2015 ). Triple isotope ( δ D, δ 17 O, δ 18 O) study on precipitation, drip water, and speleothem fluid inclusions for a Western Central European cave (NW Switzerland). Quaternary Science Reviews, 127, 73 – 89. https://doi.org/10.1016/j.quascirev.2015.08.030 Alexandre, A., Landais, A., Vallet-Coulomb, C., Piel, C., Devidal, S., Pauchet, S., et al. ( 2018 ). The triple oxygen isotope composition of phytoliths as a proxy of continental atmospheric humidity: Insights from climate chamber and climate transect calibrations. Biogeosciences, 15 ( 10 ), 3223 – 3241. https://doi.org/10.5194/bg-15-3223-2018 Allen, S. T., Kirchner, J. W., Braun, S., Siegwolf, R. T. W., & Goldsmith, G. R. ( 2019 ). Seasonal origins of soil water used by trees. Hydrology and Earth System Sciences, 23 ( 2 ), 1199 – 1210. https://doi.org/10.5194/hess-23-1199-2019 Aron, P. G., Li, S., Brooks, J. R., Welker, J. M., & Levin, N. E. ( 2023 ). Seasonal variations in triple oxygen isotope ratios of precipitation in the western and central United States—Final Data. [Dataset]. University of Utah Water Isotope Database. Retrieved from https://wateriso.utah.edu/waterisotopes/pages/spatial_db/SPATIAL_DB.html Aron, P. G., Levin, N. E., Beverly, E. J., Huth, T. E., Passey, B. H., Pelletier, E. M., et al. ( 2021a ). Triple oxygen isotopes in the water cycle. Chemical Geology, 565, 120026. https://doi.org/10.1016/j.chemgeo.2020.120026 Aron, P. G., Poulsen, C. J., Fiorella, R. P., Levin, N. E., Acosta, R. P., Yanites, J. B., & Cassel, E. J. ( 2021b ). Variability and controls on δ 18 O, d -excess, and ∆′ 17 O in southern Peruvian precipitation. Journal of Geophysical Research: Atmospheres, 126 ( 23 ), 1 – 18. https://doi.org/10.1029/2020jd034009 Baker, L., Franchi, I. A., Maynard, J., Wright, I. P., & Pillinger, C. T. ( 2002 ). A technique for the determination of 18 O/ 16 O and 17 O/ 16 O isotopic ratios in water from small liquid and solid samples. Analytical Chemistry, 74 ( 7 ), 1665 – 1673. https://doi.org/10.1021/ac010509s Barkan, E., & Luz, B. ( 2005 ). High-precision measurements of 17 O/ 16 O and 18 O/ 16 O ratios in H 2 O. Rapid Communications in Mass Spectrometry, 19 ( 24 ), 3737 – 3742. https://doi.org/10.1002/rcm.2250 Barkan, E., & Luz, B. ( 2007 ). Diffusivity fractionations of H 2 16 O/H 2 17 O and H 2 16 O/H 2 18 O in air and their implications for isotope hydrology. Rapid Communications in Mass Spectrometry, 21 ( 18 ), 2999 – 3005. https://doi.org/10.1002/rcm.3180 Benjamin, L., Knobel, L. L., Hall, L. F., Cecil, L. D., & Green, J. R. ( 2004 ). Development of a local meteoric water line for Southeastern Idaho, Western Wyoming, and South-Central Montana (pp. 1 – 23 ). USGS. Bergel, S. J., Barkan, E., Stein, M., & Affek, H. P. ( 2020 ). Carbonate 17 O-excess as a paleo-hydrology proxy: Triple oxygen isotope fractionation between H 2 O and biogenic aragonite, derived from freshwater mollusks. Geochimica et Cosmochimica Acta, 275, 36 – 47. https://doi.org/10.1016/j.gca.2020.02.005 Berman, E. S. F., Levin, N. E., Landais, A., Li, S., & Owano, T. ( 2013 ). Measurement of δ 18 O, δ 17 O, and 17 O-excess in water by off-axis integrated cavity output spectroscopy and isotope ratio mass spectrometry. Analytical Chemistry, 85 ( 21 ), 10392 – 10398. https://doi.org/10.1021/ac402366t Bershaw, J., Hansen, D. D., & Schauer, A. J. ( 2020 ). Deuterium excess and 17 O-excess variability in meteoric water across the Pacific Northwest, USA. Tellus Series B Chemical and Physical Meteorology, 72, 1 – 17. https://doi.org/10.1080/16000889.2020.1773722 Beverly, E. J., Levin, N. E., Passey, B. H., Aron, P. G., Yarian, D. A., Page, M., & Pelletier, E. M. ( 2021 ). Triple oxygen and clumped isotopes in modern soil carbonate along an aridity gradient in the Serengeti, Tanzania. Earth and Planetary Science Letters, 567, 116952. https://doi.org/10.1016/j.epsl.2021.116952 Bindeman, I. N. ( 2021 ). Triple oxygen isotopes in evolving continental crust, granites, and clastic sediments. Reviews in Mineralogy and Geochemistry, 86 ( 1 ), 241 – 290. https://doi.org/10.2138/rmg.2021.86.08 Bowen, G. J., Cai, Z., Fiorella, R. P., & Putman, A. L. ( 2019 ). Isotopes in the water cycle: Regional-to global-scale patterns and applications. Annual Review of Earth and Planetary Sciences., 47 ( 1 ), 453 – 479. https://doi.org/10.1146/annurev-earth-053018-060220 Bowen, G. J., Putman, A., Brooks, J. R., Bowling, D. R., Oerter, E. J., & Good, S. P. ( 2018 ). Inferring the source of evaporated waters using stable H and O isotopes. Oecologia, 187 ( 4 ), 1025 – 1039. https://doi.org/10.1007/s00442-018-4192-5 Brady, M. P., & Hodell, D. A. ( 2021 ). Continuous and simultaneous measurement of triple-oxygen and hydrogen isotopes of liquid and vapor during evaporation experiments. Rapid Communications in Mass Spectrometry, 35 ( 10 ). https://doi.org/10.1002/rcm.9078 Breecker, D. O., Sharp, Z. D., & McFadden, L. D. ( 2009 ). Seasonal bias in the formation and stable isotopic composition of pedogenic carbonate in modern soils from central New Mexico, USA. Bulletin of the Geological Society of America, 121 ( 3–4 ), 630 – 640. https://doi.org/10.1130/B26413.1 IndexNoFollow paleoclimate evaporation precipitation triple oxygen isotopes Geological Sciences Science Article 2023 ftumdeepblue https://doi.org/10.1029/2022PA00445810.1016/j.gca.2019.12.00310.5194/tc-10-837-201610.1002/rcm.629810.1029/2011GB00424610.5194/cp-8-1-201210.5194/bg-15-3223-201810.1016/j.chemgeo.2020.12002610.2138/rmg.2021.86.0810.1126/science.133.3465.170210.3402/tellus 2024-05-07T23:30:42Z Triple oxygen isotope ratios (∆′17O) offer new opportunities to improve reconstructions of past climate by quantifying evaporation, relative humidity, and diagenesis in geologic archives. However, the utility of ∆′17O in paleoclimate applications is hampered by a limited understanding of how precipitation ∆′17O values vary across time and space. To improve applications of ∆′17O, we present δ18O, d-excess, and ∆′17O data from 26 precipitation sites in the western and central United States and three streams from the Willamette River Basin in western Oregon. In this data set, we find that precipitation ∆′17O tracks evaporation but appears insensitive to many controls that govern variation in δ18O, including Rayleigh distillation, elevation, latitude, longitude, and local precipitation amount. Seasonality has a large effect on ∆′17O variation in the data set and we observe higher seasonally amount-weighted average precipitation ∆′17O values in the winter (40 ± 15 per meg [± standard deviation]) than in the summer (18 ± 18 per meg). This seasonal precipitation ∆′17O variability likely arises from a combination of sub-cloud evaporation, atmospheric mixing, moisture recycling, sublimation, and/or relative humidity, but the data set is not well suited to quantitatively assess isotopic variability associated with each of these processes. The seasonal ∆′17O pattern, which is absent in d-excess and opposite in sign from δ18O, appears in other data sets globally; it showcases the influence of seasonality on ∆′17O values of precipitation and highlights the need for further systematic studies to understand variation in ∆′17O values of precipitation.Key PointsPrecipitation δ′18O-δ′17O slopes often differ from the 0.528 reference valuePrecipitation ∆′17O values are typically higher in the winter and lower in the summerDifferent controls on ∆′17O and δ18O mean that ∆′17O provides new information for paleoclimate reconstructions Peer Reviewed ... Article in Journal/Newspaper The Cryosphere University of Michigan: Deep Blue