Joint Use of Far-Infrared and Mid-Infrared Observation for Sounding Retrievals: Learning From the Past for Upcoming Far-Infrared Missions

Atmosphere and surface properties are routinely retrieved from satellite measurements and extensively used in weather forecast and climate analysis. Satellite missions dedicated to fill the gap of far-infrared (far-IR) observations are scheduled to be launched this decade. To explore mid-infrared (m...

Full description

Bibliographic Details
Main Authors: Xie, Yan, Huang, Xianglei, Chen, Xiuhong, L’Ecuyer, Tristan S., Drouin, Brian J.
Format: Article in Journal/Newspaper
Language:unknown
Published: WORLD SCIENTIFIC 2023
Subjects:
Online Access:https://hdl.handle.net/2027.42/176101
https://doi.org/10.1029/2022EA002684
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/176101
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic atmospheric retrieval
satellite observation
far-infrared
Atmospheric and Oceanic Sciences
Geological Sciences
Space Sciences
Science
spellingShingle atmospheric retrieval
satellite observation
far-infrared
Atmospheric and Oceanic Sciences
Geological Sciences
Space Sciences
Science
Xie, Yan
Huang, Xianglei
Chen, Xiuhong
L’Ecuyer, Tristan S.
Drouin, Brian J.
Joint Use of Far-Infrared and Mid-Infrared Observation for Sounding Retrievals: Learning From the Past for Upcoming Far-Infrared Missions
topic_facet atmospheric retrieval
satellite observation
far-infrared
Atmospheric and Oceanic Sciences
Geological Sciences
Space Sciences
Science
description Atmosphere and surface properties are routinely retrieved from satellite measurements and extensively used in weather forecast and climate analysis. Satellite missions dedicated to fill the gap of far-infrared (far-IR) observations are scheduled to be launched this decade. To explore mid-infrared (mid-IR) and far-IR joint retrievals for the future far-IR satellite missions, this study uses an optimal-estimation-based method to retrieve atmospheric specific humidity and temperature profiles, surface skin temperature, and surface spectral emissivity from the Infrared Interferometer Sounder-D (IRIS-D) measurements in 1970, the only existing spaceborne far-IR spectral observations with global coverage. Based on a set of criteria, two cases in the Arctic, which are most likely under clear-sky conditions, are chosen for the retrieval experiments. Information content analysis suggests that the retrieved surface skin temperature and the mid-IR surface spectral emissivity are highly sensitive to the true values while the retrieval estimates of far-IR surface emissivity are subject to the variation of water vapor abundance. Results show that radiances based on the retrieved state variables are more consistent with the IRIS-D observations compared to those based on the reanalysis data. Retrieval estimates of the state variables along with retrieval uncertainties generally fall within reasonable ranges. The relative uncertainties of retrieved state variables decrease compared to the a priori relative uncertainties. In addition, the necessity to retrieve surface emissivity is corroborated by a parallel retrieval experiment assuming a blackbody surface emissivity that has revealed significant distortions of retrieved specific humidity and temperature profiles in the Arctic lower troposphere.Key PointsAtmospheric profiles and surface properties are simultaneously retrieved from satellite observations made 50 years agoCompared to reanalysis data, the retrieval estimates produce radiances which are more consistent with the ...
format Article in Journal/Newspaper
author Xie, Yan
Huang, Xianglei
Chen, Xiuhong
L’Ecuyer, Tristan S.
Drouin, Brian J.
author_facet Xie, Yan
Huang, Xianglei
Chen, Xiuhong
L’Ecuyer, Tristan S.
Drouin, Brian J.
author_sort Xie, Yan
title Joint Use of Far-Infrared and Mid-Infrared Observation for Sounding Retrievals: Learning From the Past for Upcoming Far-Infrared Missions
title_short Joint Use of Far-Infrared and Mid-Infrared Observation for Sounding Retrievals: Learning From the Past for Upcoming Far-Infrared Missions
title_full Joint Use of Far-Infrared and Mid-Infrared Observation for Sounding Retrievals: Learning From the Past for Upcoming Far-Infrared Missions
title_fullStr Joint Use of Far-Infrared and Mid-Infrared Observation for Sounding Retrievals: Learning From the Past for Upcoming Far-Infrared Missions
title_full_unstemmed Joint Use of Far-Infrared and Mid-Infrared Observation for Sounding Retrievals: Learning From the Past for Upcoming Far-Infrared Missions
title_sort joint use of far-infrared and mid-infrared observation for sounding retrievals: learning from the past for upcoming far-infrared missions
publisher WORLD SCIENTIFIC
publishDate 2023
url https://hdl.handle.net/2027.42/176101
https://doi.org/10.1029/2022EA002684
geographic Arctic
geographic_facet Arctic
genre Arctic
Arctic
genre_facet Arctic
Arctic
op_relation Xie, Yan; Huang, Xianglei; Chen, Xiuhong; L’Ecuyer, Tristan S.
Drouin, Brian J. (2023). "Joint Use of Far- Infrared and Mid- Infrared Observation for Sounding Retrievals: Learning From the Past for Upcoming Far- Infrared Missions." Earth and Space Science 10(3): n/a-n/a.
2333-5084
https://hdl.handle.net/2027.42/176101
doi:10.1029/2022EA002684
Earth and Space Science
Plokhenko, Y., & Menzel, W. P. ( 2000 ). The effects of surface reflection on estimating the vertical temperature–humidity distribution from spectral infrared measurements. Journal of Applied Meteorology, 39 ( 1 ), 3 – 14. https://doi.org/10.1175/1520-0450(2000)039<0003:TEOSRO>2.0.CO;2
L’Ecuyer, T. S., Drouin, B. J., Anheuser, J., Grames, M., Henderson, D., Huang, X., et al. ( 2021 ). The polar radiant energy in the far infrared experiment: A new perspective on polar longwave energy exchanges. Bulletin of the American Meteorological Society, 102, ( 7 ), 1 – 46. https://doi.org/10.1175/BAMS-D-20-0155.1
L’Ecuyer, T. S., & Stephens, G. L. ( 2002 ). An estimation-based precipitation retrieval algorithm for attenuating radars. Journal of Applied Meteorology, 41 ( 3 ), 272 – 285. https://doi.org/10.1175/1520-0450(2002)041<0272:AEBPRA>2.0.CO;2
Li, J., Li, J., Weisz, E., & Zhou, D. K. ( 2007 ). Physical retrieval of surface emissivity spectrum from hyperspectral infrared radiances. Geophysical Research Letters, 34 ( 16 ), L16812. https://doi.org/10.1029/2007GL030543
Li, J., Wolf, W. W., Menzel, W. P., Zhang, W., Huang, H., & Achtor, T. H. ( 2000 ). Global soundings of the atmosphere from ATOVS measurements: The algorithm and validation. Journal of Applied Meteorology, 39 ( 8 ), 1248 – 1268. https://doi.org/10.1175/1520-0450(2000)039<1248:GSOTAF>2.0.CO;2
Liu, X., Smith, W. L., Zhou, D. K., & Larar, A. ( 2006 ). Principal component-based radiative transfer model for hyperspectral sensors: Theoretical concept. Applied Optics, 45 ( 1 ), 201 – 209. https://doi.org/10.1364/AO.45.000201
Liu, X., Zhou, D. K., Larar, A. M., Smith, W. L., Schluessel, P., Newman, S. M., et al. ( 2009 ). Retrieval of atmospheric profiles and cloud properties from IASI spectra using super-channels. Atmospheric Chemistry and Physics, 9 ( 23 ), 9121 – 9142. https://doi.org/10.5194/acp-9-9121-2009
Ma, X., Wan, Z., Moeller, C., Menzel, W., Gumley, L., & Zhang, Y. ( 2000 ). Retrieval of geophysical parameters from moderate resolution imaging spectroradiometer thermal infrared data: Evaluation of a two-step physical algorithm. Applied Optics, 39 ( 5 ), 3537 – 3550. https://doi.org/10.1364/AO.41.000909
Maahn, M., Turner, D. D., Löhnert, U., Posselt, D. J., Ebell, K., Mace, G. G., & Comstock, J. M. ( 2020 ). Optimal estimation retrievals and their uncertainties: What every atmospheric scientist should know. Bulletin of the American Meteorological Society, 101 ( 9 ), E1512 – E1523. https://doi.org/10.1175/bams-d-19-0027.1
Masiello, G., Serio, C., Venafra, S., Liuzzi, G., Poutier, L., & Göttsche, F.-M. ( 2018 ). Physical retrieval of land surface emissivity spectra from hyper-spectral infrared observations and validation with in situ measurements. Remote Sensing, 10 ( 6 ), 976. https://doi.org/10.3390/rs10060976
Murray, J. E., Brindley, H. E., Fox, S., Bellisario, C., Pickering, J. C., Fox, C., et al. ( 2020 ). Retrievals of high-latitude surface emissivity across the infrared from high-Altitude aircraft flights. Journal of Geophysical Research: Atmospheres, 125 ( 22 ), e2020JD033672. https://doi.org/10.1029/2020JD033672
Palchetti, L., Brindley, H., Bantges, R., Buehler, S. A., Camy-Peyret, C., Carli, B., et al. ( 2020 ). FORUM: Unique far-infrared satellite observations to better understand how earth radiates energy to space. Bulletin of the American Meteorological Society, 101 ( 12 ), E2030 – E2046. https://doi.org/10.1175/bams-d-19-0322.1
Ridolfi, M., Del Bianco, S., Di Roma, A., Castelli, E., Belotti, C., Dandini, P., et al. ( 2020 ). FORUM Earth explorer 9: Characteristics of level 2 products and synergies with IASI-NG. Remote Sensing, 12 ( 9 ), 1496. https://doi.org/10.3390/rs12091496
Rodgers, C. D. ( 2000 ). Inverse methods for atmospheric sounding: Theory and practice (Vol. 2, p. 256 ). WORLD SCIENTIFIC.
Scarlat, R. C., Heygster, G., & Pedersen, L. T. ( 2017 ). Experiences with an optimal estimation algorithm for surface and atmospheric parameter retrieval from passive microwave data in the Arctic. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10 ( 9 ), 3934 – 3947. https://doi.org/10.1109/JSTARS.2017.2739858
Sgheri, L., Belotti, C., Ben-Yami, M., Bianchini, G., Carnicero Dominguez, B., Cortesi, U., et al. ( 2022 ). The FORUM end-to-end simulator project: Architecture and results. Atmospheric Measurement Techniques, 15 ( 3 ), 573 – 604. https://doi.org/10.5194/amt-15-573-2022
Susskind, J., Barnet, C. D., & Blaisdell, J. M. ( 2003 ). Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Transactions on Geoscience and Remote Sensing, 41 ( 2 ), 390 – 409. https://doi.org/10.1109/TGRS.2002.808236
Tans, P., & Keeling, R. ( 2022 ). Atmospheric carbon dioxide dry air mole fractions from quasi-continuous measurements at Mauna Loa, Hawaii, 1971–2021, version 2022-05 [Dataset]. National Oceanic and Atmospheric Administration (NOAA)/Global Monitoring Laboratory (GML). https://doi.org/10.15138/yaf1-bk21
Turner, D. D., & Löhnert, U. ( 2014 ). Information content and uncertainties in thermodynamic profiles and liquid cloud properties retrieved from the ground-based atmospheric emitted radiance interferometer (AERI). Journal of Applied Meteorology and Climatology, 53 ( 3 ), 752 – 771. https://doi.org/10.1175/jamc-d-13-0126.1
Wan, Z. ( 2008 ). New refinements and validation of the MODIS land-surface temperature/emissivity products. Remote Sensing of Environment, 112 ( 1 ), 59 – 74. https://doi.org/10.1016/j.rse.2006.06.026
Wood, N. B., & L’Ecuyer, T. S. ( 2021 ). What millimeter-wavelength radar reflectivity reveals about snowfall: An information-centric analysis. Atmospheric Measurement Techniques, 14 ( 2 ), 869 – 888. https://doi.org/10.5194/amt-14-869-2021
Xie, Y., Huang, X., Chen, X., L’Ecuyer, T. S., & Drouin, B. J. ( 2022 ). Joint use of far-infrared and mid-infrared observation for sounding retrievals: Learning from the past for upcoming far-infrared missions version 2 [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.7552741
Xie, Y., Huang, X., Chen, X., L’Ecuyer, T. S., Drouin, B. J., & Wang, J. ( 2022 ). Retrieval of surface spectral emissivity in polar regions based on the optimal estimation method. Journal of Geophysical Research: Atmospheres, 127 ( 5 ), e2021JD035677. https://doi.org/10.1029/2021JD035677
Zhou, D. K., Larar, A. M., Liu, X., Smith, W. L., Strow, L. L., Yang, P., et al. ( 2011 ). Global land surface emissivity retrieved from satellite ultraspectral IR measurements. IEEE Transactions on Geoscience and Remote Sensing, 49 ( 4 ), 1277 – 1290. https://doi.org/10.1109/TGRS.2010.2051036
Zhou, D. K., Smith, W. L., Liu, X., Larar, A. M., Mango, S. A., & Huang, H.-L. ( 2007 ). Physically retrieving cloud and thermodynamic parameters from ultraspectral IR measurements. Journal of the Atmospheric Sciences, 64 ( 3 ), 969 – 982. https://doi.org/10.1175/jas3877.1
Ackerman, S. A., Smith, W. L., Revercomb, H. E., & Spinhirne, J. D. ( 1990 ). The 27–28 October 1986 FIRE IFO cirrus case study: Spectral properties of cirrus clouds in the 8–12 μm window. Monthly Weather Review, 118 ( 11 ), 2377 – 2388. https://doi.org/10.1175/1520-0493(1990)118<2377:TOFICC>2.0.CO;2
Backus, G., Gilbert, F., & Bullard, E. C. ( 1970 ). Uniqueness in the inversion of inaccurate gross Earth data. Philosophical Transactions of the Royal Society of London Series A: Mathematical and Physical Sciences, 266 ( 1173 ), 123 – 192. https://doi.org/10.1098/rsta.1970.0005
Bantges, R. J., Brindley, H. E., Chen, X. H., Huang, X. L., Harries, J. E., & Murray, J. E. ( 2016 ). On the detection of robust multidecadal changes in Earth’s outgoing longwave radiation spectrum. Journal of Climate, 29 ( 13 ), 4939 – 4947. https://doi.org/10.1175/jcli-d-15-0713.1
Becker, F., & Li, Z.-L. ( 1990 ). Towards a local split window method over land surfaces. International Journal of Remote Sensing, 11 ( 3 ), 369 – 393. https://doi.org/10.1080/01431169008955028
Bell, B., Hersbach, H., Simmons, A., Berrisford, P., Dahlgren, P., Horányi, A., et al. ( 2021 ). The ERA5 global reanalysis: Preliminary extension to 1950. Quarterly Journal of the Royal Meteorological Society, 147 ( 741 ), 4186 – 4227. https://doi.org/10.1002/qj.4174
Bellisario, C., Brindley, H. E., Murray, J. E., Last, A., Pickering, J., Harlow, R. C., et al. ( 2017 ). Retrievals of the far infrared surface emissivity over the Greenland plateau using the tropospheric Airborne Fourier transform spectrometer (TAFTS). Journal of Geophysical Research: Atmospheres, 122 ( 22 ), 12152 – 112166. https://doi.org/10.1002/2017JD027328
Ben-Yami, M., Oetjen, H., Brindley, H., Cossich, W., Lajas, D., Maestri, T., et al. ( 2022 ). Emissivity retrievals with FORUM’s end-to-end simulator: Challenges and recommendations. Atmospheric Measurement Techniques, 15 ( 6 ), 1755 – 1777. https://doi.org/10.5194/amt-15-1755-2022
Borel, C. C. ( 1998 ). Surface emissivity and temperature retrieval for a hyperspectral sensor. IEEE International Geoscience and Remote Sensing. Symposium Proceedings, 1, 546 – 549. https://doi.org/10.1109/IGARSS.1998.702966
Carissimo, A., De Feis, I., & Serio, C. ( 2005 ). The physical retrieval methodology for IASI: The δ-IASI code. Environmental Modelling & Software, 20 ( 9 ), 1111 – 1126. https://doi.org/10.1016/j.envsoft.2004.07.003
Chen, X., Huang, X., Dong, X., Xi, B., Dolinar, E. K., Loeb, N. G., et al. ( 2018 ). Using AIRS and ARM SGP clear-sky observations to evaluate meteorological reanalyses: A hyperspectral radiance closure approach. Journal of Geophysical Research: Atmospheres, 123 ( 20 ), 11720 – 11734. https://doi.org/10.1029/2018JD028850
Chen, X., Huang, X., & Flanner, M. G. ( 2014 ). Sensitivity of modeled far-IR radiation budgets in polar continents to treatments of snow surface and ice cloud radiative properties. Geophysical Research Letters, 41 ( 18 ), 6530 – 6537. https://doi.org/10.1002/2014GL061216
Chen, X., Huang, X., & Liu, X. ( 2013 ). Non-negligible effects of cloud vertical overlapping assumptions on longwave spectral fingerprinting studies. Journal of Geophysical Research: Atmospheres, 118 ( 13 ), 7309 – 7320. https://doi.org/10.1002/jgrd.50562
Clough, S. A., Shephard, M. W., Mlawer, E. J., Delamere, J. S., Iacono, M. J., Cady-Pereira, K., et al. ( 2005 ). Atmospheric radiative transfer modeling: A summary of the AER codes. Journal of Quantitative Spectroscopy and Radiative Transfer, 91 ( 2 ), 233 – 244. https://doi.org/10.1016/j.jqsrt.2004.05.058
Davis, S. M., Hegglin, M. I., Fujiwara, M., Dragani, R., Harada, Y., Kobayashi, C., et al. ( 2017 ). Assessment of upper tropospheric and stratospheric water vapor and ozone in reanalyses as part of S-RIP. Atmospheric Chemistry and Physics, 17 ( 20 ), 12743 – 12778. https://doi.org/10.5194/acp-17-12743-2017
Faysash, D. A., & Smith, E. A. ( 2000 ). Simultaneous retrieval of diurnal to seasonal surface temperatures and emissivities over SGP ARM–CART site using GOES split window. Journal of Applied Meteorology, 39 ( 7 ), 971 – 982. https://doi.org/10.1175/1520-0450(2000)039<0971:SRODTS>2.0.CO;2
Feldman, D. R., Collins, W. D., Pincus, R., Huang, X., & Chen, X. ( 2014 ). Far-infrared surface emissivity and climate. Proceedings of the National Academy of Sciences, 111 ( 46 ), 16297 – 16302. https://doi.org/10.1073/pnas.1413640111
Gillespie, A., Rokugawa, S., Matsunaga, T., Cothern, J. S., Hook, S., & Kahle, A. B. ( 1998 ). A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images. IEEE Transactions on Geoscience and Remote Sensing, 36 ( 4 ), 1113 – 1126. https://doi.org/10.1109/36.700995
Hanel, R. A., Conrath, B. J., Kunde, V. G., Prabhakara, C., Revah, I., Salomonson, V. V., & Wolford, G. ( 1972 ). The Nimbus 4 infrared spectroscopy experiment: 1. Calibrated thermal emission spectra. Journal of Geophysical Research, 77 ( 15 ), 2629 – 2641. https://doi.org/10.1029/JC077i015p02629
Hanel, R. A., Schlachman, B., Rogers, D., & Vanous, D. ( 1971 ). Nimbus 4 michelson interferometer. Applied Optics, 10 ( 6 ), 1376 – 1382. https://doi.org/10.1364/AO.10.001376
op_rights IndexNoFollow
op_doi https://doi.org/10.1029/2022EA00268410.1175/BAMS-D-20-0155.110.5194/acp-9-9121-200910.1029/2020JD03367210.1175/bams-d-19-0322.110.3390/rs1209149610.5194/amt-15-573-202210.1016/j.rse.2006.06.02610.1109/TGRS.2010.205103610.1002/qj.417410.1002/2017JD02732810
_version_ 1800743974362677248
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/176101 2024-06-02T07:59:55+00:00 Joint Use of Far-Infrared and Mid-Infrared Observation for Sounding Retrievals: Learning From the Past for Upcoming Far-Infrared Missions Xie, Yan Huang, Xianglei Chen, Xiuhong L’Ecuyer, Tristan S. Drouin, Brian J. 2023-03 application/pdf https://hdl.handle.net/2027.42/176101 https://doi.org/10.1029/2022EA002684 unknown WORLD SCIENTIFIC Wiley Periodicals, Inc. Xie, Yan; Huang, Xianglei; Chen, Xiuhong; L’Ecuyer, Tristan S. Drouin, Brian J. (2023). "Joint Use of Far- Infrared and Mid- Infrared Observation for Sounding Retrievals: Learning From the Past for Upcoming Far- Infrared Missions." Earth and Space Science 10(3): n/a-n/a. 2333-5084 https://hdl.handle.net/2027.42/176101 doi:10.1029/2022EA002684 Earth and Space Science Plokhenko, Y., & Menzel, W. P. ( 2000 ). The effects of surface reflection on estimating the vertical temperature–humidity distribution from spectral infrared measurements. Journal of Applied Meteorology, 39 ( 1 ), 3 – 14. https://doi.org/10.1175/1520-0450(2000)039<0003:TEOSRO>2.0.CO;2 L’Ecuyer, T. S., Drouin, B. J., Anheuser, J., Grames, M., Henderson, D., Huang, X., et al. ( 2021 ). The polar radiant energy in the far infrared experiment: A new perspective on polar longwave energy exchanges. Bulletin of the American Meteorological Society, 102, ( 7 ), 1 – 46. https://doi.org/10.1175/BAMS-D-20-0155.1 L’Ecuyer, T. S., & Stephens, G. L. ( 2002 ). An estimation-based precipitation retrieval algorithm for attenuating radars. Journal of Applied Meteorology, 41 ( 3 ), 272 – 285. https://doi.org/10.1175/1520-0450(2002)041<0272:AEBPRA>2.0.CO;2 Li, J., Li, J., Weisz, E., & Zhou, D. K. ( 2007 ). Physical retrieval of surface emissivity spectrum from hyperspectral infrared radiances. Geophysical Research Letters, 34 ( 16 ), L16812. https://doi.org/10.1029/2007GL030543 Li, J., Wolf, W. W., Menzel, W. P., Zhang, W., Huang, H., & Achtor, T. H. ( 2000 ). Global soundings of the atmosphere from ATOVS measurements: The algorithm and validation. Journal of Applied Meteorology, 39 ( 8 ), 1248 – 1268. https://doi.org/10.1175/1520-0450(2000)039<1248:GSOTAF>2.0.CO;2 Liu, X., Smith, W. L., Zhou, D. K., & Larar, A. ( 2006 ). Principal component-based radiative transfer model for hyperspectral sensors: Theoretical concept. Applied Optics, 45 ( 1 ), 201 – 209. https://doi.org/10.1364/AO.45.000201 Liu, X., Zhou, D. K., Larar, A. M., Smith, W. L., Schluessel, P., Newman, S. M., et al. ( 2009 ). Retrieval of atmospheric profiles and cloud properties from IASI spectra using super-channels. Atmospheric Chemistry and Physics, 9 ( 23 ), 9121 – 9142. https://doi.org/10.5194/acp-9-9121-2009 Ma, X., Wan, Z., Moeller, C., Menzel, W., Gumley, L., & Zhang, Y. ( 2000 ). Retrieval of geophysical parameters from moderate resolution imaging spectroradiometer thermal infrared data: Evaluation of a two-step physical algorithm. Applied Optics, 39 ( 5 ), 3537 – 3550. https://doi.org/10.1364/AO.41.000909 Maahn, M., Turner, D. D., Löhnert, U., Posselt, D. J., Ebell, K., Mace, G. G., & Comstock, J. M. ( 2020 ). Optimal estimation retrievals and their uncertainties: What every atmospheric scientist should know. Bulletin of the American Meteorological Society, 101 ( 9 ), E1512 – E1523. https://doi.org/10.1175/bams-d-19-0027.1 Masiello, G., Serio, C., Venafra, S., Liuzzi, G., Poutier, L., & Göttsche, F.-M. ( 2018 ). Physical retrieval of land surface emissivity spectra from hyper-spectral infrared observations and validation with in situ measurements. Remote Sensing, 10 ( 6 ), 976. https://doi.org/10.3390/rs10060976 Murray, J. E., Brindley, H. E., Fox, S., Bellisario, C., Pickering, J. C., Fox, C., et al. ( 2020 ). Retrievals of high-latitude surface emissivity across the infrared from high-Altitude aircraft flights. Journal of Geophysical Research: Atmospheres, 125 ( 22 ), e2020JD033672. https://doi.org/10.1029/2020JD033672 Palchetti, L., Brindley, H., Bantges, R., Buehler, S. A., Camy-Peyret, C., Carli, B., et al. ( 2020 ). FORUM: Unique far-infrared satellite observations to better understand how earth radiates energy to space. Bulletin of the American Meteorological Society, 101 ( 12 ), E2030 – E2046. https://doi.org/10.1175/bams-d-19-0322.1 Ridolfi, M., Del Bianco, S., Di Roma, A., Castelli, E., Belotti, C., Dandini, P., et al. ( 2020 ). FORUM Earth explorer 9: Characteristics of level 2 products and synergies with IASI-NG. Remote Sensing, 12 ( 9 ), 1496. https://doi.org/10.3390/rs12091496 Rodgers, C. D. ( 2000 ). Inverse methods for atmospheric sounding: Theory and practice (Vol. 2, p. 256 ). WORLD SCIENTIFIC. Scarlat, R. C., Heygster, G., & Pedersen, L. T. ( 2017 ). Experiences with an optimal estimation algorithm for surface and atmospheric parameter retrieval from passive microwave data in the Arctic. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10 ( 9 ), 3934 – 3947. https://doi.org/10.1109/JSTARS.2017.2739858 Sgheri, L., Belotti, C., Ben-Yami, M., Bianchini, G., Carnicero Dominguez, B., Cortesi, U., et al. ( 2022 ). The FORUM end-to-end simulator project: Architecture and results. Atmospheric Measurement Techniques, 15 ( 3 ), 573 – 604. https://doi.org/10.5194/amt-15-573-2022 Susskind, J., Barnet, C. D., & Blaisdell, J. M. ( 2003 ). Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Transactions on Geoscience and Remote Sensing, 41 ( 2 ), 390 – 409. https://doi.org/10.1109/TGRS.2002.808236 Tans, P., & Keeling, R. ( 2022 ). Atmospheric carbon dioxide dry air mole fractions from quasi-continuous measurements at Mauna Loa, Hawaii, 1971–2021, version 2022-05 [Dataset]. National Oceanic and Atmospheric Administration (NOAA)/Global Monitoring Laboratory (GML). https://doi.org/10.15138/yaf1-bk21 Turner, D. D., & Löhnert, U. ( 2014 ). Information content and uncertainties in thermodynamic profiles and liquid cloud properties retrieved from the ground-based atmospheric emitted radiance interferometer (AERI). Journal of Applied Meteorology and Climatology, 53 ( 3 ), 752 – 771. https://doi.org/10.1175/jamc-d-13-0126.1 Wan, Z. ( 2008 ). New refinements and validation of the MODIS land-surface temperature/emissivity products. Remote Sensing of Environment, 112 ( 1 ), 59 – 74. https://doi.org/10.1016/j.rse.2006.06.026 Wood, N. B., & L’Ecuyer, T. S. ( 2021 ). What millimeter-wavelength radar reflectivity reveals about snowfall: An information-centric analysis. Atmospheric Measurement Techniques, 14 ( 2 ), 869 – 888. https://doi.org/10.5194/amt-14-869-2021 Xie, Y., Huang, X., Chen, X., L’Ecuyer, T. S., & Drouin, B. J. ( 2022 ). Joint use of far-infrared and mid-infrared observation for sounding retrievals: Learning from the past for upcoming far-infrared missions version 2 [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.7552741 Xie, Y., Huang, X., Chen, X., L’Ecuyer, T. S., Drouin, B. J., & Wang, J. ( 2022 ). Retrieval of surface spectral emissivity in polar regions based on the optimal estimation method. Journal of Geophysical Research: Atmospheres, 127 ( 5 ), e2021JD035677. https://doi.org/10.1029/2021JD035677 Zhou, D. K., Larar, A. M., Liu, X., Smith, W. L., Strow, L. L., Yang, P., et al. ( 2011 ). Global land surface emissivity retrieved from satellite ultraspectral IR measurements. IEEE Transactions on Geoscience and Remote Sensing, 49 ( 4 ), 1277 – 1290. https://doi.org/10.1109/TGRS.2010.2051036 Zhou, D. K., Smith, W. L., Liu, X., Larar, A. M., Mango, S. A., & Huang, H.-L. ( 2007 ). Physically retrieving cloud and thermodynamic parameters from ultraspectral IR measurements. Journal of the Atmospheric Sciences, 64 ( 3 ), 969 – 982. https://doi.org/10.1175/jas3877.1 Ackerman, S. A., Smith, W. L., Revercomb, H. E., & Spinhirne, J. D. ( 1990 ). The 27–28 October 1986 FIRE IFO cirrus case study: Spectral properties of cirrus clouds in the 8–12 μm window. Monthly Weather Review, 118 ( 11 ), 2377 – 2388. https://doi.org/10.1175/1520-0493(1990)118<2377:TOFICC>2.0.CO;2 Backus, G., Gilbert, F., & Bullard, E. C. ( 1970 ). Uniqueness in the inversion of inaccurate gross Earth data. Philosophical Transactions of the Royal Society of London Series A: Mathematical and Physical Sciences, 266 ( 1173 ), 123 – 192. https://doi.org/10.1098/rsta.1970.0005 Bantges, R. J., Brindley, H. E., Chen, X. H., Huang, X. L., Harries, J. E., & Murray, J. E. ( 2016 ). On the detection of robust multidecadal changes in Earth’s outgoing longwave radiation spectrum. Journal of Climate, 29 ( 13 ), 4939 – 4947. https://doi.org/10.1175/jcli-d-15-0713.1 Becker, F., & Li, Z.-L. ( 1990 ). Towards a local split window method over land surfaces. International Journal of Remote Sensing, 11 ( 3 ), 369 – 393. https://doi.org/10.1080/01431169008955028 Bell, B., Hersbach, H., Simmons, A., Berrisford, P., Dahlgren, P., Horányi, A., et al. ( 2021 ). The ERA5 global reanalysis: Preliminary extension to 1950. Quarterly Journal of the Royal Meteorological Society, 147 ( 741 ), 4186 – 4227. https://doi.org/10.1002/qj.4174 Bellisario, C., Brindley, H. E., Murray, J. E., Last, A., Pickering, J., Harlow, R. C., et al. ( 2017 ). Retrievals of the far infrared surface emissivity over the Greenland plateau using the tropospheric Airborne Fourier transform spectrometer (TAFTS). Journal of Geophysical Research: Atmospheres, 122 ( 22 ), 12152 – 112166. https://doi.org/10.1002/2017JD027328 Ben-Yami, M., Oetjen, H., Brindley, H., Cossich, W., Lajas, D., Maestri, T., et al. ( 2022 ). Emissivity retrievals with FORUM’s end-to-end simulator: Challenges and recommendations. Atmospheric Measurement Techniques, 15 ( 6 ), 1755 – 1777. https://doi.org/10.5194/amt-15-1755-2022 Borel, C. C. ( 1998 ). Surface emissivity and temperature retrieval for a hyperspectral sensor. IEEE International Geoscience and Remote Sensing. Symposium Proceedings, 1, 546 – 549. https://doi.org/10.1109/IGARSS.1998.702966 Carissimo, A., De Feis, I., & Serio, C. ( 2005 ). The physical retrieval methodology for IASI: The δ-IASI code. Environmental Modelling & Software, 20 ( 9 ), 1111 – 1126. https://doi.org/10.1016/j.envsoft.2004.07.003 Chen, X., Huang, X., Dong, X., Xi, B., Dolinar, E. K., Loeb, N. G., et al. ( 2018 ). Using AIRS and ARM SGP clear-sky observations to evaluate meteorological reanalyses: A hyperspectral radiance closure approach. Journal of Geophysical Research: Atmospheres, 123 ( 20 ), 11720 – 11734. https://doi.org/10.1029/2018JD028850 Chen, X., Huang, X., & Flanner, M. G. ( 2014 ). Sensitivity of modeled far-IR radiation budgets in polar continents to treatments of snow surface and ice cloud radiative properties. Geophysical Research Letters, 41 ( 18 ), 6530 – 6537. https://doi.org/10.1002/2014GL061216 Chen, X., Huang, X., & Liu, X. ( 2013 ). Non-negligible effects of cloud vertical overlapping assumptions on longwave spectral fingerprinting studies. Journal of Geophysical Research: Atmospheres, 118 ( 13 ), 7309 – 7320. https://doi.org/10.1002/jgrd.50562 Clough, S. A., Shephard, M. W., Mlawer, E. J., Delamere, J. S., Iacono, M. J., Cady-Pereira, K., et al. ( 2005 ). Atmospheric radiative transfer modeling: A summary of the AER codes. Journal of Quantitative Spectroscopy and Radiative Transfer, 91 ( 2 ), 233 – 244. https://doi.org/10.1016/j.jqsrt.2004.05.058 Davis, S. M., Hegglin, M. I., Fujiwara, M., Dragani, R., Harada, Y., Kobayashi, C., et al. ( 2017 ). Assessment of upper tropospheric and stratospheric water vapor and ozone in reanalyses as part of S-RIP. Atmospheric Chemistry and Physics, 17 ( 20 ), 12743 – 12778. https://doi.org/10.5194/acp-17-12743-2017 Faysash, D. A., & Smith, E. A. ( 2000 ). Simultaneous retrieval of diurnal to seasonal surface temperatures and emissivities over SGP ARM–CART site using GOES split window. Journal of Applied Meteorology, 39 ( 7 ), 971 – 982. https://doi.org/10.1175/1520-0450(2000)039<0971:SRODTS>2.0.CO;2 Feldman, D. R., Collins, W. D., Pincus, R., Huang, X., & Chen, X. ( 2014 ). Far-infrared surface emissivity and climate. Proceedings of the National Academy of Sciences, 111 ( 46 ), 16297 – 16302. https://doi.org/10.1073/pnas.1413640111 Gillespie, A., Rokugawa, S., Matsunaga, T., Cothern, J. S., Hook, S., & Kahle, A. B. ( 1998 ). A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images. IEEE Transactions on Geoscience and Remote Sensing, 36 ( 4 ), 1113 – 1126. https://doi.org/10.1109/36.700995 Hanel, R. A., Conrath, B. J., Kunde, V. G., Prabhakara, C., Revah, I., Salomonson, V. V., & Wolford, G. ( 1972 ). The Nimbus 4 infrared spectroscopy experiment: 1. Calibrated thermal emission spectra. Journal of Geophysical Research, 77 ( 15 ), 2629 – 2641. https://doi.org/10.1029/JC077i015p02629 Hanel, R. A., Schlachman, B., Rogers, D., & Vanous, D. ( 1971 ). Nimbus 4 michelson interferometer. Applied Optics, 10 ( 6 ), 1376 – 1382. https://doi.org/10.1364/AO.10.001376 IndexNoFollow atmospheric retrieval satellite observation far-infrared Atmospheric and Oceanic Sciences Geological Sciences Space Sciences Science Article 2023 ftumdeepblue https://doi.org/10.1029/2022EA00268410.1175/BAMS-D-20-0155.110.5194/acp-9-9121-200910.1029/2020JD03367210.1175/bams-d-19-0322.110.3390/rs1209149610.5194/amt-15-573-202210.1016/j.rse.2006.06.02610.1109/TGRS.2010.205103610.1002/qj.417410.1002/2017JD02732810 2024-05-07T23:30:42Z Atmosphere and surface properties are routinely retrieved from satellite measurements and extensively used in weather forecast and climate analysis. Satellite missions dedicated to fill the gap of far-infrared (far-IR) observations are scheduled to be launched this decade. To explore mid-infrared (mid-IR) and far-IR joint retrievals for the future far-IR satellite missions, this study uses an optimal-estimation-based method to retrieve atmospheric specific humidity and temperature profiles, surface skin temperature, and surface spectral emissivity from the Infrared Interferometer Sounder-D (IRIS-D) measurements in 1970, the only existing spaceborne far-IR spectral observations with global coverage. Based on a set of criteria, two cases in the Arctic, which are most likely under clear-sky conditions, are chosen for the retrieval experiments. Information content analysis suggests that the retrieved surface skin temperature and the mid-IR surface spectral emissivity are highly sensitive to the true values while the retrieval estimates of far-IR surface emissivity are subject to the variation of water vapor abundance. Results show that radiances based on the retrieved state variables are more consistent with the IRIS-D observations compared to those based on the reanalysis data. Retrieval estimates of the state variables along with retrieval uncertainties generally fall within reasonable ranges. The relative uncertainties of retrieved state variables decrease compared to the a priori relative uncertainties. In addition, the necessity to retrieve surface emissivity is corroborated by a parallel retrieval experiment assuming a blackbody surface emissivity that has revealed significant distortions of retrieved specific humidity and temperature profiles in the Arctic lower troposphere.Key PointsAtmospheric profiles and surface properties are simultaneously retrieved from satellite observations made 50 years agoCompared to reanalysis data, the retrieval estimates produce radiances which are more consistent with the ... Article in Journal/Newspaper Arctic Arctic University of Michigan: Deep Blue Arctic