Global Barotropic Tide Modeling Using Inline Self-Attraction and Loading in MPAS-Ocean

We examine ocean tides in the barotropic version of the Model for Prediction Across Scales (MPAS-Ocean), the ocean component of the Department of Energy Earth system model. We focus on four factors that affect tidal accuracy: self-attraction and loading (SAL), model resolution, details of the underl...

Full description

Bibliographic Details
Main Authors: Barton, Kristin N., Pal, Nairita, Brus, Steven R., Petersen, Mark R., Arbic, Brian K., Engwirda, Darren, Roberts, Andrew F., Westerink, Joannes J., Wirasaet, Damrongsak, Schindelegger, Michael
Format: Article in Journal/Newspaper
Language:unknown
Published: Graduate School of Oceanography, University of Rhode Island 2022
Subjects:
Online Access:https://hdl.handle.net/2027.42/175240
https://doi.org/10.1029/2022MS003207
_version_ 1835010285964886016
author Barton, Kristin N.
Pal, Nairita
Brus, Steven R.
Petersen, Mark R.
Arbic, Brian K.
Engwirda, Darren
Roberts, Andrew F.
Westerink, Joannes J.
Wirasaet, Damrongsak
Schindelegger, Michael
author_facet Barton, Kristin N.
Pal, Nairita
Brus, Steven R.
Petersen, Mark R.
Arbic, Brian K.
Engwirda, Darren
Roberts, Andrew F.
Westerink, Joannes J.
Wirasaet, Damrongsak
Schindelegger, Michael
author_sort Barton, Kristin N.
collection Unknown
description We examine ocean tides in the barotropic version of the Model for Prediction Across Scales (MPAS-Ocean), the ocean component of the Department of Energy Earth system model. We focus on four factors that affect tidal accuracy: self-attraction and loading (SAL), model resolution, details of the underlying bathymetry, and parameterized topographic wave drag. The SAL term accounts for the tidal loading of Earth’s crust and the self-gravitation of the ocean and the load-deformed Earth. A common method for calculating SAL is to decompose mass anomalies into their spherical harmonic constituents. Here, we compare a scalar SAL approximation versus an inline SAL using a fast spherical harmonic transform package. Wave drag accounts for energy lost by breaking internal tides that are produced by barotropic tidal flow over topographic features. We compare a series of successively finer quasi-uniform resolution meshes (62.9, 31.5, 15.7, and 7.87 km) to a variable resolution (45 to 5 km) configuration. We ran MPAS-Ocean in a single-layer barotropic mode forced by five tidal constituents. The 45 to 5 km variable resolution mesh obtained the best total root-mean-square error (5.4 cm) for the deep ocean (> $ > $1,000 m) M2 ${mathrm{M}}_{2}$ tide compared to TPXO8 and ran twice as fast as the quasi-uniform 8 km mesh, which had an error of 5.8 cm. This error is comparable to those found in other forward (non-assimilative) ocean tide models. In future work, we plan to use MPAS-Ocean to study tidal interactions with other Earth system components, and the tidal response to climate change.Plain Language SummaryOver the next century, climate change impacts on coastal regions will include floods, droughts, erosion, and severe weather events. The Department of Energy (DoE) is funding the Integrated Coastal Modeling Project to understand these potential risks better. In this paper, we implement tides in the DoE ocean model. Tides themselves respond to climate change, altering coastal flooding risk assessments. We explore the ...
format Article in Journal/Newspaper
genre Arctic
genre_facet Arctic
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/175240
institution Open Polar
language unknown
op_collection_id ftumdeepblue
op_relation https://hdl.handle.net/2027.42/175240
doi:10.1029/2022MS003207
Journal of Advances in Modeling Earth Systems
Orton, P., Georgas, N., Blumberg, A., & Pullen, J. ( 2012 ). Detailed modeling of recent severe storm tides in estuaries of the New York City region. Journal of Geophysical Research, 117 ( C9 ). https://doi.org/10.1029/2012jc008220
Padman, L., Siegfried, M. R., & Fricker, H. A. ( 2018 ). Ocean tide influences on the Antarctic and Greenland ice sheets. Reviews of Geophysics, 56 ( 1 ), 142 – 184. https://doi.org/10.1002/2016rg000546
Parke, M. E., & Hendershott, M. C. ( 1980 ). M2, S2, K1 models of the global ocean tide on an elastic Earth. Marine Geodesy, 3 ( 1–4 ), 379 – 408. https://doi.org/10.1080/01490418009388005
Pekeris, C. L., & Accad, Y. ( 1969 ). Solution of Laplace’s equations for the M2 tide in the world oceans. Philosophical Transactions of the Royal Society of London—Series A: Mathematical and Physical Sciences, 265 ( 1165 ), 413 – 436. https://doi.org/10.1098/rsta.1969.0062
Pringle, W. J. ( 2019 ). Global tide gauge database [Dataset]. stl Retrieved from https://www.google.com/maps/d/u/0/viewer?mid=1yvnYoLUFS9kcB5LnJEdyxk2qz6g
Ray, R. D. ( 1993 ). Global ocean tide models on the eve of TOPEX/POSEIDON. IEEE Transactions on Geoscience and Remote Sensing, 31 ( 2 ), 355 – 364. https://doi.org/10.1109/36.214911
Ray, R. D. ( 2006 ). Secular changes of the M2 tide in the Gulf of Maine. Continental Shelf Research, 26 ( 3 ), 422 – 427. https://doi.org/10.1016/j.csr.2005.12.005
Ruault, V., Jouanno, J., Durand, F., Chanut, J., & Benshila, R. ( 2020 ). Role of the tide on the structure of the Amazon plume: A numerical modeling approach. Journal of Geophysical Research: Oceans, 125 ( 2 ), e2019JC015495. https://doi.org/10.1029/2019jc015495
Schaeffer, N. ( 2013 ). Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations. Geochemistry, Geophysics, Geosystems, 14 ( 3 ), 751 – 758. https://doi.org/10.1002/ggge.20071
Schwiderski, E. W. ( 1979 ). Global Ocean tides. Part II. The semidiurnal principal lunar tide (M2), atlas of tidal charts and maps (Technical Report). Naval Surface Weapons Center. Retrieved from https://apps.dtic.mil/sti/citations/ADA084694
Shum, C., Woodworth, P., Andersen, O., Egbert, G. D., Francis, O., King, C., et al. ( 1997 ). Accuracy assessment of recent ocean tide models. Journal of Geophysical Research, 102 ( C11 ), 25173 – 25194. https://doi.org/10.1029/97jc00445
Simmons, H. L., Hallberg, R. W., & Arbic, B. K. ( 2004 ). Internal wave generation in a global baroclinic tide model. Deep Sea Research Part II: Topical Studies in Oceanography, 51 ( 25–26 ), 3043 – 3068. https://doi.org/10.1016/j.dsr2.2004.09.015
Stammer, D., Ray, R. D., Andersen, O. B., Arbic, B. K., Bosch, W., Carrère, L., et al. ( 2014 ). Accuracy assessment of global barotropic ocean tide models. Reviews of Geophysics, 52 ( 3 ), 243 – 282. https://doi.org/10.1002/2014rg000450
Tozer, B., Sandwell, D. T., Smith, W. H. F., Olson, C., Beale, J. R., & Wessel, P. ( 2019 ). Global Bathymetry and topography at 15 arc sec: SRTM15+. Earth and Space Science, 6 ( 10 ), 1847 – 1864. https://doi.org/10.1029/2019EA000658
Wang, H., Xiang, L., Jia, L., Jiang, L., Wang, Z., Hu, B., & Gao, P. ( 2012 ). Load Love numbers and Green’s functions for elastic Earth models PREM, iasp91, ak135, and modified models with refined crustal structure from Crust 2.0. Computers & Geosciences, 49, 190 – 199. https://doi.org/10.1016/j.cageo.2012.06.022
Williams, M. J., Jenkins, A., & Determann, J. ( 1985 ). Physical controls on ocean circulation beneath ice shelves revealed by numerical models. In Ocean, ice, and atmosphere: Interactions at the Antarctic Continental Margin (Vol. 75, pp. 285 – 299 ). https://doi.org/10.1029/ar075p0285
Accad, Y., & Pekeris, C. L. ( 1978 ). Solution of the tidal equations for the M2 and S2 tides in the world oceans from a knowledge of the tidal potential alone. Philosophical Transactions of the Royal Society of London Series A: Mathematical and Physical Sciences, 290 ( 1368 ), 235 – 266. https://doi.org/10.1098/rsta.1978.0083
Arbic, B. K., Alford, M. H., Ansong, J. K., Buijsman, M. C., Ciotti, R. B., Farrar, J. T., et al. ( 2018 ). A primer on global internal tide and internal gravity wave continuum modeling in HYCOM and MITgcm. New Frontiers in Operational Oceanography. https://doi.org/10.17125/gov2018.ch13
Arbic, B. K., Garner, S. T., Hallberg, R. W., & Simmons, H. L. ( 2004 ). The accuracy of surface elevations in forward global barotropic and baroclinic tide models. Deep Sea Research Part II: Topical Studies in Oceanography, 51 ( 25–26 ), 3069 – 3101. https://doi.org/10.1016/j.dsr2.2004.09.014
Arbic, B. K., & Garrett, C. ( 2010 ). A coupled oscillator model of shelf and ocean tides. Continental Shelf Research, 30 ( 6 ), 564 – 574. https://doi.org/10.1016/j.csr.2009.07.008
Arbic, B. K., Mitrovica, J. X., MacAyeal, D. R., & Milne, G. A. ( 2008 ). On the factors behind large Labrador Sea tides during the last glacial cycle and the potential implications for Heinrich events. Paleoceanography, 23 ( 3 ), 001573. https://doi.org/10.1029/2007pa001573
Arbic, B. K., Wallcraft, A. J., & Metzger, E. J. ( 2010 ). Concurrent simulation of the eddying general circulation and tides in a global ocean model. Ocean Modelling, 32 ( 3–4 ), 175 – 187. https://doi.org/10.1016/j.ocemod.2010.01.007
Barton, K., Pal, N., Brus, S., Petersen, M., & Engwirda, D. ( 2022b ). knbarton/E3SM: Barotropic tides and inline SAL study Archive [Software]. Zenodo. https://doi.org/10.5281/zenodo.7025138
Bindoff, N. L., Cheung, W. W., Kairo, J. G., Arístegui, J., Guinder, V. A., Hallberg, R., et al. ( 2019 ). Changing ocean, marine ecosystems, and dependent communities. In IPCC special report on the ocean and cryosphere in a changing climate, (pp. 477 – 587 ). https://doi.org/10.1017/9781009157964.007
Blakely, C. P., Ling, G., Pringle, W. J., Contreras, M. T., Wirasaet, D., Westerink, J. J., et al. ( 2022 ). Dissipation and Bathymetric sensitivities in an unstructured mesh global tidal model. Journal of Geophysical Research: Oceans, 127 ( 5 ), e2021JC018178. https://doi.org/10.1029/2021jc018178
Buijsman, M. C., Arbic, B. K., Green, J., Helber, R. W., Richman, J. G., Shriver, J. F., et al. ( 2015 ). Optimizing internal wave drag in a forward barotropic model with semidiurnal tides. Ocean Modelling, 85, 42 – 55. https://doi.org/10.1016/j.ocemod.2014.11.003
Buijsman, M. C., Stephenson, G. R., Ansong, J. K., Arbic, B. K., Green, J. M., Richman, J. G., et al. ( 2020 ). On the interplay between horizontal resolution and wave drag and their effect on tidal baroclinic mode waves in realistic global ocean simulations. Ocean Modelling, 152, 101656. https://doi.org/10.1016/j.ocemod.2020.101656
Codiga, D. L. ( 2011 ). Unified tidal analysis and prediction using the utide matlab functions (Technical Report). Graduate School of Oceanography, University of Rhode Island. https://doi.org/10.13140/RG.2.1.3761.2008
Egbert, G. D., & Ray, R. D. ( 2000 ). Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405 ( 6788 ), 775 – 778. https://doi.org/10.1038/35015531
Egbert, G. D., Ray, R. D., & Bills, B. G. ( 2004 ). Numerical modeling of the global semidiurnal tide in the present day and in the last glacial maximum. Journal of Geophysical Research, 109 ( C3 ), jc001973. https://doi.org/10.1029/2003jc001973
Holloway, G., & Proshutinsky, A. ( 2007 ). Role of tides in Arctic ocean/ice climate. Journal of Geophysical Research, 112 ( C4 ), C04S06. https://doi.org/10.1029/2006jc003643
Jay, D. A. ( 2009 ). Evolution of tidal amplitudes in the eastern Pacific Ocean. Geophysical Research Letters, 36 ( 4 ), L04603. https://doi.org/10.1029/2008gl036185
Jayne, S. R., & St. Laurent, L. C. ( 2001 ). Parameterizing tidal dissipation over rough topography. Geophysical Research Letters, 28 ( 5 ), 811 – 814. https://doi.org/10.1029/2000gl012044
Le Provost, C., Genco, M., Lyard, F. H., Vincent, P., & Canceil, P. ( 1994 ). Spectroscopy of the world ocean tides from a finite element hydrodynamic model. Journal of Geophysical Research, 99 ( C12 ), 24777 – 24797. https://doi.org/10.1029/94jc01381
Luneva, M. V., Aksenov, Y., Harle, J. D., & Holt, J. T. ( 2015 ). The effects of tides on the water mass mixing and sea ice in the Arctic Ocean. Journal of Geophysical Research: Oceans, 120 ( 10 ), 6669 – 6699. https://doi.org/10.1002/2014jc010310
Merrifield, M. A., Holloway, P. E., & Johnston, T. S. ( 2001 ). The generation of internal tides at the Hawaiian Ridge. Geophysical Research Letters, 28 ( 4 ), 559 – 562. https://doi.org/10.1029/2000gl011749
Müller, M., Arbic, B. K., & Mitrovica, J. ( 2011 ). Secular trends in ocean tides: Observations and model results. Journal of Geophysical Research, 116 ( C5 ), C05013. https://doi.org/10.1029/2010jc006387
op_rights IndexNoFollow
publishDate 2022
publisher Graduate School of Oceanography, University of Rhode Island
record_format openpolar
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/175240 2025-06-15T14:17:46+00:00 Global Barotropic Tide Modeling Using Inline Self-Attraction and Loading in MPAS-Ocean Barton, Kristin N. Pal, Nairita Brus, Steven R. Petersen, Mark R. Arbic, Brian K. Engwirda, Darren Roberts, Andrew F. Westerink, Joannes J. Wirasaet, Damrongsak Schindelegger, Michael 2022-11 application/pdf https://hdl.handle.net/2027.42/175240 https://doi.org/10.1029/2022MS003207 unknown Graduate School of Oceanography, University of Rhode Island Wiley Periodicals, Inc. https://hdl.handle.net/2027.42/175240 doi:10.1029/2022MS003207 Journal of Advances in Modeling Earth Systems Orton, P., Georgas, N., Blumberg, A., & Pullen, J. ( 2012 ). Detailed modeling of recent severe storm tides in estuaries of the New York City region. Journal of Geophysical Research, 117 ( C9 ). https://doi.org/10.1029/2012jc008220 Padman, L., Siegfried, M. R., & Fricker, H. A. ( 2018 ). Ocean tide influences on the Antarctic and Greenland ice sheets. Reviews of Geophysics, 56 ( 1 ), 142 – 184. https://doi.org/10.1002/2016rg000546 Parke, M. E., & Hendershott, M. C. ( 1980 ). M2, S2, K1 models of the global ocean tide on an elastic Earth. Marine Geodesy, 3 ( 1–4 ), 379 – 408. https://doi.org/10.1080/01490418009388005 Pekeris, C. L., & Accad, Y. ( 1969 ). Solution of Laplace’s equations for the M2 tide in the world oceans. Philosophical Transactions of the Royal Society of London—Series A: Mathematical and Physical Sciences, 265 ( 1165 ), 413 – 436. https://doi.org/10.1098/rsta.1969.0062 Pringle, W. J. ( 2019 ). Global tide gauge database [Dataset]. stl Retrieved from https://www.google.com/maps/d/u/0/viewer?mid=1yvnYoLUFS9kcB5LnJEdyxk2qz6g Ray, R. D. ( 1993 ). Global ocean tide models on the eve of TOPEX/POSEIDON. IEEE Transactions on Geoscience and Remote Sensing, 31 ( 2 ), 355 – 364. https://doi.org/10.1109/36.214911 Ray, R. D. ( 2006 ). Secular changes of the M2 tide in the Gulf of Maine. Continental Shelf Research, 26 ( 3 ), 422 – 427. https://doi.org/10.1016/j.csr.2005.12.005 Ruault, V., Jouanno, J., Durand, F., Chanut, J., & Benshila, R. ( 2020 ). Role of the tide on the structure of the Amazon plume: A numerical modeling approach. Journal of Geophysical Research: Oceans, 125 ( 2 ), e2019JC015495. https://doi.org/10.1029/2019jc015495 Schaeffer, N. ( 2013 ). Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations. Geochemistry, Geophysics, Geosystems, 14 ( 3 ), 751 – 758. https://doi.org/10.1002/ggge.20071 Schwiderski, E. W. ( 1979 ). Global Ocean tides. Part II. The semidiurnal principal lunar tide (M2), atlas of tidal charts and maps (Technical Report). Naval Surface Weapons Center. Retrieved from https://apps.dtic.mil/sti/citations/ADA084694 Shum, C., Woodworth, P., Andersen, O., Egbert, G. D., Francis, O., King, C., et al. ( 1997 ). Accuracy assessment of recent ocean tide models. Journal of Geophysical Research, 102 ( C11 ), 25173 – 25194. https://doi.org/10.1029/97jc00445 Simmons, H. L., Hallberg, R. W., & Arbic, B. K. ( 2004 ). Internal wave generation in a global baroclinic tide model. Deep Sea Research Part II: Topical Studies in Oceanography, 51 ( 25–26 ), 3043 – 3068. https://doi.org/10.1016/j.dsr2.2004.09.015 Stammer, D., Ray, R. D., Andersen, O. B., Arbic, B. K., Bosch, W., Carrère, L., et al. ( 2014 ). Accuracy assessment of global barotropic ocean tide models. Reviews of Geophysics, 52 ( 3 ), 243 – 282. https://doi.org/10.1002/2014rg000450 Tozer, B., Sandwell, D. T., Smith, W. H. F., Olson, C., Beale, J. R., & Wessel, P. ( 2019 ). Global Bathymetry and topography at 15 arc sec: SRTM15+. Earth and Space Science, 6 ( 10 ), 1847 – 1864. https://doi.org/10.1029/2019EA000658 Wang, H., Xiang, L., Jia, L., Jiang, L., Wang, Z., Hu, B., & Gao, P. ( 2012 ). Load Love numbers and Green’s functions for elastic Earth models PREM, iasp91, ak135, and modified models with refined crustal structure from Crust 2.0. Computers & Geosciences, 49, 190 – 199. https://doi.org/10.1016/j.cageo.2012.06.022 Williams, M. J., Jenkins, A., & Determann, J. ( 1985 ). Physical controls on ocean circulation beneath ice shelves revealed by numerical models. In Ocean, ice, and atmosphere: Interactions at the Antarctic Continental Margin (Vol. 75, pp. 285 – 299 ). https://doi.org/10.1029/ar075p0285 Accad, Y., & Pekeris, C. L. ( 1978 ). Solution of the tidal equations for the M2 and S2 tides in the world oceans from a knowledge of the tidal potential alone. Philosophical Transactions of the Royal Society of London Series A: Mathematical and Physical Sciences, 290 ( 1368 ), 235 – 266. https://doi.org/10.1098/rsta.1978.0083 Arbic, B. K., Alford, M. H., Ansong, J. K., Buijsman, M. C., Ciotti, R. B., Farrar, J. T., et al. ( 2018 ). A primer on global internal tide and internal gravity wave continuum modeling in HYCOM and MITgcm. New Frontiers in Operational Oceanography. https://doi.org/10.17125/gov2018.ch13 Arbic, B. K., Garner, S. T., Hallberg, R. W., & Simmons, H. L. ( 2004 ). The accuracy of surface elevations in forward global barotropic and baroclinic tide models. Deep Sea Research Part II: Topical Studies in Oceanography, 51 ( 25–26 ), 3069 – 3101. https://doi.org/10.1016/j.dsr2.2004.09.014 Arbic, B. K., & Garrett, C. ( 2010 ). A coupled oscillator model of shelf and ocean tides. Continental Shelf Research, 30 ( 6 ), 564 – 574. https://doi.org/10.1016/j.csr.2009.07.008 Arbic, B. K., Mitrovica, J. X., MacAyeal, D. R., & Milne, G. A. ( 2008 ). On the factors behind large Labrador Sea tides during the last glacial cycle and the potential implications for Heinrich events. Paleoceanography, 23 ( 3 ), 001573. https://doi.org/10.1029/2007pa001573 Arbic, B. K., Wallcraft, A. J., & Metzger, E. J. ( 2010 ). Concurrent simulation of the eddying general circulation and tides in a global ocean model. Ocean Modelling, 32 ( 3–4 ), 175 – 187. https://doi.org/10.1016/j.ocemod.2010.01.007 Barton, K., Pal, N., Brus, S., Petersen, M., & Engwirda, D. ( 2022b ). knbarton/E3SM: Barotropic tides and inline SAL study Archive [Software]. Zenodo. https://doi.org/10.5281/zenodo.7025138 Bindoff, N. L., Cheung, W. W., Kairo, J. G., Arístegui, J., Guinder, V. A., Hallberg, R., et al. ( 2019 ). Changing ocean, marine ecosystems, and dependent communities. In IPCC special report on the ocean and cryosphere in a changing climate, (pp. 477 – 587 ). https://doi.org/10.1017/9781009157964.007 Blakely, C. P., Ling, G., Pringle, W. J., Contreras, M. T., Wirasaet, D., Westerink, J. J., et al. ( 2022 ). Dissipation and Bathymetric sensitivities in an unstructured mesh global tidal model. Journal of Geophysical Research: Oceans, 127 ( 5 ), e2021JC018178. https://doi.org/10.1029/2021jc018178 Buijsman, M. C., Arbic, B. K., Green, J., Helber, R. W., Richman, J. G., Shriver, J. F., et al. ( 2015 ). Optimizing internal wave drag in a forward barotropic model with semidiurnal tides. Ocean Modelling, 85, 42 – 55. https://doi.org/10.1016/j.ocemod.2014.11.003 Buijsman, M. C., Stephenson, G. R., Ansong, J. K., Arbic, B. K., Green, J. M., Richman, J. G., et al. ( 2020 ). On the interplay between horizontal resolution and wave drag and their effect on tidal baroclinic mode waves in realistic global ocean simulations. Ocean Modelling, 152, 101656. https://doi.org/10.1016/j.ocemod.2020.101656 Codiga, D. L. ( 2011 ). Unified tidal analysis and prediction using the utide matlab functions (Technical Report). Graduate School of Oceanography, University of Rhode Island. https://doi.org/10.13140/RG.2.1.3761.2008 Egbert, G. D., & Ray, R. D. ( 2000 ). Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405 ( 6788 ), 775 – 778. https://doi.org/10.1038/35015531 Egbert, G. D., Ray, R. D., & Bills, B. G. ( 2004 ). Numerical modeling of the global semidiurnal tide in the present day and in the last glacial maximum. Journal of Geophysical Research, 109 ( C3 ), jc001973. https://doi.org/10.1029/2003jc001973 Holloway, G., & Proshutinsky, A. ( 2007 ). Role of tides in Arctic ocean/ice climate. Journal of Geophysical Research, 112 ( C4 ), C04S06. https://doi.org/10.1029/2006jc003643 Jay, D. A. ( 2009 ). Evolution of tidal amplitudes in the eastern Pacific Ocean. Geophysical Research Letters, 36 ( 4 ), L04603. https://doi.org/10.1029/2008gl036185 Jayne, S. R., & St. Laurent, L. C. ( 2001 ). Parameterizing tidal dissipation over rough topography. Geophysical Research Letters, 28 ( 5 ), 811 – 814. https://doi.org/10.1029/2000gl012044 Le Provost, C., Genco, M., Lyard, F. H., Vincent, P., & Canceil, P. ( 1994 ). Spectroscopy of the world ocean tides from a finite element hydrodynamic model. Journal of Geophysical Research, 99 ( C12 ), 24777 – 24797. https://doi.org/10.1029/94jc01381 Luneva, M. V., Aksenov, Y., Harle, J. D., & Holt, J. T. ( 2015 ). The effects of tides on the water mass mixing and sea ice in the Arctic Ocean. Journal of Geophysical Research: Oceans, 120 ( 10 ), 6669 – 6699. https://doi.org/10.1002/2014jc010310 Merrifield, M. A., Holloway, P. E., & Johnston, T. S. ( 2001 ). The generation of internal tides at the Hawaiian Ridge. Geophysical Research Letters, 28 ( 4 ), 559 – 562. https://doi.org/10.1029/2000gl011749 Müller, M., Arbic, B. K., & Mitrovica, J. ( 2011 ). Secular trends in ocean tides: Observations and model results. Journal of Geophysical Research, 116 ( C5 ), C05013. https://doi.org/10.1029/2010jc006387 IndexNoFollow numerical ocean modeling E3SM barotropic tides surface tides self-attraction and loading MPAS-Ocean Geological Sciences Science Article 2022 ftumdeepblue 2025-06-04T05:59:22Z We examine ocean tides in the barotropic version of the Model for Prediction Across Scales (MPAS-Ocean), the ocean component of the Department of Energy Earth system model. We focus on four factors that affect tidal accuracy: self-attraction and loading (SAL), model resolution, details of the underlying bathymetry, and parameterized topographic wave drag. The SAL term accounts for the tidal loading of Earth’s crust and the self-gravitation of the ocean and the load-deformed Earth. A common method for calculating SAL is to decompose mass anomalies into their spherical harmonic constituents. Here, we compare a scalar SAL approximation versus an inline SAL using a fast spherical harmonic transform package. Wave drag accounts for energy lost by breaking internal tides that are produced by barotropic tidal flow over topographic features. We compare a series of successively finer quasi-uniform resolution meshes (62.9, 31.5, 15.7, and 7.87 km) to a variable resolution (45 to 5 km) configuration. We ran MPAS-Ocean in a single-layer barotropic mode forced by five tidal constituents. The 45 to 5 km variable resolution mesh obtained the best total root-mean-square error (5.4 cm) for the deep ocean (> $ > $1,000 m) M2 ${mathrm{M}}_{2}$ tide compared to TPXO8 and ran twice as fast as the quasi-uniform 8 km mesh, which had an error of 5.8 cm. This error is comparable to those found in other forward (non-assimilative) ocean tide models. In future work, we plan to use MPAS-Ocean to study tidal interactions with other Earth system components, and the tidal response to climate change.Plain Language SummaryOver the next century, climate change impacts on coastal regions will include floods, droughts, erosion, and severe weather events. The Department of Energy (DoE) is funding the Integrated Coastal Modeling Project to understand these potential risks better. In this paper, we implement tides in the DoE ocean model. Tides themselves respond to climate change, altering coastal flooding risk assessments. We explore the ... Article in Journal/Newspaper Arctic Unknown
spellingShingle numerical ocean modeling
E3SM
barotropic tides
surface tides
self-attraction and loading
MPAS-Ocean
Geological Sciences
Science
Barton, Kristin N.
Pal, Nairita
Brus, Steven R.
Petersen, Mark R.
Arbic, Brian K.
Engwirda, Darren
Roberts, Andrew F.
Westerink, Joannes J.
Wirasaet, Damrongsak
Schindelegger, Michael
Global Barotropic Tide Modeling Using Inline Self-Attraction and Loading in MPAS-Ocean
title Global Barotropic Tide Modeling Using Inline Self-Attraction and Loading in MPAS-Ocean
title_full Global Barotropic Tide Modeling Using Inline Self-Attraction and Loading in MPAS-Ocean
title_fullStr Global Barotropic Tide Modeling Using Inline Self-Attraction and Loading in MPAS-Ocean
title_full_unstemmed Global Barotropic Tide Modeling Using Inline Self-Attraction and Loading in MPAS-Ocean
title_short Global Barotropic Tide Modeling Using Inline Self-Attraction and Loading in MPAS-Ocean
title_sort global barotropic tide modeling using inline self-attraction and loading in mpas-ocean
topic numerical ocean modeling
E3SM
barotropic tides
surface tides
self-attraction and loading
MPAS-Ocean
Geological Sciences
Science
topic_facet numerical ocean modeling
E3SM
barotropic tides
surface tides
self-attraction and loading
MPAS-Ocean
Geological Sciences
Science
url https://hdl.handle.net/2027.42/175240
https://doi.org/10.1029/2022MS003207