The Chicxulub Impact Produced a Powerful Global Tsunami

The Chicxulub crater is the site of an asteroid impact linked with the Cretaceous-Paleogene (K-Pg) mass extinction at ∼66 Ma. This asteroid struck in shallow water and caused a large tsunami. Here we present the first global simulation of the Chicxulub impact tsunami from initial contact of the proj...

Full description

Bibliographic Details
Main Authors: Range, Molly M., Arbic, Brian K., Johnson, Brandon C., Moore, Theodore C., Titov, Vasily, Adcroft, Alistair J., Ansong, Joseph K., Hollis, Christopher J., Ritsema, Jeroen, Scotese, Christopher R., Wang, He
Format: Article in Journal/Newspaper
Language:unknown
Published: Github 2022
Subjects:
Online Access:https://hdl.handle.net/2027.42/175084
https://doi.org/10.1029/2021AV000627
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/175084
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic impact
Chicxulub impact
tsunami
Earth and Environmental Sciences
Science
spellingShingle impact
Chicxulub impact
tsunami
Earth and Environmental Sciences
Science
Range, Molly M.
Arbic, Brian K.
Johnson, Brandon C.
Moore, Theodore C.
Titov, Vasily
Adcroft, Alistair J.
Ansong, Joseph K.
Hollis, Christopher J.
Ritsema, Jeroen
Scotese, Christopher R.
Wang, He
The Chicxulub Impact Produced a Powerful Global Tsunami
topic_facet impact
Chicxulub impact
tsunami
Earth and Environmental Sciences
Science
description The Chicxulub crater is the site of an asteroid impact linked with the Cretaceous-Paleogene (K-Pg) mass extinction at ∼66 Ma. This asteroid struck in shallow water and caused a large tsunami. Here we present the first global simulation of the Chicxulub impact tsunami from initial contact of the projectile to global propagation. We use a hydrocode to model the displacement of water, sediment, and crust over the first 10 min, and a shallow-water ocean model from that point onwards. The impact tsunami was up to 30,000 times more energetic than the 26 December 2004 Indian Ocean tsunami, one of the largest tsunamis in the modern record. Flow velocities exceeded 20 cm/s along shorelines worldwide, as well as in open-ocean regions in the North Atlantic, equatorial South Atlantic, southern Pacific and the Central American Seaway, and therefore likely scoured the seafloor and disturbed sediments over 10,000 km from the impact origin. The distribution of erosion and hiatuses in the uppermost Cretaceous marine sediments are consistent with model results.Plain Language SummaryAt the end of the Cretaceous, about 66 million years ago, the Chicxulub asteroid impact near the Yucatan peninsula produced a global tsunami 30,000 times more energetic than any modern-day tsunami produced by earthquakes. Here we model the first 10 min of the event with a crater impact model, and the subsequent propagation throughout the world oceans using two different global tsunami models. The Chicxulub tsunami approached most coastlines of the North Atlantic and South Pacific with waves of over 10 m high and flow velocities in excess of 1 m/s offshore. The tsunami was strong enough to scour the seafloor in these regions, thus removing the sedimentary records of conditions before and during this cataclysmic event in Earth history and leaving either a gap in these records or a jumble of highly disturbed older sediments. The gaps in sedimentary records generally occur in basins where the numerical model predicts larger bottom velocities.Key PointsThe ...
format Article in Journal/Newspaper
author Range, Molly M.
Arbic, Brian K.
Johnson, Brandon C.
Moore, Theodore C.
Titov, Vasily
Adcroft, Alistair J.
Ansong, Joseph K.
Hollis, Christopher J.
Ritsema, Jeroen
Scotese, Christopher R.
Wang, He
author_facet Range, Molly M.
Arbic, Brian K.
Johnson, Brandon C.
Moore, Theodore C.
Titov, Vasily
Adcroft, Alistair J.
Ansong, Joseph K.
Hollis, Christopher J.
Ritsema, Jeroen
Scotese, Christopher R.
Wang, He
author_sort Range, Molly M.
title The Chicxulub Impact Produced a Powerful Global Tsunami
title_short The Chicxulub Impact Produced a Powerful Global Tsunami
title_full The Chicxulub Impact Produced a Powerful Global Tsunami
title_fullStr The Chicxulub Impact Produced a Powerful Global Tsunami
title_full_unstemmed The Chicxulub Impact Produced a Powerful Global Tsunami
title_sort chicxulub impact produced a powerful global tsunami
publisher Github
publishDate 2022
url https://hdl.handle.net/2027.42/175084
https://doi.org/10.1029/2021AV000627
genre North Atlantic
genre_facet North Atlantic
op_relation Range, Molly M.; Arbic, Brian K.; Johnson, Brandon C.; Moore, Theodore C.; Titov, Vasily; Adcroft, Alistair J.; Ansong, Joseph K.; Hollis, Christopher J.; Ritsema, Jeroen; Scotese, Christopher R.; Wang, He (2022). "The Chicxulub Impact Produced a Powerful Global Tsunami." AGU Advances 3(5): n/a-n/a.
2576-604X
https://hdl.handle.net/2027.42/175084
doi:10.1029/2021AV000627
AGU Advances
Mascle, J., Lohmann, G. P., Clift, P. D., et al. ( 1996 ). Proceedings of the Ocean Drilling Program, Initial Reports (Vol. 159 ). Ocean Drilling Program.
Smit, J., Montanari, A., Swinburne, N. H. M., Alvarez, W., Hildebrand, A. R., Margolis, S. V., et al. ( 1992 ). Tektite-bearing, deep-water clastic unit at the Cretaceous-Tertiary boundary in northeastern Mexico. Geology, 20 ( 2 ), 99 – 103. https://doi.org/10.1130/0091-7613(1992)020<0099:tbdwcu>2.3.co;2
Smit, J., & Romein, A. J. T. ( 1985 ). A sequence of events across the Cretaceous-Tertiary boundary. Earth and Planetary Science Letters, 74 ( 2–3 ), 55 – 170. https://doi.org/10.1016/0012-821x(85)90019-6
Smith, W. H. F., & Sandwell, D. T. ( 1997 ). Global seafloor topography from satellite altimetry and ship depth soundings. Science, 277 ( 5334 ), 1956 – 1962. https://doi.org/10.1126/science.277.5334.1956
Storms, M. A., Natland, J. H., et al. ( 1991 ). Proceedings of the Ocean Drilling Program, Initial Reports (Vol. 132 ). Ocean Drilling Program.
Stott, L. D., & Kennett, J. P. ( 1990 ). The paleoceanographic and paleoclimatic signature of the Cretaceous/Paleogene boundary in the Antarctic: Stable isotopic results from ODP leg 113. In P. F. Barker, J. P. Kennett, et al. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results (Vol. 113 ). Ocean Drilling Program.
Stüben, D., Kramar, U., Berner, Z., Stinnesbeck, W., Keller, G., & Adatte, T. ( 2002 ). Trace elements, stable isotopes, and clay mineralogy of the Elles II K/T boundary section in Tunisia: Indications for sea level fluctuations and primary productivity. Palaeogeography, Palaeoclimatology, Palaeoecology, 178 ( 3–4 ), 321 – 345. https://doi.org/10.1016/s0031-0182(01)00401-1
Suganuma, Y., & Ogg, J. G. ( 2006 ). Campanian through Eocene magnetostratigraphy of Sites 1257–1261, OD Leg 207, Demerara Rise (western equatorial Atlantic). In D. C. Mosher, J. Erbacher, & M. J. Malone (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results (Vol. 207 ). Ocean Drilling Program. https://doi.org/10.2973/odp.proc.sr.207.102.2006
Supko, P. R., Perch-Nielsen, K., et al. ( 1977 ). Initial Reports of the Deep Sea Drilling Project (Vol. 39 ). U.S. Government Printing Office.
Tada, R., Iturralde-Vinent, M. A., Matsui, T., Tajika, E., Oji, T., Goto, K., et al. ( 2003 ). K/T boundary deposits in the Paleo-western Caribbean basin. In C. Bartolini, R. T. Buffler, & J. Blickwede (Eds.), The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics, American Association of Petroleum Geologists Memoir (Vol. 79, pp. 582 – 604 ).
Tang, L., Titov, V. V., Bernard, E. N., Wei, Y., Chamberlin, C. D., Newman, J. C., et al. ( 2012 ). Direct energy estimation of the 2011 Japan tsunami using deep-ocean pressure measurements. Journal of Geophysical Research, 117 ( C8 ), C08008. https://doi.org/10.1029/2011JC007635
Tarduno, J. A., Duncan, R. A., Scholl, D. W., et al. ( 2002 ). Proceedings of the Ocean Drilling Program, Initial Reports (Vol. 197 ). Ocean Drilling Program. https://doi.org/10.2973/odp.proc.ir.197.2002
Taylor, K. W. R., Willumsen, P. S., Hollis, C. J., & Pancost, R. D. ( 2018 ). South Pacific evidence for the long-term climate impact of the Cretaceous/Paleogene boundary event. Earth Science Reviews, 179, 287 – 302. https://doi.org/10.1016/j.earscirev.2018.02.012
Thiede, J., Vallier, T. L., et al. ( 1981 ). Initial Reports of the Deep Sea Drilling Project (Vol. 62 ). U.S. Government Printing Office.
Tobin, S. T., Ward, P. D., Steig, E. J., Olivero, E. B., Hilburn, I. A., Mitchell, R. N., et al. ( 2012 ). Extinction patterns, δ 18 O trends, and magnetostratigraphy from a southern high-latitude Cretaceous–Paleogene section: Links with Deccan volcanism. Palaeogeography, Palaeoclimatology, Palaeoecology, 350–352, 180 – 188. https://doi.org/10.1016/j.palaeo.2012.06.029
Tucholke, B. E., Sibuet, J.-C., Klaus, A., et al. ( 2004 ). Proceedings of the Ocean Drilling Program, Scientific Results (Vol. 210 ). Ocean Drilling Program. https://doi.org/10.2973/odp.proc.ir.210.2004
Tucholke, B. E., Vogt, P. R., et al. ( 1979 ). Initial Reports of the Deep Sea Drilling Project (Vol. 43 ). U.S. Government Printing Office.
van Hinte, J. E., Wise, S. W., Jr., et al. ( 1987 ). Initial Reports of the Deep Sea Drilling Project (Vol. 93 ). U.S. Government Printing Office.
Veevers, J. J., Heirtzler, J. R., et al. ( 1974 ). Initial Reports of the Deep Sea Drilling Project (Vol. 27 ). U.S. Government Printing Office.
von Rad, U., Haq, B. U., et al. ( 1992 ). Proceedings of the Ocean Drilling Program, Scientific Results (Vol. 122 ). Ocean Drilling Program.
von Rad, U., Ryan, W. B. F., et al. ( 1979 ). Initial Reports of the Deep Sea Drilling Project, 47, Part 1. U.S. Government Printing Office.
von der Borch, C., Sclater, C. J. G., et al. ( 1974 ). Initial Reports of the Deep Sea Drilling Project (Vol. 22 ). U.S. Government Printing Office.
Weissel, J., Peirce, J., Taylor, E., Alt, J., et al. ( 1991 ). Proceedings of the Ocean Drilling Program, Scientific Results (Vol. 121 ). Ocean Drilling Program.
Winterer, E. L., Ewing, J. I., et al. ( 1973 ). Initial Reports of the Deep Sea Drilling Project (Vol. 17 ). U.S. Government Printing Office.
Witts, J. D., Newton, R. J., Mills, B. J. W., Wignall, P. B., Bottrell, S. H., Hall, J. L. O., et al. ( 2018 ). The impact of the Cretaceous–Paleogene (K–Pg) mass extinction event on the global sulfur cycle: Evidence from Seymour Island, Antarctica. Geochimica et Cosmochimica Acta, 230, 17 – 45. https://doi.org/10.1016/j.gca.2018.02.037
Witts, J. D., Whittle, R. J., Wignall, P. B., Crame, J. A., Francis, J. E., Newton, R. J., et al. ( 2016 ). Macrofossil evidence for a rapid and severe Cretaceous–Paleogene mass extinction in Antarctica. Nature Communications, 7 ( 1 ), 11738. https://doi.org/10.1038/ncomms11738
Worzel, J. L., Bryant, W., et al. ( 1973 ). Initial Reports of the Deep Sea Drilling Project (Vol. 10 ). U.S. Government Printing Office.
Zachos, J. C., Arthur, M. A., & Dean, W. E. ( 1989 ). Geochemical evidence for suppression of pelagic marine productivity at the Cretaceous/Tertiary boundary. Nature, 337 ( 6202 ), 61 – 64. https://doi.org/10.1038/337061a0
Zachos, J. C., Arthur, M. A., Thunell, R. C., Williams, D. F., & Tappa, E. J. ( 1985 ). Stable isotope and trace element geochemistry of carbonate sediments across the Cretaceous/Tertiary boundary at Deep Sea Drilling Project Hole 577, Leg 86. In G. R. Heath, L. H. Burckle, et al. (Eds.), Initial Reports of the Deep Sea Drilling Project (Vol. 86, pp. 513 – 532 ). U.S. Government Printing Office. https://doi.org/10.2973/dsdp.proc.86.120.1985
Zachos, J. C., Kroon, D., Blum, P., et al. ( 2004 ). Proceedings of the Ocean Drilling Program, Initial Results (Vol. 208 ). Ocean Drilling Program. https://doi.org/10.2973/odp.proc.ir.208.2004
Bleil, U. ( 1985 ). The magnetostratigraphy of northwest Pacific sediments, Deep Sea Drilling Project Leg 86. In G. R. Heath, L. H. Burckle, et al. (Eds.), Initial Reports of the Deep Sea Drilling Project (Vol. 86 ). U.S. Government Printing Office.
Adcroft, A. ( 2013 ). Representation of topography by porous barriers and objective interpolation of topographic data. Ocean Modelling, 67, 13 – 27. https://doi.org/10.1016/j.ocemod.2013.03.002
Adcroft, A. ( 2017 ). NOAA—GFDL MOM6 Examples. Github. Retrieved from https://github.com/NOAA-GFDL/MOM6-examples/wiki
Albertão, G. A., & Martins, P. P., Jr. ( 1996 ). A possible tsunami deposit at the Cretaceous-Tertiary boundary in Pernambuco, northeastern Brazil. Sedimentary Geology, 104 ( 1–4 ), 189 – 201. https://doi.org/10.1016/0037-0738(95)00128-x
Alegret, L., & Thomas, E. ( 2005 ). Cretaceous/Paleogene boundary bathyal paleo-environment in the central North Pacific (DSDP Site 465), the Northwestern Atlantic (ODP Site 1049), the Gulf of Mexico and the Tethys: The benthic foraminiferal record. Palaeogeography, Palaeoclimatology, Palaeoecology, 224 ( 1–3 ), 53 – 82. https://doi.org/10.1016/j.palaeo.2005.03.031
Alvarez, W., Claeys, P., & Kieffer, S. W. ( 1995 ). Emplacement of Cretaceous-Tertiary boundary shocked quartz from Chicxulub Crater. Science, 269 ( 5226 ), 930 – 935. https://doi.org/10.1126/science.269.5226.930
Alvarez, W., Smit, J., Lowrie, W., Asaro, F., Margolis, S. V., Claeys, P., et al. ( 1992 ). Proximal impact deposits at the Cretaceous-Tertiary boundary in the Gulf of Mexico: A restudy of DSDP Leg 77 Sites 536 and 540. Geology, 20 ( 8 ), 697 – 700. https://doi.org/10.1130/0091-7613(1992)020<0697:pidatc>2.3.co;2
Anderson, J. L. B., Schultz, P. H., & Heineck, J. T. ( 2003 ). Asymmetry of ejecta flow during oblique impacts using three-dimensional particle image velocimetry. Journal of Geophysical Research, 108 ( E8 ), 5094. https://doi.org/10.1029/2003JE002075
Arbic, B. K., Garner, S. T., Hallberg, R. W., & Simmons, H. L. ( 2004 ). The accuracy of surface elevations in forward global barotropic and baroclinic tide models. Deep-Sea Research II: Topical Studies in Oceanography, 51 ( 25–26 ), 3069 – 3101. https://doi.org/10.1016/j.dsr2.2004.09.014
Bahlburg, H., Weiss, R., & Wünnemann, K. ( 2010 ). Low energy deposition in the Chicxulub crater during the impact to post-impact transition. Earth and Planetary Science Letters, 295 ( 1–2 ), 170 – 176. https://doi.org/10.1016/j.epsl.2010.03.037
Bardeen, C. G., Garcia, R. R., Toon, O. B., & Conley, A. J. ( 2017 ). On transient climate change at the Cretaceous-Paleogene boundary due to atmospheric soot injections. Proceedings of the National Academy of Sciences of the United States of America, 114 ( 36 ), E7415 – E7424. https://doi.org/10.1073/pnas.1708980114
Batenburg, S. J., Sprovieri, M., Gale, A. S., Hilgen, F. J., Hüsing, S., Laskar, J., et al. ( 2012 ). Cyclostratigraphy and astronomical tuning of the Late Maastrichtian at Zumaia (Basque country), Northern Spain. Earth and Planetary Science Letters, 359–360, 264 – 278. https://doi.org/10.1016/j.epsl.2012.09.054
Bell, C., Morgan, J. V., Hampson, G. J., & Trudgill, B. ( 2004 ). Stratigraphic and sedimentological observations from seismic data across the Chicxulub impact basin. Meteoritics & Planetary Science, 39 ( 7 ), 1089 – 1098. https://doi.org/10.1111/j.1945-5100.2004.tb01130.x
Bourgeois, J., Hansen, T. A., Wiberg, P. L., & Kauffman, E. G. ( 1988 ). A tsunami deposit at the Cretaceous-Tertiary boundary in Texas. Science, 241 ( 4865 ), 567 – 570. https://doi.org/10.1126/science.241.4865.567
Bralower, T. J., Paull, C. K., & Leckie, R. M. ( 1998 ). The Cretaceous-Tertiary boundary cocktail: Chicxulub impact triggers margin collapse and extensive sediment gravity flow. Geology, 26 ( 4 ), 331 – 334. https://doi.org/10.1130/0091-7613(1998)026<0331:tctbcc>2.3.co;2
op_rights IndexNoFollow
op_doi https://doi.org/10.1029/2021AV00062710.1130/0091-7613(1992)020<0099:tbdwcu>2.3.co;210.1029/2011JC00763510.2973/odp.proc.ir.197.200210.1016/j.palaeo.2012.06.02910.2973/odp.proc.ir.210.200410.1016/j.gca.2018.02.03710.1038/ncomms1173810.2973/odp.proc.ir.208.
_version_ 1786831166022615040
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/175084 2023-12-31T10:20:41+01:00 The Chicxulub Impact Produced a Powerful Global Tsunami Range, Molly M. Arbic, Brian K. Johnson, Brandon C. Moore, Theodore C. Titov, Vasily Adcroft, Alistair J. Ansong, Joseph K. Hollis, Christopher J. Ritsema, Jeroen Scotese, Christopher R. Wang, He 2022-10 application/pdf https://hdl.handle.net/2027.42/175084 https://doi.org/10.1029/2021AV000627 unknown Github Wiley Periodicals, Inc. Range, Molly M.; Arbic, Brian K.; Johnson, Brandon C.; Moore, Theodore C.; Titov, Vasily; Adcroft, Alistair J.; Ansong, Joseph K.; Hollis, Christopher J.; Ritsema, Jeroen; Scotese, Christopher R.; Wang, He (2022). "The Chicxulub Impact Produced a Powerful Global Tsunami." AGU Advances 3(5): n/a-n/a. 2576-604X https://hdl.handle.net/2027.42/175084 doi:10.1029/2021AV000627 AGU Advances Mascle, J., Lohmann, G. P., Clift, P. D., et al. ( 1996 ). Proceedings of the Ocean Drilling Program, Initial Reports (Vol. 159 ). Ocean Drilling Program. Smit, J., Montanari, A., Swinburne, N. H. M., Alvarez, W., Hildebrand, A. R., Margolis, S. V., et al. ( 1992 ). Tektite-bearing, deep-water clastic unit at the Cretaceous-Tertiary boundary in northeastern Mexico. Geology, 20 ( 2 ), 99 – 103. https://doi.org/10.1130/0091-7613(1992)020<0099:tbdwcu>2.3.co;2 Smit, J., & Romein, A. J. T. ( 1985 ). A sequence of events across the Cretaceous-Tertiary boundary. Earth and Planetary Science Letters, 74 ( 2–3 ), 55 – 170. https://doi.org/10.1016/0012-821x(85)90019-6 Smith, W. H. F., & Sandwell, D. T. ( 1997 ). Global seafloor topography from satellite altimetry and ship depth soundings. Science, 277 ( 5334 ), 1956 – 1962. https://doi.org/10.1126/science.277.5334.1956 Storms, M. A., Natland, J. H., et al. ( 1991 ). Proceedings of the Ocean Drilling Program, Initial Reports (Vol. 132 ). Ocean Drilling Program. Stott, L. D., & Kennett, J. P. ( 1990 ). The paleoceanographic and paleoclimatic signature of the Cretaceous/Paleogene boundary in the Antarctic: Stable isotopic results from ODP leg 113. In P. F. Barker, J. P. Kennett, et al. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results (Vol. 113 ). Ocean Drilling Program. Stüben, D., Kramar, U., Berner, Z., Stinnesbeck, W., Keller, G., & Adatte, T. ( 2002 ). Trace elements, stable isotopes, and clay mineralogy of the Elles II K/T boundary section in Tunisia: Indications for sea level fluctuations and primary productivity. Palaeogeography, Palaeoclimatology, Palaeoecology, 178 ( 3–4 ), 321 – 345. https://doi.org/10.1016/s0031-0182(01)00401-1 Suganuma, Y., & Ogg, J. G. ( 2006 ). Campanian through Eocene magnetostratigraphy of Sites 1257–1261, OD Leg 207, Demerara Rise (western equatorial Atlantic). In D. C. Mosher, J. Erbacher, & M. J. Malone (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results (Vol. 207 ). Ocean Drilling Program. https://doi.org/10.2973/odp.proc.sr.207.102.2006 Supko, P. R., Perch-Nielsen, K., et al. ( 1977 ). Initial Reports of the Deep Sea Drilling Project (Vol. 39 ). U.S. Government Printing Office. Tada, R., Iturralde-Vinent, M. A., Matsui, T., Tajika, E., Oji, T., Goto, K., et al. ( 2003 ). K/T boundary deposits in the Paleo-western Caribbean basin. In C. Bartolini, R. T. Buffler, & J. Blickwede (Eds.), The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics, American Association of Petroleum Geologists Memoir (Vol. 79, pp. 582 – 604 ). Tang, L., Titov, V. V., Bernard, E. N., Wei, Y., Chamberlin, C. D., Newman, J. C., et al. ( 2012 ). Direct energy estimation of the 2011 Japan tsunami using deep-ocean pressure measurements. Journal of Geophysical Research, 117 ( C8 ), C08008. https://doi.org/10.1029/2011JC007635 Tarduno, J. A., Duncan, R. A., Scholl, D. W., et al. ( 2002 ). Proceedings of the Ocean Drilling Program, Initial Reports (Vol. 197 ). Ocean Drilling Program. https://doi.org/10.2973/odp.proc.ir.197.2002 Taylor, K. W. R., Willumsen, P. S., Hollis, C. J., & Pancost, R. D. ( 2018 ). South Pacific evidence for the long-term climate impact of the Cretaceous/Paleogene boundary event. Earth Science Reviews, 179, 287 – 302. https://doi.org/10.1016/j.earscirev.2018.02.012 Thiede, J., Vallier, T. L., et al. ( 1981 ). Initial Reports of the Deep Sea Drilling Project (Vol. 62 ). U.S. Government Printing Office. Tobin, S. T., Ward, P. D., Steig, E. J., Olivero, E. B., Hilburn, I. A., Mitchell, R. N., et al. ( 2012 ). Extinction patterns, δ 18 O trends, and magnetostratigraphy from a southern high-latitude Cretaceous–Paleogene section: Links with Deccan volcanism. Palaeogeography, Palaeoclimatology, Palaeoecology, 350–352, 180 – 188. https://doi.org/10.1016/j.palaeo.2012.06.029 Tucholke, B. E., Sibuet, J.-C., Klaus, A., et al. ( 2004 ). Proceedings of the Ocean Drilling Program, Scientific Results (Vol. 210 ). Ocean Drilling Program. https://doi.org/10.2973/odp.proc.ir.210.2004 Tucholke, B. E., Vogt, P. R., et al. ( 1979 ). Initial Reports of the Deep Sea Drilling Project (Vol. 43 ). U.S. Government Printing Office. van Hinte, J. E., Wise, S. W., Jr., et al. ( 1987 ). Initial Reports of the Deep Sea Drilling Project (Vol. 93 ). U.S. Government Printing Office. Veevers, J. J., Heirtzler, J. R., et al. ( 1974 ). Initial Reports of the Deep Sea Drilling Project (Vol. 27 ). U.S. Government Printing Office. von Rad, U., Haq, B. U., et al. ( 1992 ). Proceedings of the Ocean Drilling Program, Scientific Results (Vol. 122 ). Ocean Drilling Program. von Rad, U., Ryan, W. B. F., et al. ( 1979 ). Initial Reports of the Deep Sea Drilling Project, 47, Part 1. U.S. Government Printing Office. von der Borch, C., Sclater, C. J. G., et al. ( 1974 ). Initial Reports of the Deep Sea Drilling Project (Vol. 22 ). U.S. Government Printing Office. Weissel, J., Peirce, J., Taylor, E., Alt, J., et al. ( 1991 ). Proceedings of the Ocean Drilling Program, Scientific Results (Vol. 121 ). Ocean Drilling Program. Winterer, E. L., Ewing, J. I., et al. ( 1973 ). Initial Reports of the Deep Sea Drilling Project (Vol. 17 ). U.S. Government Printing Office. Witts, J. D., Newton, R. J., Mills, B. J. W., Wignall, P. B., Bottrell, S. H., Hall, J. L. O., et al. ( 2018 ). The impact of the Cretaceous–Paleogene (K–Pg) mass extinction event on the global sulfur cycle: Evidence from Seymour Island, Antarctica. Geochimica et Cosmochimica Acta, 230, 17 – 45. https://doi.org/10.1016/j.gca.2018.02.037 Witts, J. D., Whittle, R. J., Wignall, P. B., Crame, J. A., Francis, J. E., Newton, R. J., et al. ( 2016 ). Macrofossil evidence for a rapid and severe Cretaceous–Paleogene mass extinction in Antarctica. Nature Communications, 7 ( 1 ), 11738. https://doi.org/10.1038/ncomms11738 Worzel, J. L., Bryant, W., et al. ( 1973 ). Initial Reports of the Deep Sea Drilling Project (Vol. 10 ). U.S. Government Printing Office. Zachos, J. C., Arthur, M. A., & Dean, W. E. ( 1989 ). Geochemical evidence for suppression of pelagic marine productivity at the Cretaceous/Tertiary boundary. Nature, 337 ( 6202 ), 61 – 64. https://doi.org/10.1038/337061a0 Zachos, J. C., Arthur, M. A., Thunell, R. C., Williams, D. F., & Tappa, E. J. ( 1985 ). Stable isotope and trace element geochemistry of carbonate sediments across the Cretaceous/Tertiary boundary at Deep Sea Drilling Project Hole 577, Leg 86. In G. R. Heath, L. H. Burckle, et al. (Eds.), Initial Reports of the Deep Sea Drilling Project (Vol. 86, pp. 513 – 532 ). U.S. Government Printing Office. https://doi.org/10.2973/dsdp.proc.86.120.1985 Zachos, J. C., Kroon, D., Blum, P., et al. ( 2004 ). Proceedings of the Ocean Drilling Program, Initial Results (Vol. 208 ). Ocean Drilling Program. https://doi.org/10.2973/odp.proc.ir.208.2004 Bleil, U. ( 1985 ). The magnetostratigraphy of northwest Pacific sediments, Deep Sea Drilling Project Leg 86. In G. R. Heath, L. H. Burckle, et al. (Eds.), Initial Reports of the Deep Sea Drilling Project (Vol. 86 ). U.S. Government Printing Office. Adcroft, A. ( 2013 ). Representation of topography by porous barriers and objective interpolation of topographic data. Ocean Modelling, 67, 13 – 27. https://doi.org/10.1016/j.ocemod.2013.03.002 Adcroft, A. ( 2017 ). NOAA—GFDL MOM6 Examples. Github. Retrieved from https://github.com/NOAA-GFDL/MOM6-examples/wiki Albertão, G. A., & Martins, P. P., Jr. ( 1996 ). A possible tsunami deposit at the Cretaceous-Tertiary boundary in Pernambuco, northeastern Brazil. Sedimentary Geology, 104 ( 1–4 ), 189 – 201. https://doi.org/10.1016/0037-0738(95)00128-x Alegret, L., & Thomas, E. ( 2005 ). Cretaceous/Paleogene boundary bathyal paleo-environment in the central North Pacific (DSDP Site 465), the Northwestern Atlantic (ODP Site 1049), the Gulf of Mexico and the Tethys: The benthic foraminiferal record. Palaeogeography, Palaeoclimatology, Palaeoecology, 224 ( 1–3 ), 53 – 82. https://doi.org/10.1016/j.palaeo.2005.03.031 Alvarez, W., Claeys, P., & Kieffer, S. W. ( 1995 ). Emplacement of Cretaceous-Tertiary boundary shocked quartz from Chicxulub Crater. Science, 269 ( 5226 ), 930 – 935. https://doi.org/10.1126/science.269.5226.930 Alvarez, W., Smit, J., Lowrie, W., Asaro, F., Margolis, S. V., Claeys, P., et al. ( 1992 ). Proximal impact deposits at the Cretaceous-Tertiary boundary in the Gulf of Mexico: A restudy of DSDP Leg 77 Sites 536 and 540. Geology, 20 ( 8 ), 697 – 700. https://doi.org/10.1130/0091-7613(1992)020<0697:pidatc>2.3.co;2 Anderson, J. L. B., Schultz, P. H., & Heineck, J. T. ( 2003 ). Asymmetry of ejecta flow during oblique impacts using three-dimensional particle image velocimetry. Journal of Geophysical Research, 108 ( E8 ), 5094. https://doi.org/10.1029/2003JE002075 Arbic, B. K., Garner, S. T., Hallberg, R. W., & Simmons, H. L. ( 2004 ). The accuracy of surface elevations in forward global barotropic and baroclinic tide models. Deep-Sea Research II: Topical Studies in Oceanography, 51 ( 25–26 ), 3069 – 3101. https://doi.org/10.1016/j.dsr2.2004.09.014 Bahlburg, H., Weiss, R., & Wünnemann, K. ( 2010 ). Low energy deposition in the Chicxulub crater during the impact to post-impact transition. Earth and Planetary Science Letters, 295 ( 1–2 ), 170 – 176. https://doi.org/10.1016/j.epsl.2010.03.037 Bardeen, C. G., Garcia, R. R., Toon, O. B., & Conley, A. J. ( 2017 ). On transient climate change at the Cretaceous-Paleogene boundary due to atmospheric soot injections. Proceedings of the National Academy of Sciences of the United States of America, 114 ( 36 ), E7415 – E7424. https://doi.org/10.1073/pnas.1708980114 Batenburg, S. J., Sprovieri, M., Gale, A. S., Hilgen, F. J., Hüsing, S., Laskar, J., et al. ( 2012 ). Cyclostratigraphy and astronomical tuning of the Late Maastrichtian at Zumaia (Basque country), Northern Spain. Earth and Planetary Science Letters, 359–360, 264 – 278. https://doi.org/10.1016/j.epsl.2012.09.054 Bell, C., Morgan, J. V., Hampson, G. J., & Trudgill, B. ( 2004 ). Stratigraphic and sedimentological observations from seismic data across the Chicxulub impact basin. Meteoritics & Planetary Science, 39 ( 7 ), 1089 – 1098. https://doi.org/10.1111/j.1945-5100.2004.tb01130.x Bourgeois, J., Hansen, T. A., Wiberg, P. L., & Kauffman, E. G. ( 1988 ). A tsunami deposit at the Cretaceous-Tertiary boundary in Texas. Science, 241 ( 4865 ), 567 – 570. https://doi.org/10.1126/science.241.4865.567 Bralower, T. J., Paull, C. K., & Leckie, R. M. ( 1998 ). The Cretaceous-Tertiary boundary cocktail: Chicxulub impact triggers margin collapse and extensive sediment gravity flow. Geology, 26 ( 4 ), 331 – 334. https://doi.org/10.1130/0091-7613(1998)026<0331:tctbcc>2.3.co;2 IndexNoFollow impact Chicxulub impact tsunami Earth and Environmental Sciences Science Article 2022 ftumdeepblue https://doi.org/10.1029/2021AV00062710.1130/0091-7613(1992)020<0099:tbdwcu>2.3.co;210.1029/2011JC00763510.2973/odp.proc.ir.197.200210.1016/j.palaeo.2012.06.02910.2973/odp.proc.ir.210.200410.1016/j.gca.2018.02.03710.1038/ncomms1173810.2973/odp.proc.ir.208. 2023-12-03T17:39:34Z The Chicxulub crater is the site of an asteroid impact linked with the Cretaceous-Paleogene (K-Pg) mass extinction at ∼66 Ma. This asteroid struck in shallow water and caused a large tsunami. Here we present the first global simulation of the Chicxulub impact tsunami from initial contact of the projectile to global propagation. We use a hydrocode to model the displacement of water, sediment, and crust over the first 10 min, and a shallow-water ocean model from that point onwards. The impact tsunami was up to 30,000 times more energetic than the 26 December 2004 Indian Ocean tsunami, one of the largest tsunamis in the modern record. Flow velocities exceeded 20 cm/s along shorelines worldwide, as well as in open-ocean regions in the North Atlantic, equatorial South Atlantic, southern Pacific and the Central American Seaway, and therefore likely scoured the seafloor and disturbed sediments over 10,000 km from the impact origin. The distribution of erosion and hiatuses in the uppermost Cretaceous marine sediments are consistent with model results.Plain Language SummaryAt the end of the Cretaceous, about 66 million years ago, the Chicxulub asteroid impact near the Yucatan peninsula produced a global tsunami 30,000 times more energetic than any modern-day tsunami produced by earthquakes. Here we model the first 10 min of the event with a crater impact model, and the subsequent propagation throughout the world oceans using two different global tsunami models. The Chicxulub tsunami approached most coastlines of the North Atlantic and South Pacific with waves of over 10 m high and flow velocities in excess of 1 m/s offshore. The tsunami was strong enough to scour the seafloor in these regions, thus removing the sedimentary records of conditions before and during this cataclysmic event in Earth history and leaving either a gap in these records or a jumble of highly disturbed older sediments. The gaps in sedimentary records generally occur in basins where the numerical model predicts larger bottom velocities.Key PointsThe ... Article in Journal/Newspaper North Atlantic University of Michigan: Deep Blue