Integrating natural gradients, experiments, and statistical modeling in a distributed network experiment: An example from the WaRM Network

A growing body of work examines the direct and indirect effects of climate change on ecosystems, typically by using manipulative experiments at a single site or performing meta-analyses across many independent experiments. However, results from single-site studies tend to have limited generality. Al...

Full description

Bibliographic Details
Main Authors: Prager, Case M., Classen, Aimee T., Sundqvist, Maja K., Barrios-Garcia, Maria noelia, Cameron, Erin K., Chen, Litong, Chisholm, Chelsea, Crowther, Thomas W., Deslippe, Julie R., Grigulis, Karl, He, Jin-Sheng, Henning, Jeremiah A., Hovenden, Mark, Høye, Toke T. Thomas, Jing, Xin, Lavorel, Sandra, McLaren, Jennie R., Metcalfe, Daniel B., Newman, Gregory S., Nielsen, Marie Louise, Rixen, Christian, Read, Quentin D., Rewcastle, Kenna E., Rodriguez-Cabal, Mariano, Wardle, David A., Wipf, Sonja, Sanders, Nathan J.
Format: Article in Journal/Newspaper
Language:unknown
Published: IPCC 2022
Subjects:
Online Access:https://hdl.handle.net/2027.42/175055
https://doi.org/10.1002/ece3.9396
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/175055
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic warming
global change
alpine plant communities
climate change
elevational gradients
mountains
Ecology and Evolutionary Biology
Science
spellingShingle warming
global change
alpine plant communities
climate change
elevational gradients
mountains
Ecology and Evolutionary Biology
Science
Prager, Case M.
Classen, Aimee T.
Sundqvist, Maja K.
Barrios-Garcia, Maria noelia
Cameron, Erin K.
Chen, Litong
Chisholm, Chelsea
Crowther, Thomas W.
Deslippe, Julie R.
Grigulis, Karl
He, Jin-Sheng
Henning, Jeremiah A.
Hovenden, Mark
Høye, Toke T. Thomas
Jing, Xin
Lavorel, Sandra
McLaren, Jennie R.
Metcalfe, Daniel B.
Newman, Gregory S.
Nielsen, Marie Louise
Rixen, Christian
Read, Quentin D.
Rewcastle, Kenna E.
Rodriguez-Cabal, Mariano
Wardle, David A.
Wipf, Sonja
Sanders, Nathan J.
Integrating natural gradients, experiments, and statistical modeling in a distributed network experiment: An example from the WaRM Network
topic_facet warming
global change
alpine plant communities
climate change
elevational gradients
mountains
Ecology and Evolutionary Biology
Science
description A growing body of work examines the direct and indirect effects of climate change on ecosystems, typically by using manipulative experiments at a single site or performing meta-analyses across many independent experiments. However, results from single-site studies tend to have limited generality. Although meta-analytic approaches can help overcome this by exploring trends across sites, the inherent limitations in combining disparate datasets from independent approaches remain a major challenge. In this paper, we present a globally distributed experimental network that can be used to disentangle the direct and indirect effects of climate change. We discuss how natural gradients, experimental approaches, and statistical techniques can be combined to best inform predictions about responses to climate change, and we present a globally distributed experiment that utilizes natural environmental gradients to better understand long-term community and ecosystem responses to environmental change. The warming and (species) removal in mountains (WaRM) network employs experimental warming and plant species removals at high- and low-elevation sites in a factorial design to examine the combined and relative effects of climatic warming and the loss of dominant species on community structure and ecosystem function, both above- and belowground. The experimental design of the network allows for increasingly common statistical approaches to further elucidate the direct and indirect effects of warming. We argue that combining ecological observations and experiments along gradients is a powerful approach to make stronger predictions of how ecosystems will function in a warming world as species are lost, or gained, in local communities.The warming and (species) removal in mountains (WaRM) network employs experimental warming and plant species removals at high- and low-elevation sites in a factorial design to examine the combined and relative effects of climatic warming and the loss of dominant species on community structure and ...
format Article in Journal/Newspaper
author Prager, Case M.
Classen, Aimee T.
Sundqvist, Maja K.
Barrios-Garcia, Maria noelia
Cameron, Erin K.
Chen, Litong
Chisholm, Chelsea
Crowther, Thomas W.
Deslippe, Julie R.
Grigulis, Karl
He, Jin-Sheng
Henning, Jeremiah A.
Hovenden, Mark
Høye, Toke T. Thomas
Jing, Xin
Lavorel, Sandra
McLaren, Jennie R.
Metcalfe, Daniel B.
Newman, Gregory S.
Nielsen, Marie Louise
Rixen, Christian
Read, Quentin D.
Rewcastle, Kenna E.
Rodriguez-Cabal, Mariano
Wardle, David A.
Wipf, Sonja
Sanders, Nathan J.
author_facet Prager, Case M.
Classen, Aimee T.
Sundqvist, Maja K.
Barrios-Garcia, Maria noelia
Cameron, Erin K.
Chen, Litong
Chisholm, Chelsea
Crowther, Thomas W.
Deslippe, Julie R.
Grigulis, Karl
He, Jin-Sheng
Henning, Jeremiah A.
Hovenden, Mark
Høye, Toke T. Thomas
Jing, Xin
Lavorel, Sandra
McLaren, Jennie R.
Metcalfe, Daniel B.
Newman, Gregory S.
Nielsen, Marie Louise
Rixen, Christian
Read, Quentin D.
Rewcastle, Kenna E.
Rodriguez-Cabal, Mariano
Wardle, David A.
Wipf, Sonja
Sanders, Nathan J.
author_sort Prager, Case M.
title Integrating natural gradients, experiments, and statistical modeling in a distributed network experiment: An example from the WaRM Network
title_short Integrating natural gradients, experiments, and statistical modeling in a distributed network experiment: An example from the WaRM Network
title_full Integrating natural gradients, experiments, and statistical modeling in a distributed network experiment: An example from the WaRM Network
title_fullStr Integrating natural gradients, experiments, and statistical modeling in a distributed network experiment: An example from the WaRM Network
title_full_unstemmed Integrating natural gradients, experiments, and statistical modeling in a distributed network experiment: An example from the WaRM Network
title_sort integrating natural gradients, experiments, and statistical modeling in a distributed network experiment: an example from the warm network
publisher IPCC
publishDate 2022
url https://hdl.handle.net/2027.42/175055
https://doi.org/10.1002/ece3.9396
genre Arctic
genre_facet Arctic
op_relation Prager, Case M.; Classen, Aimee T.; Sundqvist, Maja K.; Barrios-Garcia, Maria noelia
Cameron, Erin K.; Chen, Litong; Chisholm, Chelsea; Crowther, Thomas W.; Deslippe, Julie R.; Grigulis, Karl; He, Jin-Sheng
Henning, Jeremiah A.; Hovenden, Mark; Høye, Toke T. Thomas
Jing, Xin; Lavorel, Sandra; McLaren, Jennie R.; Metcalfe, Daniel B.; Newman, Gregory S.; Nielsen, Marie Louise; Rixen, Christian; Read, Quentin D.; Rewcastle, Kenna E.; Rodriguez-Cabal, Mariano
Wardle, David A.; Wipf, Sonja; Sanders, Nathan J. (2022). "Integrating natural gradients, experiments, and statistical modeling in a distributed network experiment: An example from the WaRM Network." Ecology and Evolution (10): n/a-n/a.
2045-7758
https://hdl.handle.net/2027.42/175055
doi:10.1002/ece3.9396
Ecology and Evolution
McCain, C. M. ( 2007 ). Could temperature and water availability drive elevational species richness patterns? A global case study for bats. Global Ecology and Biogeography, 16, 1 – 13.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. ( 2012 ). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965 – 1978 (for WorldClim 2018 database citation).
Hillebrand, H., Bennett, D. M., & Cadotte, M. W. ( 2008 ). Consequences of dominance: A review of evenness effects on local and regional ecosystem processes. Ecology, 89, 1510 – 1520.
Heskel, M., Greaves, H., Kornfeld, A., Gough, L., Atkin, O. K., Turnbull, M. H., Shaver, G., & Griffin, K. L. ( 2013 ). Differential physiological responses to environmental change promote woody shrub expansion. Ecology and Evolution, 3 ( 5 ), 1149 – 1162.
Hovenden, M. J., Leuzinger, S., Newton, P. C. D., Fletcher, A., Fatichi, S., Lüscher, A., Reich, P. B., Andresen, L. C., Beier, C., Blumenthal, D. M., Chiariello, N. R., Dukes, J. S., Kellner, J., Hofmockel, K., Niklaus, P. A., Song, J., Wan, S., Classen, A. T., & Langley, J. A. ( 2019 ). Globally consistent influences of seasonal precipitation limit grassland biomass response to elevated CO2. Nature Plants, 5, 167 – 173.
IPCC. ( 2014 ). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC 151 pp.
Isbell, F., Gonzalez, A., Loreau, M., Cowles, J., Díaz, S., Hector, A., Mace, G. M., Wardle, D. A., O’Connor, M. I., Duffy, J. E., Turnbull, L. A., Thompson, P. L., & Larigauderie, A. ( 2017 ). Linking the influence and dependence of people on biodiversity across scales. Nature, 546, 65 – 72.
Jain, M., Flynn, D. F. B., Prager, C. M., Hart, G. M., DeVan, C. M., Ahrestani, F. S., Palmer, M. I., Bunker, D. E., Knops, J. M. H., Jouseau, C. F., & Naeem, S. ( 2014 ). The importance of rare species: a trait-based assessment of rare species contributions to functional diversity and possible ecosystem function in tall-grass prairies. Ecology and Evolution, 4, 104 – 112.
Jetz, W., McGeoch, M. A., Guralnick, R., Ferrier, S., Beck, J., Costello, M. J., Fernandez, M., Geller, G. N., Keil, P., Merow, C., Meyer, C., Muller-Karger, F. E., Pereira, H. M., Regan, E. C., Schmeller, D. S., & Turak, E. ( 2019 ). Essential biodiversity variables for mapping and monitoring species populations. Nature Ecology & Evolution, 3, 539 – 551.
Kardol, P., Fanin, N., & Wardle, D. A. ( 2018 ). Long-term effects of species loss on community properties across contrasting ecosystems. Nature, 557, 710 – 713.
Kivlin, S. N., Winston, G. C., Goulden, M. L., & Treseder, K. K. ( 2014 ). Environmental filtering affects soil fungal community composition more than dispersal limitation at regional scales. Fungal Ecology, 12, 14 – 25.
Kleyer, M., Dray, S., Bello, F., Lepš, J., Pakeman, R. J., Strauss, B., Thuiller, W., & Lavorel, S. ( 2012 ). Assessing species and community functional responses to environmental gradients: Which multivariate methods? Journal of Vegetation Science, 23, 805 – 821.
Körner, C. ( 2007 ). The use of ‘altitude’ in ecological research. Trends in Ecology & Evolution, 22, 569 – 574.
Kröel-Dulay, G., Mojzes, A., Szitár, K., Bahn, M., Batáry, P., Beier, C., Bilton, M., de Boeck, H. J., Dukes, J. S., Estiarte, M., Holub, P., Jentsch, A., Schmidt, I. K., Kreyling, J., Reinsch, S., Larsen, K. S., Sternberg, M., Tielbörger, K., Tietema, A., … Peñuelas, J. ( 2022 ). Field experiments underestimate aboveground biomass response to drought. Nature Ecology & Evolution, 6, 540 – 545. https://doi.org/10.1038/s41559-022-01685-3
Lavorel, S., & Garnier, E. ( 2002 ). Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Functional Ecology, 16, 545 – 556. https://doi.org/10.1046/j.1365-2435.2002.00664.x
Lavorel, S., & Grigulis, K. ( 2012 ). How fundamental plant functional trait relationships scale-up to trade-offs and synergies in ecosystem services. Journal of Ecology, 100, 128 – 140. https://doi.org/10.1111/j.1365-2745.2011.01914.x
Liu, H., Mi, Z., Lin, L., Wang, Y., Zhang, Z., Zhang, F., Wang, H., Liu, L., Zhu, B., Cao, G., Zhao, X., Sanders, N. J., Classen, A. T., Reich, P. B., & He, J.-S. ( 2018 ). Shifting plant species composition in response to climate change stabilizes grassland primary production. Proceedings of the National Academy of Sciences, 115, 4051 – 4056.
Luo, Y., Wan, S., Hui, D., & Wallace, L. L. ( 2001 ). Acclimatization of soil respiration to warming in a tall grass prairie. Nature, 413, 622 – 625.
Martinez-Almoyna, C., Thuiller, W., Chalmandrier, L., Ohlmann, M., Foulquier, A., Clément, J.-C., Zinger, L., & Münkemüller, T. ( 2019 ). Multi-trophic β-diversity mediates the effect of environmental gradients on the turnover of multiple ecosystem functions. Functional Ecology, 33, 2053 – 2064.
Mayor, J. R., Sanders, N. J., Classen, A. T., Bardgett, R. D., Clément, J.-C., Fajardo, A., Lavorel, S., Sundqvist, M. K., Bahn, M., Chisholm, C., Cieraad, E., Gedalof, Z., Grigulis, K., Kudo, G., Oberski, D. L., & Wardle, D. A. ( 2017 ). Elevation alters ecosystem properties across temperate treelines globally. Nature, 542, 91 – 95.
McLaren, J. R., & Turkington, R. ( 2010 ). Ecosystem properties determined by plant functional group identity. Journal of Ecology, 98, 459 – 469. https://doi.org/10.1111/j.1365-2745.2009.01630.x
Melillo, J. M., Frey, S. D., DeAngelis, K. M., Werner, W. J., Bernard, M. J., Bowles, F. P., Pold, G., Knorr, M. A., & Grandy, A. S. ( 2017 ). Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science, 358, 101 – 105.
Minasny, B., McBratney, A. B., Brough, D. M., & Jacquier, D. ( 2011 ). Models relating soil pH measurements in water and calcium chloride that incorporate electrolyte concentration. European Journal of Soil Science, 62, 728 – 732.
Niu, S., Xing, X., Zhang, Z., Xia, J., Zhou, X., Song, B., Li, L., & Wan, S. ( 2011 ). Water-use efficiency in response to climate change: from leaf to ecosystem in a temperate steppe. Global Change Biology, 17, 1073 – 1082. https://doi.org/10.1111/j.1365-2486.2010.02280.x
Nogues-Bravo, D., & Rahbek, C. ( 2011 ). Communities under climate change. Science, 334 ( 6059 ), 1070 – 1071. https://doi.org/10.1126/science.121483
Nooten, S. S., & Andrew, N. R. ( 2017 ). Transplant experiments – a powerful method to study climate change impacts. In S. N. Johnson & T. H. Jones (Eds.), Global Climate Change and Terrestrial Invertebrates. https://doi.org/10.1002/9781119070894.ch4
Orwin, K. H., Ostle, N., Wilby, A., & Bardgett, R. D. ( 2014 ). Effects of species evenness and dominant species identity on multiple ecosystem functions in model grassland communities. Oecologia, 174, 979 – 992.
Peltzer, D. A., Bellingham, P. J., Kurokawa, H., Walker, L. R., Wardle, D. A., & Yeates, G. W. ( 2009 ). Punching above their weight: Low-biomass non-native plant species alter soil properties during primary succession. Oikos, 118, 1001 – 1014.
Read, Q. D., Moorhead, L. C., Swenson, N. G., Bailey, J. K., & Sanders, N. J. ( 2014 ). Convergent effects of elevation on functional leaf traits within and among species. Functional Ecology, 28, 37 – 45.
Reich, P. B., Sendall, K. M., Stefanski, A., Rich, R. L., Hobbie, S. E., & Montgomery, R. A. ( 2018 ). Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture. Nature, 562, 263 – 267.
Rogora, M., Frate, L., Carranza, M. L., Freppaz, M., Stanisci, A., Bertani, I., Bottarin, R., Brambilla, A., Canullo, R., Carbognani, M., Cerrato, C., Chelli, S., Cremonese, E., Cutini, M., Di Musciano, M., Erschbamer, B., Godone, D., Iocchi, M., Isabellon, M., … Matteucci, G. ( 2018 ). Assessment of climate change effects on mountain ecosystems through a cross-site analysis in the Alps and Apennines. Science of the Total Environment, 624, 1429 – 1442.
Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. ( 1974 ). Monitoring vegetation systems in the Great Plains with ERTS. In S. C. Freden, E. P. Mercanti, & M. Becker (Eds.), Third Earth Resources Technology Satellite–1 Syposium. Volume I: Technical Presentations, NASA SP-351 (pp. 309 – 317 ). NASA.
Sasaki, T., & Lauenroth, W. ( 2011 ). Dominant species, rather than diversity, regulates temporal stability of plant communities. Oecologia, 166, 761 – 768.
Smith, M. D., & Knapp, A. K. ( 2003 ). Dominant species maintain ecosystem function with non-random species loss. Ecology Letters, 6, 509 – 517.
Song, J., Wan, S., Piao, S., Knapp, A. K., Classen, A. T., Vicca, S., Ciais, P., Hovenden, M. J., Leuzinger, S., Beier, C., Kardol, P., Xia, J., Liu, Q., Ru, J., Zhou, Z., Luo, Y., Guo, D., Adam Langley, J., Zscheischler, J., … Zheng, M. ( 2019 ). A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nature Ecology & Evolution, 3, 1309 – 1320.
Sundqvist, M. K., Sanders, N. J., Dorrepaal, E., Lindén, E., Metcalfe, D. B., Newman, G. S., Olofsson, J., Wardle, D. A., & Classen, A. T. ( 2020 ). Responses of tundra plant community carbon flux to experimental warming, dominant species removal and elevation. Functional Ecology, 34, 1497 – 1506.
Sundqvist, M. K., Sanders, N. J., & Wardle, D. A. ( 2013 ). Community and ecosystem responses to elevational gradients: Processes, mechanisms, and insights for global change. Annual Review of Ecology, Evolution, and Systematics, 44, 261 – 280.
Suseela, V., Conant, R. T., Wallenstein, M. D., & Dukes, J. S. ( 2012 ). Effects of soil moisture on the temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate change experiment. Global Change Biology, 18, 336 – 348. https://doi.org/10.1111/j.1365-2486.2011.02516.x
Thuiller, W., Guéguen, M., Renaud, J., Karger, D. N., & Zimmermann, N. E. ( 2019 ). Uncertainty in ensembles of global biodiversity scenarios. Nature Communications, 10, 1446.
van der Plas, F., Schröder-Georgi, T., Weigelt, A., Barry, K., Meyer, S., Alzate, A., Barnard, R. L., Buchmann, N., de Kroon, H., Ebeling, A., Eisenhauer, N., Engels, C., Fischer, M., Gleixner, G., Hildebrandt, A., Koller-France, E., Leimer, S., Milcu, A., Mommer, L., … Wirth, C. ( 2020 ). Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nature Ecology & Evolution, 4, 1602 – 1611.
van Wijk, M. T., Williams, M., Gough, L., Hobbie, S. E., & Shaver, G. R. ( 2003 ). Luxury consumption of soil nutrients: a possible competitive strategy in above-ground and below-ground biomass allocation and root morphology for slow-growing arctic vegetation? Journal of Ecology, 91, 664 – 676.
op_rights IndexNoFollow
op_doi https://doi.org/10.1002/ece3.939610.1111/j.1654-1103.2004.tb02266.x
_version_ 1786810253720944640
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/175055 2023-12-31T10:02:18+01:00 Integrating natural gradients, experiments, and statistical modeling in a distributed network experiment: An example from the WaRM Network Prager, Case M. Classen, Aimee T. Sundqvist, Maja K. Barrios-Garcia, Maria noelia Cameron, Erin K. Chen, Litong Chisholm, Chelsea Crowther, Thomas W. Deslippe, Julie R. Grigulis, Karl He, Jin-Sheng Henning, Jeremiah A. Hovenden, Mark Høye, Toke T. Thomas Jing, Xin Lavorel, Sandra McLaren, Jennie R. Metcalfe, Daniel B. Newman, Gregory S. Nielsen, Marie Louise Rixen, Christian Read, Quentin D. Rewcastle, Kenna E. Rodriguez-Cabal, Mariano Wardle, David A. Wipf, Sonja Sanders, Nathan J. 2022-10 application/pdf https://hdl.handle.net/2027.42/175055 https://doi.org/10.1002/ece3.9396 unknown IPCC Wiley Periodicals, Inc. Prager, Case M.; Classen, Aimee T.; Sundqvist, Maja K.; Barrios-Garcia, Maria noelia Cameron, Erin K.; Chen, Litong; Chisholm, Chelsea; Crowther, Thomas W.; Deslippe, Julie R.; Grigulis, Karl; He, Jin-Sheng Henning, Jeremiah A.; Hovenden, Mark; Høye, Toke T. Thomas Jing, Xin; Lavorel, Sandra; McLaren, Jennie R.; Metcalfe, Daniel B.; Newman, Gregory S.; Nielsen, Marie Louise; Rixen, Christian; Read, Quentin D.; Rewcastle, Kenna E.; Rodriguez-Cabal, Mariano Wardle, David A.; Wipf, Sonja; Sanders, Nathan J. (2022). "Integrating natural gradients, experiments, and statistical modeling in a distributed network experiment: An example from the WaRM Network." Ecology and Evolution (10): n/a-n/a. 2045-7758 https://hdl.handle.net/2027.42/175055 doi:10.1002/ece3.9396 Ecology and Evolution McCain, C. M. ( 2007 ). Could temperature and water availability drive elevational species richness patterns? A global case study for bats. Global Ecology and Biogeography, 16, 1 – 13. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. ( 2012 ). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965 – 1978 (for WorldClim 2018 database citation). Hillebrand, H., Bennett, D. M., & Cadotte, M. W. ( 2008 ). Consequences of dominance: A review of evenness effects on local and regional ecosystem processes. Ecology, 89, 1510 – 1520. Heskel, M., Greaves, H., Kornfeld, A., Gough, L., Atkin, O. K., Turnbull, M. H., Shaver, G., & Griffin, K. L. ( 2013 ). Differential physiological responses to environmental change promote woody shrub expansion. Ecology and Evolution, 3 ( 5 ), 1149 – 1162. Hovenden, M. J., Leuzinger, S., Newton, P. C. D., Fletcher, A., Fatichi, S., Lüscher, A., Reich, P. B., Andresen, L. C., Beier, C., Blumenthal, D. M., Chiariello, N. R., Dukes, J. S., Kellner, J., Hofmockel, K., Niklaus, P. A., Song, J., Wan, S., Classen, A. T., & Langley, J. A. ( 2019 ). Globally consistent influences of seasonal precipitation limit grassland biomass response to elevated CO2. Nature Plants, 5, 167 – 173. IPCC. ( 2014 ). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC 151 pp. Isbell, F., Gonzalez, A., Loreau, M., Cowles, J., Díaz, S., Hector, A., Mace, G. M., Wardle, D. A., O’Connor, M. I., Duffy, J. E., Turnbull, L. A., Thompson, P. L., & Larigauderie, A. ( 2017 ). Linking the influence and dependence of people on biodiversity across scales. Nature, 546, 65 – 72. Jain, M., Flynn, D. F. B., Prager, C. M., Hart, G. M., DeVan, C. M., Ahrestani, F. S., Palmer, M. I., Bunker, D. E., Knops, J. M. H., Jouseau, C. F., & Naeem, S. ( 2014 ). The importance of rare species: a trait-based assessment of rare species contributions to functional diversity and possible ecosystem function in tall-grass prairies. Ecology and Evolution, 4, 104 – 112. Jetz, W., McGeoch, M. A., Guralnick, R., Ferrier, S., Beck, J., Costello, M. J., Fernandez, M., Geller, G. N., Keil, P., Merow, C., Meyer, C., Muller-Karger, F. E., Pereira, H. M., Regan, E. C., Schmeller, D. S., & Turak, E. ( 2019 ). Essential biodiversity variables for mapping and monitoring species populations. Nature Ecology & Evolution, 3, 539 – 551. Kardol, P., Fanin, N., & Wardle, D. A. ( 2018 ). Long-term effects of species loss on community properties across contrasting ecosystems. Nature, 557, 710 – 713. Kivlin, S. N., Winston, G. C., Goulden, M. L., & Treseder, K. K. ( 2014 ). Environmental filtering affects soil fungal community composition more than dispersal limitation at regional scales. Fungal Ecology, 12, 14 – 25. Kleyer, M., Dray, S., Bello, F., Lepš, J., Pakeman, R. J., Strauss, B., Thuiller, W., & Lavorel, S. ( 2012 ). Assessing species and community functional responses to environmental gradients: Which multivariate methods? Journal of Vegetation Science, 23, 805 – 821. Körner, C. ( 2007 ). The use of ‘altitude’ in ecological research. Trends in Ecology & Evolution, 22, 569 – 574. Kröel-Dulay, G., Mojzes, A., Szitár, K., Bahn, M., Batáry, P., Beier, C., Bilton, M., de Boeck, H. J., Dukes, J. S., Estiarte, M., Holub, P., Jentsch, A., Schmidt, I. K., Kreyling, J., Reinsch, S., Larsen, K. S., Sternberg, M., Tielbörger, K., Tietema, A., … Peñuelas, J. ( 2022 ). Field experiments underestimate aboveground biomass response to drought. Nature Ecology & Evolution, 6, 540 – 545. https://doi.org/10.1038/s41559-022-01685-3 Lavorel, S., & Garnier, E. ( 2002 ). Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Functional Ecology, 16, 545 – 556. https://doi.org/10.1046/j.1365-2435.2002.00664.x Lavorel, S., & Grigulis, K. ( 2012 ). How fundamental plant functional trait relationships scale-up to trade-offs and synergies in ecosystem services. Journal of Ecology, 100, 128 – 140. https://doi.org/10.1111/j.1365-2745.2011.01914.x Liu, H., Mi, Z., Lin, L., Wang, Y., Zhang, Z., Zhang, F., Wang, H., Liu, L., Zhu, B., Cao, G., Zhao, X., Sanders, N. J., Classen, A. T., Reich, P. B., & He, J.-S. ( 2018 ). Shifting plant species composition in response to climate change stabilizes grassland primary production. Proceedings of the National Academy of Sciences, 115, 4051 – 4056. Luo, Y., Wan, S., Hui, D., & Wallace, L. L. ( 2001 ). Acclimatization of soil respiration to warming in a tall grass prairie. Nature, 413, 622 – 625. Martinez-Almoyna, C., Thuiller, W., Chalmandrier, L., Ohlmann, M., Foulquier, A., Clément, J.-C., Zinger, L., & Münkemüller, T. ( 2019 ). Multi-trophic β-diversity mediates the effect of environmental gradients on the turnover of multiple ecosystem functions. Functional Ecology, 33, 2053 – 2064. Mayor, J. R., Sanders, N. J., Classen, A. T., Bardgett, R. D., Clément, J.-C., Fajardo, A., Lavorel, S., Sundqvist, M. K., Bahn, M., Chisholm, C., Cieraad, E., Gedalof, Z., Grigulis, K., Kudo, G., Oberski, D. L., & Wardle, D. A. ( 2017 ). Elevation alters ecosystem properties across temperate treelines globally. Nature, 542, 91 – 95. McLaren, J. R., & Turkington, R. ( 2010 ). Ecosystem properties determined by plant functional group identity. Journal of Ecology, 98, 459 – 469. https://doi.org/10.1111/j.1365-2745.2009.01630.x Melillo, J. M., Frey, S. D., DeAngelis, K. M., Werner, W. J., Bernard, M. J., Bowles, F. P., Pold, G., Knorr, M. A., & Grandy, A. S. ( 2017 ). Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science, 358, 101 – 105. Minasny, B., McBratney, A. B., Brough, D. M., & Jacquier, D. ( 2011 ). Models relating soil pH measurements in water and calcium chloride that incorporate electrolyte concentration. European Journal of Soil Science, 62, 728 – 732. Niu, S., Xing, X., Zhang, Z., Xia, J., Zhou, X., Song, B., Li, L., & Wan, S. ( 2011 ). Water-use efficiency in response to climate change: from leaf to ecosystem in a temperate steppe. Global Change Biology, 17, 1073 – 1082. https://doi.org/10.1111/j.1365-2486.2010.02280.x Nogues-Bravo, D., & Rahbek, C. ( 2011 ). Communities under climate change. Science, 334 ( 6059 ), 1070 – 1071. https://doi.org/10.1126/science.121483 Nooten, S. S., & Andrew, N. R. ( 2017 ). Transplant experiments – a powerful method to study climate change impacts. In S. N. Johnson & T. H. Jones (Eds.), Global Climate Change and Terrestrial Invertebrates. https://doi.org/10.1002/9781119070894.ch4 Orwin, K. H., Ostle, N., Wilby, A., & Bardgett, R. D. ( 2014 ). Effects of species evenness and dominant species identity on multiple ecosystem functions in model grassland communities. Oecologia, 174, 979 – 992. Peltzer, D. A., Bellingham, P. J., Kurokawa, H., Walker, L. R., Wardle, D. A., & Yeates, G. W. ( 2009 ). Punching above their weight: Low-biomass non-native plant species alter soil properties during primary succession. Oikos, 118, 1001 – 1014. Read, Q. D., Moorhead, L. C., Swenson, N. G., Bailey, J. K., & Sanders, N. J. ( 2014 ). Convergent effects of elevation on functional leaf traits within and among species. Functional Ecology, 28, 37 – 45. Reich, P. B., Sendall, K. M., Stefanski, A., Rich, R. L., Hobbie, S. E., & Montgomery, R. A. ( 2018 ). Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture. Nature, 562, 263 – 267. Rogora, M., Frate, L., Carranza, M. L., Freppaz, M., Stanisci, A., Bertani, I., Bottarin, R., Brambilla, A., Canullo, R., Carbognani, M., Cerrato, C., Chelli, S., Cremonese, E., Cutini, M., Di Musciano, M., Erschbamer, B., Godone, D., Iocchi, M., Isabellon, M., … Matteucci, G. ( 2018 ). Assessment of climate change effects on mountain ecosystems through a cross-site analysis in the Alps and Apennines. Science of the Total Environment, 624, 1429 – 1442. Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. ( 1974 ). Monitoring vegetation systems in the Great Plains with ERTS. In S. C. Freden, E. P. Mercanti, & M. Becker (Eds.), Third Earth Resources Technology Satellite–1 Syposium. Volume I: Technical Presentations, NASA SP-351 (pp. 309 – 317 ). NASA. Sasaki, T., & Lauenroth, W. ( 2011 ). Dominant species, rather than diversity, regulates temporal stability of plant communities. Oecologia, 166, 761 – 768. Smith, M. D., & Knapp, A. K. ( 2003 ). Dominant species maintain ecosystem function with non-random species loss. Ecology Letters, 6, 509 – 517. Song, J., Wan, S., Piao, S., Knapp, A. K., Classen, A. T., Vicca, S., Ciais, P., Hovenden, M. J., Leuzinger, S., Beier, C., Kardol, P., Xia, J., Liu, Q., Ru, J., Zhou, Z., Luo, Y., Guo, D., Adam Langley, J., Zscheischler, J., … Zheng, M. ( 2019 ). A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nature Ecology & Evolution, 3, 1309 – 1320. Sundqvist, M. K., Sanders, N. J., Dorrepaal, E., Lindén, E., Metcalfe, D. B., Newman, G. S., Olofsson, J., Wardle, D. A., & Classen, A. T. ( 2020 ). Responses of tundra plant community carbon flux to experimental warming, dominant species removal and elevation. Functional Ecology, 34, 1497 – 1506. Sundqvist, M. K., Sanders, N. J., & Wardle, D. A. ( 2013 ). Community and ecosystem responses to elevational gradients: Processes, mechanisms, and insights for global change. Annual Review of Ecology, Evolution, and Systematics, 44, 261 – 280. Suseela, V., Conant, R. T., Wallenstein, M. D., & Dukes, J. S. ( 2012 ). Effects of soil moisture on the temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate change experiment. Global Change Biology, 18, 336 – 348. https://doi.org/10.1111/j.1365-2486.2011.02516.x Thuiller, W., Guéguen, M., Renaud, J., Karger, D. N., & Zimmermann, N. E. ( 2019 ). Uncertainty in ensembles of global biodiversity scenarios. Nature Communications, 10, 1446. van der Plas, F., Schröder-Georgi, T., Weigelt, A., Barry, K., Meyer, S., Alzate, A., Barnard, R. L., Buchmann, N., de Kroon, H., Ebeling, A., Eisenhauer, N., Engels, C., Fischer, M., Gleixner, G., Hildebrandt, A., Koller-France, E., Leimer, S., Milcu, A., Mommer, L., … Wirth, C. ( 2020 ). Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nature Ecology & Evolution, 4, 1602 – 1611. van Wijk, M. T., Williams, M., Gough, L., Hobbie, S. E., & Shaver, G. R. ( 2003 ). Luxury consumption of soil nutrients: a possible competitive strategy in above-ground and below-ground biomass allocation and root morphology for slow-growing arctic vegetation? Journal of Ecology, 91, 664 – 676. IndexNoFollow warming global change alpine plant communities climate change elevational gradients mountains Ecology and Evolutionary Biology Science Article 2022 ftumdeepblue https://doi.org/10.1002/ece3.939610.1111/j.1654-1103.2004.tb02266.x 2023-12-03T17:38:49Z A growing body of work examines the direct and indirect effects of climate change on ecosystems, typically by using manipulative experiments at a single site or performing meta-analyses across many independent experiments. However, results from single-site studies tend to have limited generality. Although meta-analytic approaches can help overcome this by exploring trends across sites, the inherent limitations in combining disparate datasets from independent approaches remain a major challenge. In this paper, we present a globally distributed experimental network that can be used to disentangle the direct and indirect effects of climate change. We discuss how natural gradients, experimental approaches, and statistical techniques can be combined to best inform predictions about responses to climate change, and we present a globally distributed experiment that utilizes natural environmental gradients to better understand long-term community and ecosystem responses to environmental change. The warming and (species) removal in mountains (WaRM) network employs experimental warming and plant species removals at high- and low-elevation sites in a factorial design to examine the combined and relative effects of climatic warming and the loss of dominant species on community structure and ecosystem function, both above- and belowground. The experimental design of the network allows for increasingly common statistical approaches to further elucidate the direct and indirect effects of warming. We argue that combining ecological observations and experiments along gradients is a powerful approach to make stronger predictions of how ecosystems will function in a warming world as species are lost, or gained, in local communities.The warming and (species) removal in mountains (WaRM) network employs experimental warming and plant species removals at high- and low-elevation sites in a factorial design to examine the combined and relative effects of climatic warming and the loss of dominant species on community structure and ... Article in Journal/Newspaper Arctic University of Michigan: Deep Blue