Forecasting lake-/sea-effect snowstorms, advancement, and challenges

Lake-/sea-effect snow forms typically from late fall to winter when a cold air mass moves over the warmer, large water surface. The resulting intense snowfall has many societal impacts on communities living in downwind areas; hence, accurate forecasts of lake-/sea-effect snow are essential for safet...

Full description

Bibliographic Details
Main Authors: Fujisaki-Manome, Ayumi, Wright, David M., Mann, Greg E., Anderson, Eric J., Chu, Philip, Jablonowski, Christiane, Benjamin, Stanley G.
Format: Article in Journal/Newspaper
Language:unknown
Published: John Wiley & Sons, Inc. 2022
Subjects:
Online Access:https://hdl.handle.net/2027.42/173102
https://doi.org/10.1002/wat2.1594
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/173102
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic lake-effect snow
sea-effect snow
weather forecast
numerical model
extreme weather
Environment and Sustainability
Science
spellingShingle lake-effect snow
sea-effect snow
weather forecast
numerical model
extreme weather
Environment and Sustainability
Science
Fujisaki-Manome, Ayumi
Wright, David M.
Mann, Greg E.
Anderson, Eric J.
Chu, Philip
Jablonowski, Christiane
Benjamin, Stanley G.
Forecasting lake-/sea-effect snowstorms, advancement, and challenges
topic_facet lake-effect snow
sea-effect snow
weather forecast
numerical model
extreme weather
Environment and Sustainability
Science
description Lake-/sea-effect snow forms typically from late fall to winter when a cold air mass moves over the warmer, large water surface. The resulting intense snowfall has many societal impacts on communities living in downwind areas; hence, accurate forecasts of lake-/sea-effect snow are essential for safety and preparedness. Forecasting lake-/sea-effect snow is extremely challenging, but over the past decades the advancement of numerical forecast models and the expansion of observational networks have incrementally improved the forecasting capability. The recent advancement includes numerical forecast models with high spatiotemporal resolutions that allow simulating vigorous snowstorms at the kilometer-scale and the frequent inclusion of radar observations in the model. This combination of more accurate weather prediction models as well as ground-based and remotely sensed observations has aided operational forecasters to make better lake-/sea-effect snow forecasts. A remaining challenge is that many observations of precipitation, surface meteorology, evaporation, and heat supply from the water surface are still limited to being land-based and the information over the water, particularly offshore, remains a gap. This primer overviews the basic mechanisms for lake-/sea-effect snow formation, evolution of forecast techniques, and challenges to be addressed in the future.This article is categorized under:Science of Water > Water ExtremesScience of Water > Water and Environmental ChangeScience of Water > MethodsSatellite image from the Moderate-Resolution Imaging Spectroradiometer over the North American Great Lakes region on January 27, 2019. Widespread, wind-parallel snow bands formed over Lake Superior and Lake Michigan. Shoreline bands were found over Lake Huron and Lake Erie. Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/173102/1/wat21594.pdf http://deepblue.lib.umich.edu/bitstream/2027.42/173102/2/wat21594_am.pdf
format Article in Journal/Newspaper
author Fujisaki-Manome, Ayumi
Wright, David M.
Mann, Greg E.
Anderson, Eric J.
Chu, Philip
Jablonowski, Christiane
Benjamin, Stanley G.
author_facet Fujisaki-Manome, Ayumi
Wright, David M.
Mann, Greg E.
Anderson, Eric J.
Chu, Philip
Jablonowski, Christiane
Benjamin, Stanley G.
author_sort Fujisaki-Manome, Ayumi
title Forecasting lake-/sea-effect snowstorms, advancement, and challenges
title_short Forecasting lake-/sea-effect snowstorms, advancement, and challenges
title_full Forecasting lake-/sea-effect snowstorms, advancement, and challenges
title_fullStr Forecasting lake-/sea-effect snowstorms, advancement, and challenges
title_full_unstemmed Forecasting lake-/sea-effect snowstorms, advancement, and challenges
title_sort forecasting lake-/sea-effect snowstorms, advancement, and challenges
publisher John Wiley & Sons, Inc.
publishDate 2022
url https://hdl.handle.net/2027.42/173102
https://doi.org/10.1002/wat2.1594
genre Arctic
genre_facet Arctic
op_relation Fujisaki-Manome, Ayumi
Wright, David M.; Mann, Greg E.; Anderson, Eric J.; Chu, Philip; Jablonowski, Christiane; Benjamin, Stanley G. (2022). "Forecasting lake- /sea- effect snowstorms, advancement, and challenges." Wiley Interdisciplinary Reviews: Water 9(4): n/a-n/a.
2049-1948
https://hdl.handle.net/2027.42/173102
doi:10.1002/wat2.1594
Wiley Interdisciplinary Reviews: Water
Niziol, T. A., Snyder, W. R., & Waldstreicher, J. S. ( 1995 ). Winter weather forecasting throughout the Eastern United States. Part IV: Lake effect snow. Weather and Forecasting, 10 ( 1 ), 61 – 77. https://doi.org/10.1175/1520-0434(1995)010<0061:WWFTTE>2.0.CO;2
Nuclear Energy Institute. ( 2018, October 10). History of U.S. nuclear plants’ responses to unusual natural events. Fact Sheet, Emergency Preparedness. https://www.nei.org/resources/fact-sheets/history-us-nuclear-plants-response-events
Olsson, T., Luomaranta, A., Jylhä, K., Jeworrek, J., Perttula, T., Dieterich, C., Wu, L., Rutgersson, A., & Mäkelä, A. ( 2020 ). Statistics of sea-effect snowfall along the Finnish coastline based on regional climate model data. Advances in Science and Research, 17, 87 – 104. https://doi.org/10.5194/asr-17-87-2020
Olsson, T., Post, P., Rannat, K., Keernik, H., Perttula, T., Luomaranta, A., Jylha, K., Kivi, R., & Voormansik, T. ( 2018 ). Sea-effect snowfall case in the Baltic Sea region analysed by reanalysis, remote sensing data and convection-permitting mesoscale modelling. Geophysia, 51 ( 1 ), 65 – 91. https://www.researchgate.net/publication/329681677
Peace, R. L., & Sykes, R. B. ( 1966 ). Mesoscale study of a Lake effect snow storm. Monthly Weather Review, 94 ( 8 ), 495 – 507. https://doi.org/10.1175/1520-0493(1966)094<0495:MSOALE>2.3.CO;2
Rodriguez, Y., Kristovich, D. A. R., & Hjelmfelft, M. R. ( 2007 ). Lake-to-lake cloud bands: Frequencies and locations. Monthly Weather Review, 135 ( 12 ), 4202 – 4213. https://doi.org/10.1175/2007MWR1960.1
Rothrock, H. J. ( 1969 ). An aid in forecasting significant lake snows. Technical Memorandum. ESSA technical memorandum WBTM CR; 30 Kansas City, Mo.U.S. Dept. of Commerce, Environmental Science Services Administration, Weather Bureau, Central Region, 1969, 1–12.
Rutgersson, A., Kjellström, E., Haapala, J., Stendel, M., Danilovich, I., Drews, M., Jylhä, K., Kujala, P., Guo Larsén, X., Halsnæs, K., Lehtonen, I., Luomaranta, A., Nilsson, E., Olsson, T., Särkkä, J., Tuomi, L., & Wasmund, N. ( 2022 ). Natural hazards and extreme events in the Baltic Sea region. In Earth System Dynamics, (Vol. 13, pp. 251 – 301 ). Copernicus GmbH. https://doi.org/10.5194/esd-13-251-2022
Sasai, T., Kawase, H., Kanno, Y., Yamaguchi, J., Sugimoto, S., Yamazaki, T., Sasaki, H., Fujita, M., & Iwasaki, T. ( 2019 ). Future projection of extreme heavy snowfall events with a 5-km large ensemble regional climate simulation. Journal of Geophysical Research: Atmospheres, 124 ( 24 ), 13975 – 13990. https://doi.org/10.1029/2019JD030781
Sharma, S., Blagrave, K., Magnuson, J. J., O’Reilly, C. M., Oliver, S., Batt, R. D., Magee, M. R., Straile, D., Weyhenmeyer, G. A., Winslow, L., & Woolway, R. I. ( 2019 ). Widespread loss of lake ice around the Northern Hemisphere in a warming world. Nature Climate Change, 9 ( 3 ), 227 – 231. https://doi.org/10.1038/s41558-018-0393-5
Sousounis, P. J., & Mann, G. E. ( 2000 ). Lake-aggregate mesoscale disturbances. Part V: Impacts on lake-effect precipitation. Monthly Weather Review, 128, 728 – 745. https://doi.org/10.1175/1520-0493(2000)128<0728:LAMDPV>2.0.CO;2
Spence, C., Blanken, P. D., Hedstrom, N., Fortin, V., & Wilson, H. ( 2011 ). Evaporation from Lake Superior: 2. Spatial distribution and variability. Journal of Great Lakes Research, 37 ( 4 ), 717 – 724. https://doi.org/10.1016/j.jglr.2011.08.013
Steenburgh, W. J., Halvorson, S. F., & Onton, D. J. ( 2000 ). Climatology of lake-effect snowstorms of the Great Salt Lake. Monthly Weather Review, 128, 709 – 727. https://doi.org/10.1175/1520-0493(2000)128<0709:COLESO>2.0.CO;2
Steenburgh, W. J., & Nakai, S. ( 2020 ). Perspectives on sea- And lake-effect precipitation from Japan’s “Gosetsu chitai.” Perspectives on Sea- and Lake-Effect Precipitation from Japan’s ‘Gosetsu Chitai ’. Bulletin of the American Meteorological Society, 101 ( 1 ), E58 – E72. https://doi.org/10.1175/BAMS-D-18-0335.1
Steiger, S. M., Schrom, R., Stamm, A., Ruth, D., Jaszka, K., Kress, T., Rathbun, B., Frame, J., Wurman, J., & Kosiba, K. ( 2013 ). Circulations, bounded weak echo regions, and horizontal vortices observed within long-lake-axis-parallel-Lake-effect storms by the Doppler on wheels. Monthly Weather Review, 141, 2821 – 2840. http://dx.doi.org/10.1175/MWR-D-12-00226.s1
Valdez Banda, O. A., Goerlandt, F., Montewka, J., & Kujala, P. ( 2014 ). Winter navigation at the Baltic Sea: An analysis of accidents occurred during winters 2002–2003 & 2009–2013. T. Nowakowski, M. Mlynczak, A. Jodejko-Pietruczuk & S. Werbinska-Wojciechowska, (Eds). Safety and reliability: Methodology and applications, (pp. 119 – 128 ). Taylor & Francis. https://doi.org/10.1201/b17399-14
Veals, P. G., & James Steenburgh, W. ( 2015 ). Climatological characteristics and orographic enhancement of lake-effect precipitation east of Lake Ontario and over the Tug Hill Plateau. Monthly Weather Review, 143 ( 9 ), 3591 – 3609. https://doi.org/10.1175/MWR-D-15-0009.1
Veals, P. G., Steenburgh, W. J., & Campbell, L. S. ( 2018 ). Factors affecting the inland and orographic enhancement of lake-effect precipitation over the Tug Hill Plateau. Monthly Weather Review, 146 ( 6 ), 1745 – 1762. https://doi.org/10.1175/MWR-D-17-0385.1
Wiggin, B. L. ( 1950 ). Great snows of the Great Lakes. Weatherwise, 3 ( 6 ), 123 – 126. https://doi.org/10.1080/00431672.1950.9927065
Wright, D. M., Posselt, D. J., & Steiner, A. L. ( 2013 ). Sensitivity of lake-effect snowfall to lake ice cover and temperature in the Great Lakes region. Monthly Weather Review, 141 ( 2 ), 670 – 689. https://doi.org/10.1175/MWR-D-12-00038.1
Xiao, C., Lofgren, B. M., Wang, J., & Chu, P. Y. ( 2016 ). Improving the lake scheme within a coupled WRF-lake model in the Laurentian Great Lakes. Journal of Advances in Modeling Earth Systems, 8, 1969 – 1985. https://doi.org/10.1002/2016MS000717
Yamada, Y. ( 2005 ). Relationship between orientation of snow bands and mean wind direction/vertical wind shear in mixed layer. Study of precipitation mechanisms in snow clouds over the sea of Japan and feasibility of their modification by seeding. Technical Reports of The Meteorological Research Institute, 48 (Section 5, 59 – 65, in Japanese. https://www.mri-jma.go.jp/Publish/Technical/DATA/VOL_48/48.pdf
Yamada, Y., Murakami, M., Mizuno, H., Maki, M., Nakai, S., & Iwanami, K. ( 2010 ). Kinematic and thermodynamical structures of longitudinal-mode snow bands over the Sea of Japan during cold-air outbreaks part I: Snow bands in large vertical shear environment in the band-transverse direction. Journal of the Meteorological Society of Japan, 88 ( 4 ), 673 – 718. https://doi.org/10.2151/jmsj.2010-404
Yagi, S. ( 1985 ). Large scale snow clouds with roll axes roughly perpendicular to the direction of winter monsoon burst: Observational studies of convective cloud roll axes and some theoretical consideration. Tenki, 32, 175 – 187 in Japanese.
Yavuz, V., Deniz, A., & Özdemir, E. T. ( 2021 ). Analysis of a vortex causing sea-effect snowfall in the western part of the Black Sea: A case study of events that occurred on 30–31 January 2012. Natural Hazards, 108 ( 1 ), 819 – 846. https://doi.org/10.1007/s11069-021-04707-8
Yavuz, V., Deniz, A., Özdemir, E. T., Kolay, O., & Karan, H. ( 2021 ). Classification and analysis of sea-effect snowbands for Danube Sea area in Black Sea. International Journal of Climatology, 41 ( 5 ), 3139 – 3152. https://doi.org/10.1002/joc.7010
Yoshizaki, M., Kato, T., Eito, H., Hayashi, S., & Tao, W. ( 2004 ). An overview of the field experiment “Winter mesoscale convective systems (MCSs) over the Japan Sea in 2001,” and comparisons of the cold-air outbreak case (14 January) between analysis and a non-hydrostatic cloud-resolving model. Journal of the Meteorological Society of Japan, 82 ( 5 ), 1365 – 1385. https://doi.org/10.2151/jmsj.2004.1365
Asai, T. ( 1972 ). Thermal instability of a shear flow turning the direction with height. Journal of the Meteorological Society of Japan. Series II, 50 ( 6 ), 525 – 532. https://doi.org/10.2151/jmsj1965.50.6_525
Monmonier, M. ( 2012 ). Lake effect: Tales of large lakes, Arctic winds, and recurrent snows ( 1st ed., 260 pp). Syracuse University Press.
Scott, R. W., & Huff, F. A. ( 1996 ). Impacts of the Great Lakes on regional climate conditions. Journal of Great Lakes Research, 22 ( 4 ), 845 – 863. https://doi.org/10.1016/S0380-1330(96)71006-7
The COMET program at University Corporation for Atmospheric Research ( 2005 ). Topics of lake/ocean effect snow bands. MetEd Online Course. https://www.meted.ucar.edu/norlat/snow/lake_effect/index.htm
Stewart, R. E., Bachand, D., Dunkley, R. R., Giles, A. C., Lawson, B., Legal, L., Miller, S. T., Parker, M. N., Paruk, B. J., & Yau, M. K. ( 1995 ). Winter storms over Canada. Atmosphere—Ocean, 33 ( 2 ), 223 – 247. https://doi.org/10.1080/07055900.1995.9649533
Alcott, T. I., Steenburgh, W. J., & Laird, N. F. ( 2012 ). Great Salt Lake-effect precipitation: Observed frequency, characteristics, and associated environmental factors. Weather and Forecasting, 27 ( 4 ), 954 – 971. https://doi.org/10.1175/WAF-D-12-00016.1
American Highway Users Alliance & IHS Global Insight. ( 2010 ). The economic costs of distruption from a snowstorm. https://www.highways.org/wp-content/uploads/2014/02/economic-costs-of-snowstorms.pdf
Anderson, E. J., Fujisaki-Manome, A., Kessler, J., Lang, G. A., Chu, P. Y., Kelley, J. G. W., Chen, Y., & Wang, J. ( 2018 ). Ice forecasting in the next-generation Great Lakes Operational Forecast System (GLOFS). Journal of Marine Science and Engineering, 6 ( 123 ) 17 pp. 1 – 17. https://doi.org/10.3390/jmse6040123
Andersson, T., & Nilsson, S. ( 1990 ). Topographically induced convective snowbands over the Baltic Sea and their precipitation distribution. Monthly Weather Review, 5, 299 – 312. https://doi.org/10.1175/1520-0434(1990)005<0299:TICSOT>2.0.CO;2
Ayon, B. D. ( 2017 ). "Snow and Non-Snow Events Based Winter Traffic Crash Pattern Analysis and Developing Lake Effect SnowInduced Crash Count Prediction Model" Master’s Theses. 1133. https://scholarworks.wmich.edu/masters_theses/1133
Baijnath-Rodino, J. A., Duguay, C. R., & Ledrew, E. ( 2018 ). Climatological trends of snowfall over the Laurentian Great Lakes Basin. International Journal of Climatology, August, 2017, 3942 – 3962. https://doi.org/10.1002/joc.5546
Bailey, H., Hubbard, A., Klein, E. S., Mustonen, K. R., Akers, P. D., Marttila, H., & Welker, J. M. ( 2021 ). Arctic sea-ice loss fuels extreme European snowfall. Nature Geoscience, 14 ( 5 ), 283 – 288. https://doi.org/10.1038/s41561-021-00719-y
Ballentine, R. J., Stamm, A. J., Chermack, E. E., Byrd, G. P., & Schleede, D. ( 1998 ). Mesoscale model simulation of the 4–5 January 1995 Lake-effect snowstorm. Weather and Forecasting, 13 ( 4 ), 893 – 920. https://doi.org/10.1175/1520-0434(1998)013<0893:MMSOTJ>2.0.CO;2
Baltaci, H., da Silva, M. C. L., & Gomes, H. B. ( 2021 ). Climatological conditions of the Black Sea-effect snowfall events in Istanbul, Turkey. International Journal of Climatology, 41 ( 3 ), 2017 – 2028. https://doi.org/10.1002/joc.6944
Bao, B., & Ren, G. ( 2018 ). Sea-effect precipitation over the Shandong Peninsula, northern China. Journal of Applied Meteorology and Climatology, 57 ( 6 ), 1291 – 1308. https://doi.org/10.1175/JAMC-D-17-0200.1
Benjamin, S. G., Weygandt, S. S., Brown, J. M., Hu, M., Alexander, C., Smirnova, T. G., Olson, J. B., James, E., Dowell, D. C., Grell, G. A., Lin, H., Peckham, S. E., Smith, T. L., Moninger, W. R., Kenyon, J., & Manikin, G. S. ( 2016 ). A North American hourly assimilation and model forecast cycle: The rapid refresh. Monthly Weather Review, 144 ( 4 ), 1669 – 1694. https://doi.org/10.1175/MWR-D-15-0242.1
Blanken, P. D., Spence, C., Hedstrom, N., & Lenters, J. D. ( 2011 ). Evaporation from Lake Superior: 1. Physical controls and processes. Journal of Great Lakes Research, 37 ( 4 ), 707 – 716. https://doi.org/10.1016/j.jglr.2011.08.009
op_rights IndexNoFollow
op_doi https://doi.org/10.1002/wat2.159410.1080/00431672.1950.992706510.2151/jmsj1965.50.6_52510.1175/1520-0493(1983)111<0253:TMSSOD>2.0.CO;210.1175/1520-0434(1993)008<0181:TLEOTG>2.0.CO;210.1175/1520-0493(1990)118<0138:NSOTIO>2.0.CO;210.1175/1520-0469(1971)028<
_version_ 1775347581862281216
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/173102 2023-08-27T04:06:50+02:00 Forecasting lake-/sea-effect snowstorms, advancement, and challenges Fujisaki-Manome, Ayumi Wright, David M. Mann, Greg E. Anderson, Eric J. Chu, Philip Jablonowski, Christiane Benjamin, Stanley G. 2022-07 application/pdf https://hdl.handle.net/2027.42/173102 https://doi.org/10.1002/wat2.1594 unknown John Wiley & Sons, Inc. Fujisaki-Manome, Ayumi Wright, David M.; Mann, Greg E.; Anderson, Eric J.; Chu, Philip; Jablonowski, Christiane; Benjamin, Stanley G. (2022). "Forecasting lake- /sea- effect snowstorms, advancement, and challenges." Wiley Interdisciplinary Reviews: Water 9(4): n/a-n/a. 2049-1948 https://hdl.handle.net/2027.42/173102 doi:10.1002/wat2.1594 Wiley Interdisciplinary Reviews: Water Niziol, T. A., Snyder, W. R., & Waldstreicher, J. S. ( 1995 ). Winter weather forecasting throughout the Eastern United States. Part IV: Lake effect snow. Weather and Forecasting, 10 ( 1 ), 61 – 77. https://doi.org/10.1175/1520-0434(1995)010<0061:WWFTTE>2.0.CO;2 Nuclear Energy Institute. ( 2018, October 10). History of U.S. nuclear plants’ responses to unusual natural events. Fact Sheet, Emergency Preparedness. https://www.nei.org/resources/fact-sheets/history-us-nuclear-plants-response-events Olsson, T., Luomaranta, A., Jylhä, K., Jeworrek, J., Perttula, T., Dieterich, C., Wu, L., Rutgersson, A., & Mäkelä, A. ( 2020 ). Statistics of sea-effect snowfall along the Finnish coastline based on regional climate model data. Advances in Science and Research, 17, 87 – 104. https://doi.org/10.5194/asr-17-87-2020 Olsson, T., Post, P., Rannat, K., Keernik, H., Perttula, T., Luomaranta, A., Jylha, K., Kivi, R., & Voormansik, T. ( 2018 ). Sea-effect snowfall case in the Baltic Sea region analysed by reanalysis, remote sensing data and convection-permitting mesoscale modelling. Geophysia, 51 ( 1 ), 65 – 91. https://www.researchgate.net/publication/329681677 Peace, R. L., & Sykes, R. B. ( 1966 ). Mesoscale study of a Lake effect snow storm. Monthly Weather Review, 94 ( 8 ), 495 – 507. https://doi.org/10.1175/1520-0493(1966)094<0495:MSOALE>2.3.CO;2 Rodriguez, Y., Kristovich, D. A. R., & Hjelmfelft, M. R. ( 2007 ). Lake-to-lake cloud bands: Frequencies and locations. Monthly Weather Review, 135 ( 12 ), 4202 – 4213. https://doi.org/10.1175/2007MWR1960.1 Rothrock, H. J. ( 1969 ). An aid in forecasting significant lake snows. Technical Memorandum. ESSA technical memorandum WBTM CR; 30 Kansas City, Mo.U.S. Dept. of Commerce, Environmental Science Services Administration, Weather Bureau, Central Region, 1969, 1–12. Rutgersson, A., Kjellström, E., Haapala, J., Stendel, M., Danilovich, I., Drews, M., Jylhä, K., Kujala, P., Guo Larsén, X., Halsnæs, K., Lehtonen, I., Luomaranta, A., Nilsson, E., Olsson, T., Särkkä, J., Tuomi, L., & Wasmund, N. ( 2022 ). Natural hazards and extreme events in the Baltic Sea region. In Earth System Dynamics, (Vol. 13, pp. 251 – 301 ). Copernicus GmbH. https://doi.org/10.5194/esd-13-251-2022 Sasai, T., Kawase, H., Kanno, Y., Yamaguchi, J., Sugimoto, S., Yamazaki, T., Sasaki, H., Fujita, M., & Iwasaki, T. ( 2019 ). Future projection of extreme heavy snowfall events with a 5-km large ensemble regional climate simulation. Journal of Geophysical Research: Atmospheres, 124 ( 24 ), 13975 – 13990. https://doi.org/10.1029/2019JD030781 Sharma, S., Blagrave, K., Magnuson, J. J., O’Reilly, C. M., Oliver, S., Batt, R. D., Magee, M. R., Straile, D., Weyhenmeyer, G. A., Winslow, L., & Woolway, R. I. ( 2019 ). Widespread loss of lake ice around the Northern Hemisphere in a warming world. Nature Climate Change, 9 ( 3 ), 227 – 231. https://doi.org/10.1038/s41558-018-0393-5 Sousounis, P. J., & Mann, G. E. ( 2000 ). Lake-aggregate mesoscale disturbances. Part V: Impacts on lake-effect precipitation. Monthly Weather Review, 128, 728 – 745. https://doi.org/10.1175/1520-0493(2000)128<0728:LAMDPV>2.0.CO;2 Spence, C., Blanken, P. D., Hedstrom, N., Fortin, V., & Wilson, H. ( 2011 ). Evaporation from Lake Superior: 2. Spatial distribution and variability. Journal of Great Lakes Research, 37 ( 4 ), 717 – 724. https://doi.org/10.1016/j.jglr.2011.08.013 Steenburgh, W. J., Halvorson, S. F., & Onton, D. J. ( 2000 ). Climatology of lake-effect snowstorms of the Great Salt Lake. Monthly Weather Review, 128, 709 – 727. https://doi.org/10.1175/1520-0493(2000)128<0709:COLESO>2.0.CO;2 Steenburgh, W. J., & Nakai, S. ( 2020 ). Perspectives on sea- And lake-effect precipitation from Japan’s “Gosetsu chitai.” Perspectives on Sea- and Lake-Effect Precipitation from Japan’s ‘Gosetsu Chitai ’. Bulletin of the American Meteorological Society, 101 ( 1 ), E58 – E72. https://doi.org/10.1175/BAMS-D-18-0335.1 Steiger, S. M., Schrom, R., Stamm, A., Ruth, D., Jaszka, K., Kress, T., Rathbun, B., Frame, J., Wurman, J., & Kosiba, K. ( 2013 ). Circulations, bounded weak echo regions, and horizontal vortices observed within long-lake-axis-parallel-Lake-effect storms by the Doppler on wheels. Monthly Weather Review, 141, 2821 – 2840. http://dx.doi.org/10.1175/MWR-D-12-00226.s1 Valdez Banda, O. A., Goerlandt, F., Montewka, J., & Kujala, P. ( 2014 ). Winter navigation at the Baltic Sea: An analysis of accidents occurred during winters 2002–2003 & 2009–2013. T. Nowakowski, M. Mlynczak, A. Jodejko-Pietruczuk & S. Werbinska-Wojciechowska, (Eds). Safety and reliability: Methodology and applications, (pp. 119 – 128 ). Taylor & Francis. https://doi.org/10.1201/b17399-14 Veals, P. G., & James Steenburgh, W. ( 2015 ). Climatological characteristics and orographic enhancement of lake-effect precipitation east of Lake Ontario and over the Tug Hill Plateau. Monthly Weather Review, 143 ( 9 ), 3591 – 3609. https://doi.org/10.1175/MWR-D-15-0009.1 Veals, P. G., Steenburgh, W. J., & Campbell, L. S. ( 2018 ). Factors affecting the inland and orographic enhancement of lake-effect precipitation over the Tug Hill Plateau. Monthly Weather Review, 146 ( 6 ), 1745 – 1762. https://doi.org/10.1175/MWR-D-17-0385.1 Wiggin, B. L. ( 1950 ). Great snows of the Great Lakes. Weatherwise, 3 ( 6 ), 123 – 126. https://doi.org/10.1080/00431672.1950.9927065 Wright, D. M., Posselt, D. J., & Steiner, A. L. ( 2013 ). Sensitivity of lake-effect snowfall to lake ice cover and temperature in the Great Lakes region. Monthly Weather Review, 141 ( 2 ), 670 – 689. https://doi.org/10.1175/MWR-D-12-00038.1 Xiao, C., Lofgren, B. M., Wang, J., & Chu, P. Y. ( 2016 ). Improving the lake scheme within a coupled WRF-lake model in the Laurentian Great Lakes. Journal of Advances in Modeling Earth Systems, 8, 1969 – 1985. https://doi.org/10.1002/2016MS000717 Yamada, Y. ( 2005 ). Relationship between orientation of snow bands and mean wind direction/vertical wind shear in mixed layer. Study of precipitation mechanisms in snow clouds over the sea of Japan and feasibility of their modification by seeding. Technical Reports of The Meteorological Research Institute, 48 (Section 5, 59 – 65, in Japanese. https://www.mri-jma.go.jp/Publish/Technical/DATA/VOL_48/48.pdf Yamada, Y., Murakami, M., Mizuno, H., Maki, M., Nakai, S., & Iwanami, K. ( 2010 ). Kinematic and thermodynamical structures of longitudinal-mode snow bands over the Sea of Japan during cold-air outbreaks part I: Snow bands in large vertical shear environment in the band-transverse direction. Journal of the Meteorological Society of Japan, 88 ( 4 ), 673 – 718. https://doi.org/10.2151/jmsj.2010-404 Yagi, S. ( 1985 ). Large scale snow clouds with roll axes roughly perpendicular to the direction of winter monsoon burst: Observational studies of convective cloud roll axes and some theoretical consideration. Tenki, 32, 175 – 187 in Japanese. Yavuz, V., Deniz, A., & Özdemir, E. T. ( 2021 ). Analysis of a vortex causing sea-effect snowfall in the western part of the Black Sea: A case study of events that occurred on 30–31 January 2012. Natural Hazards, 108 ( 1 ), 819 – 846. https://doi.org/10.1007/s11069-021-04707-8 Yavuz, V., Deniz, A., Özdemir, E. T., Kolay, O., & Karan, H. ( 2021 ). Classification and analysis of sea-effect snowbands for Danube Sea area in Black Sea. International Journal of Climatology, 41 ( 5 ), 3139 – 3152. https://doi.org/10.1002/joc.7010 Yoshizaki, M., Kato, T., Eito, H., Hayashi, S., & Tao, W. ( 2004 ). An overview of the field experiment “Winter mesoscale convective systems (MCSs) over the Japan Sea in 2001,” and comparisons of the cold-air outbreak case (14 January) between analysis and a non-hydrostatic cloud-resolving model. Journal of the Meteorological Society of Japan, 82 ( 5 ), 1365 – 1385. https://doi.org/10.2151/jmsj.2004.1365 Asai, T. ( 1972 ). Thermal instability of a shear flow turning the direction with height. Journal of the Meteorological Society of Japan. Series II, 50 ( 6 ), 525 – 532. https://doi.org/10.2151/jmsj1965.50.6_525 Monmonier, M. ( 2012 ). Lake effect: Tales of large lakes, Arctic winds, and recurrent snows ( 1st ed., 260 pp). Syracuse University Press. Scott, R. W., & Huff, F. A. ( 1996 ). Impacts of the Great Lakes on regional climate conditions. Journal of Great Lakes Research, 22 ( 4 ), 845 – 863. https://doi.org/10.1016/S0380-1330(96)71006-7 The COMET program at University Corporation for Atmospheric Research ( 2005 ). Topics of lake/ocean effect snow bands. MetEd Online Course. https://www.meted.ucar.edu/norlat/snow/lake_effect/index.htm Stewart, R. E., Bachand, D., Dunkley, R. R., Giles, A. C., Lawson, B., Legal, L., Miller, S. T., Parker, M. N., Paruk, B. J., & Yau, M. K. ( 1995 ). Winter storms over Canada. Atmosphere—Ocean, 33 ( 2 ), 223 – 247. https://doi.org/10.1080/07055900.1995.9649533 Alcott, T. I., Steenburgh, W. J., & Laird, N. F. ( 2012 ). Great Salt Lake-effect precipitation: Observed frequency, characteristics, and associated environmental factors. Weather and Forecasting, 27 ( 4 ), 954 – 971. https://doi.org/10.1175/WAF-D-12-00016.1 American Highway Users Alliance & IHS Global Insight. ( 2010 ). The economic costs of distruption from a snowstorm. https://www.highways.org/wp-content/uploads/2014/02/economic-costs-of-snowstorms.pdf Anderson, E. J., Fujisaki-Manome, A., Kessler, J., Lang, G. A., Chu, P. Y., Kelley, J. G. W., Chen, Y., & Wang, J. ( 2018 ). Ice forecasting in the next-generation Great Lakes Operational Forecast System (GLOFS). Journal of Marine Science and Engineering, 6 ( 123 ) 17 pp. 1 – 17. https://doi.org/10.3390/jmse6040123 Andersson, T., & Nilsson, S. ( 1990 ). Topographically induced convective snowbands over the Baltic Sea and their precipitation distribution. Monthly Weather Review, 5, 299 – 312. https://doi.org/10.1175/1520-0434(1990)005<0299:TICSOT>2.0.CO;2 Ayon, B. D. ( 2017 ). "Snow and Non-Snow Events Based Winter Traffic Crash Pattern Analysis and Developing Lake Effect SnowInduced Crash Count Prediction Model" Master’s Theses. 1133. https://scholarworks.wmich.edu/masters_theses/1133 Baijnath-Rodino, J. A., Duguay, C. R., & Ledrew, E. ( 2018 ). Climatological trends of snowfall over the Laurentian Great Lakes Basin. International Journal of Climatology, August, 2017, 3942 – 3962. https://doi.org/10.1002/joc.5546 Bailey, H., Hubbard, A., Klein, E. S., Mustonen, K. R., Akers, P. D., Marttila, H., & Welker, J. M. ( 2021 ). Arctic sea-ice loss fuels extreme European snowfall. Nature Geoscience, 14 ( 5 ), 283 – 288. https://doi.org/10.1038/s41561-021-00719-y Ballentine, R. J., Stamm, A. J., Chermack, E. E., Byrd, G. P., & Schleede, D. ( 1998 ). Mesoscale model simulation of the 4–5 January 1995 Lake-effect snowstorm. Weather and Forecasting, 13 ( 4 ), 893 – 920. https://doi.org/10.1175/1520-0434(1998)013<0893:MMSOTJ>2.0.CO;2 Baltaci, H., da Silva, M. C. L., & Gomes, H. B. ( 2021 ). Climatological conditions of the Black Sea-effect snowfall events in Istanbul, Turkey. International Journal of Climatology, 41 ( 3 ), 2017 – 2028. https://doi.org/10.1002/joc.6944 Bao, B., & Ren, G. ( 2018 ). Sea-effect precipitation over the Shandong Peninsula, northern China. Journal of Applied Meteorology and Climatology, 57 ( 6 ), 1291 – 1308. https://doi.org/10.1175/JAMC-D-17-0200.1 Benjamin, S. G., Weygandt, S. S., Brown, J. M., Hu, M., Alexander, C., Smirnova, T. G., Olson, J. B., James, E., Dowell, D. C., Grell, G. A., Lin, H., Peckham, S. E., Smith, T. L., Moninger, W. R., Kenyon, J., & Manikin, G. S. ( 2016 ). A North American hourly assimilation and model forecast cycle: The rapid refresh. Monthly Weather Review, 144 ( 4 ), 1669 – 1694. https://doi.org/10.1175/MWR-D-15-0242.1 Blanken, P. D., Spence, C., Hedstrom, N., & Lenters, J. D. ( 2011 ). Evaporation from Lake Superior: 1. Physical controls and processes. Journal of Great Lakes Research, 37 ( 4 ), 707 – 716. https://doi.org/10.1016/j.jglr.2011.08.009 IndexNoFollow lake-effect snow sea-effect snow weather forecast numerical model extreme weather Environment and Sustainability Science Article 2022 ftumdeepblue https://doi.org/10.1002/wat2.159410.1080/00431672.1950.992706510.2151/jmsj1965.50.6_52510.1175/1520-0493(1983)111<0253:TMSSOD>2.0.CO;210.1175/1520-0434(1993)008<0181:TLEOTG>2.0.CO;210.1175/1520-0493(1990)118<0138:NSOTIO>2.0.CO;210.1175/1520-0469(1971)028< 2023-08-06T16:36:31Z Lake-/sea-effect snow forms typically from late fall to winter when a cold air mass moves over the warmer, large water surface. The resulting intense snowfall has many societal impacts on communities living in downwind areas; hence, accurate forecasts of lake-/sea-effect snow are essential for safety and preparedness. Forecasting lake-/sea-effect snow is extremely challenging, but over the past decades the advancement of numerical forecast models and the expansion of observational networks have incrementally improved the forecasting capability. The recent advancement includes numerical forecast models with high spatiotemporal resolutions that allow simulating vigorous snowstorms at the kilometer-scale and the frequent inclusion of radar observations in the model. This combination of more accurate weather prediction models as well as ground-based and remotely sensed observations has aided operational forecasters to make better lake-/sea-effect snow forecasts. A remaining challenge is that many observations of precipitation, surface meteorology, evaporation, and heat supply from the water surface are still limited to being land-based and the information over the water, particularly offshore, remains a gap. This primer overviews the basic mechanisms for lake-/sea-effect snow formation, evolution of forecast techniques, and challenges to be addressed in the future.This article is categorized under:Science of Water > Water ExtremesScience of Water > Water and Environmental ChangeScience of Water > MethodsSatellite image from the Moderate-Resolution Imaging Spectroradiometer over the North American Great Lakes region on January 27, 2019. Widespread, wind-parallel snow bands formed over Lake Superior and Lake Michigan. Shoreline bands were found over Lake Huron and Lake Erie. Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/173102/1/wat21594.pdf http://deepblue.lib.umich.edu/bitstream/2027.42/173102/2/wat21594_am.pdf Article in Journal/Newspaper Arctic University of Michigan: Deep Blue