Constraints on Early Paleozoic Deep-Ocean Oxygen Concentrations From the Iron Geochemistry of the Bay of Islands Ophiolite

The deep ocean is generally considered to have changed from anoxic in the Precambrian to oxygenated by the Late Paleozoic (∼420–400 Ma) due to changes in atmospheric oxygen concentrations. When the transition occurred, that is, in the Early Paleozoic or not until the Late Paleozoic, is less well con...

Full description

Bibliographic Details
Main Authors: Stolper, Daniel A., Pu, Xiaofei, Lloyd, Max K., Christensen, Nikolas I., Bucholz, Claire E., Lange, Rebecca A.
Format: Article in Journal/Newspaper
Language:unknown
Published: University of Southampton 2022
Subjects:
Online Access:https://hdl.handle.net/2027.42/172968
https://doi.org/10.1029/2021GC010196
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/172968
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic iron redox
Earth history
hydrothermal
ophiolites
oxygen
Geological Sciences
Science
spellingShingle iron redox
Earth history
hydrothermal
ophiolites
oxygen
Geological Sciences
Science
Stolper, Daniel A.
Pu, Xiaofei
Lloyd, Max K.
Christensen, Nikolas I.
Bucholz, Claire E.
Lange, Rebecca A.
Constraints on Early Paleozoic Deep-Ocean Oxygen Concentrations From the Iron Geochemistry of the Bay of Islands Ophiolite
topic_facet iron redox
Earth history
hydrothermal
ophiolites
oxygen
Geological Sciences
Science
description The deep ocean is generally considered to have changed from anoxic in the Precambrian to oxygenated by the Late Paleozoic (∼420–400 Ma) due to changes in atmospheric oxygen concentrations. When the transition occurred, that is, in the Early Paleozoic or not until the Late Paleozoic, is less well constrained. To address this, we measured Fe3+/ΣFe of volcanic rocks, sheeted dykes, gabbros, and ultramafic rocks from the Early Paleozoic (∼485 Ma) Bay of Islands (BOI) ophiolite as a proxy for hydrothermal alteration in the presence or absence of O2 derived from deep marine fluids. Combining this data with previously published data from the BOI indicates that volcanic rocks are oxidized relative to intrusive crustal rocks (0.35 ± 0.02 vs. 0.19 ± 0.01, 1 standard error), which we interpret to indicate that the volcanic section was altered by marine-derived fluids that contained some dissolved O2. We compare our results directly to the Macquarie Island and Troodos ophiolites, drilled oceanic crust, previously compiled data for ophiolitic volcanic rocks, and newly compiled data for ophiolitic intrusive rocks. These comparisons show that the BOI volcanic (but not intrusive) rocks are oxidized relative to Precambrian equivalents, but are less oxidized relative to Late Paleozoic to modern equivalents. We interpret these results to indicate that the Early Paleozoic ocean contained dissolved O2, but at concentrations ∼2.4× lower than for the Late Paleozoic to today.Key PointsWe report Fe3+/ΣFe in volcanic and intrusive crustal rocks and ultramafic rocks from the Early Paleozoic Bay of Islands (BOI) ophioliteFe3+/ΣFe of the BOI volcanic rocks are elevated compared to Precambrian systems but lower than Late Paleozoic to modern systemsThis difference indicates deep-ocean O2 levels in the Early Paleozoic were elevated compared to the Precambrian but lower than today Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/172968/1/2021GC010196-sup-0001-Supporting_Information_SI-S01.pdf ...
format Article in Journal/Newspaper
author Stolper, Daniel A.
Pu, Xiaofei
Lloyd, Max K.
Christensen, Nikolas I.
Bucholz, Claire E.
Lange, Rebecca A.
author_facet Stolper, Daniel A.
Pu, Xiaofei
Lloyd, Max K.
Christensen, Nikolas I.
Bucholz, Claire E.
Lange, Rebecca A.
author_sort Stolper, Daniel A.
title Constraints on Early Paleozoic Deep-Ocean Oxygen Concentrations From the Iron Geochemistry of the Bay of Islands Ophiolite
title_short Constraints on Early Paleozoic Deep-Ocean Oxygen Concentrations From the Iron Geochemistry of the Bay of Islands Ophiolite
title_full Constraints on Early Paleozoic Deep-Ocean Oxygen Concentrations From the Iron Geochemistry of the Bay of Islands Ophiolite
title_fullStr Constraints on Early Paleozoic Deep-Ocean Oxygen Concentrations From the Iron Geochemistry of the Bay of Islands Ophiolite
title_full_unstemmed Constraints on Early Paleozoic Deep-Ocean Oxygen Concentrations From the Iron Geochemistry of the Bay of Islands Ophiolite
title_sort constraints on early paleozoic deep-ocean oxygen concentrations from the iron geochemistry of the bay of islands ophiolite
publisher University of Southampton
publishDate 2022
url https://hdl.handle.net/2027.42/172968
https://doi.org/10.1029/2021GC010196
genre Macquarie Island
genre_facet Macquarie Island
op_relation Stolper, Daniel A.; Pu, Xiaofei; Lloyd, Max K.; Christensen, Nikolas I.; Bucholz, Claire E.; Lange, Rebecca A. (2022). "Constraints on Early Paleozoic Deep-Ocean Oxygen Concentrations From the Iron Geochemistry of the Bay of Islands Ophiolite." Geochemistry, Geophysics, Geosystems 23(7): n/a-n/a.
1525-2027
https://hdl.handle.net/2027.42/172968
doi:10.1029/2021GC010196
Geochemistry, Geophysics, Geosystems
Rutter, J. ( 2015 ). Characterising low temperature alteration and oxidation of the upper oceanic crust (PhD thesis). University of Southampton.
Robinson, P. T., Gibson, I. L., & Panayiotou, A. (Eds.) ( 1987 ). Cyprus crustal study project: Initial report, holes CY-2 and 2a, Geological Survey of Canada paper. 85-29.
Sahoo, S. K., Planavsky, N. J., Jiang, G., Kendall, B., Owens, J. D., Wang, X., et al. ( 2016 ). Oceanic oxygenation events in the anoxic Ediacaran Ocean. Geobiology, 14 ( 5 ), 457 – 468. https://doi.org/10.1111/gbi.12182
Sahoo, S. K., Planavsky, N. J., Kendall, B., Wang, X., Shi, X., Scott, C., et al. ( 2012 ). Ocean oxygenation in the wake of the Marinoan glaciation. Nature, 489 ( 7417 ), 546 – 549. https://doi.org/10.1038/nature11445
Sarmiento, J. L., & Gruber, N. ( 2006 ). Ocean biogeochemical dynamics. Princeton University Press.
Sarmiento, J. L., Herbert, T. D., & Toggweiler, J. R. ( 1988 ). Causes of anoxia in the world ocean. Global Biogeochemical Cycles, 2 ( 2 ), 115 – 128. https://doi.org/10.1029/GB002i002p00115
Shanks, W. C., III, Bischoff, J. L., & Rosenbauer, R. J. ( 1981 ). Seawater sulfate reduction and sulfur isotope fractionation in basaltic systems: Interaction of seawater with fayalite and magnetite at 200–350 C. Geochimica et Cosmochimica Acta, 45 ( 11 ), 1977 – 1995. https://doi.org/10.1016/0016-7037(81)90054-5
Slotznick, S. P., Eiler, J. M., & Fischer, W. W. ( 2018 ). The effects of metamorphism on iron mineralogy and the iron speciation redox proxy. Geochimica et Cosmochimica Acta, 224, 96 – 115. https://doi.org/10.1016/j.gca.2017.12.003
Slotznick, S. P., Webb, S. M., Kirschvink, J. L., & Fischer, W. W. ( 2019 ). Mid-Proterozoic ferruginous conditions reflect postdepositional processes. Geophysical Research Letters, 46 ( 6 ), 3114 – 3123. https://doi.org/10.1029/2018GL081496
Sperling, E. A., Melchin, M. J., Fraser, T., Stockey, R. G., Farrell, U. C., Bhajan, L., et al. ( 2021 ). A long-term record of early to mid-Paleozoic marine redox change. Science Advances, 7 ( 28 ), eabf4382. https://doi.org/10.1126/sciadv.abf4382
Sperling, E. A., Wolock, C. J., Morgan, A. S., Gill, B. C., Kunzmann, M., Halverson, G. P., et al. ( 2015 ). Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature, 523 ( 7561 ), 451 – 454. https://doi.org/10.1038/nature14589
Staudigel, H., Plank, T., White, B., & Schmincke, H. ( 1996 ). Geochemical fluxes during seafloor alteration of the basaltic upper oceanic crust: DSDP sites 417 and 418. Subduction Top to Bottom, 19 – 38. https://doi.org/10.1029/GM096p0019
Stevens, T. O., & McKinley, J. P. ( 2000 ). Abiotic controls on H 2 production from Basalt− Water reactions and implications for aquifer biogeochemistry. Environmental Science & Technology, 34 ( 5 ), 826 – 831. https://doi.org/10.1021/es990583g
Stolper, D. A., & Bucholz, C. E. ( 2019 ). Neoproterozoic to early Phanerozoic rise in island arc redox state due to deep ocean oxygenation and increased marine sulfate levels. Proceedings of the National Academy of Sciences, 116 ( 18 ), 8746 – 8755. https://doi.org/10.1073/pnas.1821847116
Stolper, D. A., Higgins, J. A., & Derry, L. A. ( 2021 ). The role of the solid Earth in regulating atmospheric O 2 levels. American Journal of Science, 321 ( 10 ), 1381 – 1444. https://doi.org/10.2475/10.2021.01
Stolper, D. A., & Keller, C. B. ( 2018 ). A record of deep-ocean dissolved O 2 from the oxidation state of iron in submarine basalts. Nature, 553 ( 7688 ), 323 – 327. https://doi.org/10.1038/nature25009
Swanson-Hysell, N. L., & Macdonald, F. A. ( 2017 ). Tropical weathering of the Taconic orogeny as a driver for Ordovician cooling. Geology, 45 ( 8 ), 719 – 722. https://doi.org/10.1130/G38985.1
Taylor, B., & Martinez, F. ( 2003 ). Back-arc basin basalt systematics. Earth and Planetary Science Letters, 210 ( 3–4 ), 481 – 497. https://doi.org/10.1016/S0012-821X(03)00167-5
Tostevin, R., & Mills, B. J. ( 2020 ). Reconciling proxy records and models of Earth’s oxygenation during the Neoproterozoic and Palaeozoic. Interface Focus, 10 ( 4 ), 20190137. https://doi.org/10.1098/rsfs.2019.0137
Varne, R., Brown, A. V., & Falloon, T. ( 2000 ). Macquarie island: Its geology, structural history, and the timing and tectonic setting of its N-MORB to E-MORB magmatism. Special Papers-Geological Society of America. 301–320.
Wallace, M. W., Shuster, A., Greig, A., Planavsky, N. J., & Reed, C. P. ( 2017 ). Oxygenation history of the Neoproterozoic to early Phanerozoic and the rise of land plants. Earth and Planetary Science Letters, 466, 12 – 19. https://doi.org/10.1016/j.epsl.2017.02.046
Williams, H. ( 1973 ). Bay of islands map-area, Newfoundland: Canada geology. Survey Paper, 72 ( 34 ), 7.
Williams, H., & Malpas, J. ( 1972 ). Sheeted dikes and brecciated dike rocks within transported igneous complexes Bay of Islands, Western Newfoundland. Canadian Journal of Earth Sciences, 9 ( 9 ), 1216 – 1229. https://doi.org/10.1139/e72-105
Wilson, A. D. ( 1960 ). The micro-determination of ferrous iron in silicate minerals by a volumetric and a colorimetric method. Analyst, 85 ( 1016 ), 823 – 827. https://doi.org/10.1039/AN9608500823
Wood, R., Donoghue, P. C., Lenton, T. M., Liu, A. G., & Poulton, S. W. ( 2020 ). The origin and rise of complex life: Progress requires interdisciplinary integration and hypothesis testing. Interface Focus, 10 ( 4 ), 20200024. https://doi.org/10.1098/rsfs.2020.0024
Yan, W., & Casey, J. F. ( 2020 ). A new concordia age for the ‘forearc’ Bay of Islands Ophiolite Complex, Western Newfoundland utilizing spatially-resolved LA-ICP-MS U-Pb analyses of zircon. Gondwana Research, 86, 1 – 22. https://doi.org/10.1016/j.gr.2020.05.007
Zhang, H. L., Cottrell, E., Solheid, P. A., Kelley, K. A., & Hirschmann, M. M. ( 2018 ). Determination of Fe 3+ /ΣFe of XANES basaltic glass standards by Mössbauer spectroscopy and its application to the oxidation state of iron in MORB. Chemical Geology, 479, 166 – 175. https://doi.org/10.1016/j.chemgeo.2018.01.006
Yeung, L. Y. ( 2017 ). Low oxygen and argon in the Neoproterozoic atmosphere at 815 Ma. Earth and Planetary Science Letters, 480, 66 – 74. https://doi.org/10.1016/j.epsl.2017.09.044
Alcott, L. J., Mills, B. J., & Poulton, S. W. ( 2019 ). Stepwise Earth oxygenation is an inherent property of global biogeochemical cycling. Science, 366 ( 6471 ), 1333 – 1337. https://doi.org/10.1126/science.aax6459
Algeo, T. J., Luo, G. M., Song, H. Y., Lyons, T. W., & Canfield, D. E. ( 2015 ). Reconstruction of secular variation in seawater sulfate concentrations. Biogeosciences, 12 ( 7 ), 2131 – 2151. https://doi.org/10.5194/bg-12-2131-2015
Alt, J. C., Laverne, C., Vanko, D. A., Tartarotti, P., Teagle, D. A., Bach, W., et al. ( 1996 ). Hydrothermal alteration of a section of upper oceanic crust in the eastern equatorial Pacific: A synthesis of results from site 504 (DSDP legs 69, 70, and 83, and ODP legs 111, 137, 140, and 148). Proceedings of the Ocean Drilling Program, Scientific Results, 148, 417 – 434.
Archibald, D. A., & Farrar, E. ( 1976 ). K–Ar ages of amphiboles from the Bay of Islands ophiolite and the Little Port Complex, Western Newfoundland, and their geological implications. Canadian Journal of Earth Sciences, 13 ( 4 ), 520 – 529. https://doi.org/10.1139/e76-055
Bach, W., & Edwards, K. J. ( 2003 ). Iron and sulfide oxidation within the basaltic ocean crust: Implications for chemolithoautotrophic microbial biomass production. Geochimica et Cosmochimica Acta, 67 ( 20 ), 3871 – 3887. https://doi.org/10.1016/S0016-7037(03)00304-1
Blamey, N. J., Brand, U., Parnell, J., Spear, N., Lécuyer, C., Benison, K., et al. ( 2016 ). Paradigm shift in determining Neoproterozoic atmospheric oxygen. Geology, 44 ( 8 ), 651 – 654. https://doi.org/10.1130/G37937.1
Blättler, C. L., Bergmann, K. D., Kah, L. C., Gómez-Pérez, I., & Higgins, J. A. ( 2020 ). Constraints on Meso-to Neoproterozoic seawater from ancient evaporite deposits. Earth and Planetary Science Letters, 532, 115951. https://doi.org/10.1016/j.epsl.2019.115951
Brounce, M., Kelley, K. A., Cottrell, E., & Reagan, M. K. ( 2015 ). Temporal evolution of mantle wedge oxygen fugacity during subduction initiation. Geology, 43 ( 9 ), 775 – 778. https://doi.org/10.1130/G36742.1
Brounce, M. N., Kelley, K., & Cottrell, E. ( 2014 ). Variations in Fe 3+ /ΣFe of Mariana arc basalts and mantle wedge f O 2. Journal of Petrology, 55 ( 12 ), 2513 – 2536. https://doi.org/10.1093/petrology/egu065
Bucholz, C. E., & Spencer, C. J. ( 2019 ). Strongly peraluminous granites across the Archean–Proterozoic transition. Journal of Petrology, 60 ( 7 ), 1299 – 1348. https://doi.org/10.1093/petrology/egz033
Canfield, D. E. ( 1998 ). A new model for Proterozoic ocean chemistry. Nature, 396 ( 6710 ), 450 – 453. https://doi.org/10.1038/24839
Canfield, D. E. ( 2005 ). The early history of atmospheric oxygen: Homage to Robert M. Garrels. Annual Review of Earth and Planetary Sciences, 33, 1 – 36. https://doi.org/10.1146/annurev.earth.33.092203.122711
Casey, J. F., Dewey, J. F., Fox, P. J., Karson, J. A., & Rosencrantz, E. ( 1981 ). Heterogeneous nature of the oceanic crust and upper mantle: A perspective from the Bay of Islands Ophiolite. In C. Emiliani (Ed.), The Sea (Vol. 7, pp. 305 – 338 ). Wiley.
Casey, J. F., Elthon, D. L., Siroky, F. X., Karson, J. A., & Sullivan, J. ( 1985 ). Geochemical and geological evidence bearing on the origin of the Bay of islands and coastal complex ophiolites of Western Newfoundland. Tectonophysics, 116 ( 1–2 ), 1 – 40. https://doi.org/10.1016/0040-1951(85)90220-3
Casey, J. F., & Kidd, W. S. F. ( 1981 ). A parallochthonous group of sedimentary rocks unconformable overlying the Bay of Islands ophiolite complex, North Arm Mountain, Newfoundland. Canadian Journal of Earth Sciences, 18 ( 6 ), 1035 – 1050. https://doi.org/10.1139/e81-100
Cawood, P. A., & Suhr, G. ( 1992 ). Generation and obduction of ophiolites: Constraints from the Bay of islands complex, Western Newfoundland. Tectonics, 11 ( 4 ), 884 – 897. https://doi.org/10.1029/92TC00471
Christensen, N. I., & Salisbury, M. H. ( 1982 ). Lateral heterogeneity in the seismic structure of the oceanic crust inferred from velocity studies in the Bay of Islands ophiolite, Newfoundland. Geophysical Journal International, 68 ( 3 ), 675 – 688. https://doi.org/10.1111/j.1365-246X.1982.tb04922.x
op_rights IndexNoFollow
op_doi https://doi.org/10.1029/2021GC01019610.1111/gbi.1218210.1038/nature1144510.1126/sciadv.abf438210.1038/nature1458910.1039/AN960850082310.1016/j.epsl.2017.09.04410.1130/G37937.110.1038/2483910.1146/annurev.earth.33.092203.12271110.1073/pnas.101128710710.103
_version_ 1779316692319469568
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/172968 2023-10-09T21:53:26+02:00 Constraints on Early Paleozoic Deep-Ocean Oxygen Concentrations From the Iron Geochemistry of the Bay of Islands Ophiolite Stolper, Daniel A. Pu, Xiaofei Lloyd, Max K. Christensen, Nikolas I. Bucholz, Claire E. Lange, Rebecca A. 2022-07 application/pdf https://hdl.handle.net/2027.42/172968 https://doi.org/10.1029/2021GC010196 unknown University of Southampton Wiley Periodicals, Inc. Stolper, Daniel A.; Pu, Xiaofei; Lloyd, Max K.; Christensen, Nikolas I.; Bucholz, Claire E.; Lange, Rebecca A. (2022). "Constraints on Early Paleozoic Deep-Ocean Oxygen Concentrations From the Iron Geochemistry of the Bay of Islands Ophiolite." Geochemistry, Geophysics, Geosystems 23(7): n/a-n/a. 1525-2027 https://hdl.handle.net/2027.42/172968 doi:10.1029/2021GC010196 Geochemistry, Geophysics, Geosystems Rutter, J. ( 2015 ). Characterising low temperature alteration and oxidation of the upper oceanic crust (PhD thesis). University of Southampton. Robinson, P. T., Gibson, I. L., & Panayiotou, A. (Eds.) ( 1987 ). Cyprus crustal study project: Initial report, holes CY-2 and 2a, Geological Survey of Canada paper. 85-29. Sahoo, S. K., Planavsky, N. J., Jiang, G., Kendall, B., Owens, J. D., Wang, X., et al. ( 2016 ). Oceanic oxygenation events in the anoxic Ediacaran Ocean. Geobiology, 14 ( 5 ), 457 – 468. https://doi.org/10.1111/gbi.12182 Sahoo, S. K., Planavsky, N. J., Kendall, B., Wang, X., Shi, X., Scott, C., et al. ( 2012 ). Ocean oxygenation in the wake of the Marinoan glaciation. Nature, 489 ( 7417 ), 546 – 549. https://doi.org/10.1038/nature11445 Sarmiento, J. L., & Gruber, N. ( 2006 ). Ocean biogeochemical dynamics. Princeton University Press. Sarmiento, J. L., Herbert, T. D., & Toggweiler, J. R. ( 1988 ). Causes of anoxia in the world ocean. Global Biogeochemical Cycles, 2 ( 2 ), 115 – 128. https://doi.org/10.1029/GB002i002p00115 Shanks, W. C., III, Bischoff, J. L., & Rosenbauer, R. J. ( 1981 ). Seawater sulfate reduction and sulfur isotope fractionation in basaltic systems: Interaction of seawater with fayalite and magnetite at 200–350 C. Geochimica et Cosmochimica Acta, 45 ( 11 ), 1977 – 1995. https://doi.org/10.1016/0016-7037(81)90054-5 Slotznick, S. P., Eiler, J. M., & Fischer, W. W. ( 2018 ). The effects of metamorphism on iron mineralogy and the iron speciation redox proxy. Geochimica et Cosmochimica Acta, 224, 96 – 115. https://doi.org/10.1016/j.gca.2017.12.003 Slotznick, S. P., Webb, S. M., Kirschvink, J. L., & Fischer, W. W. ( 2019 ). Mid-Proterozoic ferruginous conditions reflect postdepositional processes. Geophysical Research Letters, 46 ( 6 ), 3114 – 3123. https://doi.org/10.1029/2018GL081496 Sperling, E. A., Melchin, M. J., Fraser, T., Stockey, R. G., Farrell, U. C., Bhajan, L., et al. ( 2021 ). A long-term record of early to mid-Paleozoic marine redox change. Science Advances, 7 ( 28 ), eabf4382. https://doi.org/10.1126/sciadv.abf4382 Sperling, E. A., Wolock, C. J., Morgan, A. S., Gill, B. C., Kunzmann, M., Halverson, G. P., et al. ( 2015 ). Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature, 523 ( 7561 ), 451 – 454. https://doi.org/10.1038/nature14589 Staudigel, H., Plank, T., White, B., & Schmincke, H. ( 1996 ). Geochemical fluxes during seafloor alteration of the basaltic upper oceanic crust: DSDP sites 417 and 418. Subduction Top to Bottom, 19 – 38. https://doi.org/10.1029/GM096p0019 Stevens, T. O., & McKinley, J. P. ( 2000 ). Abiotic controls on H 2 production from Basalt− Water reactions and implications for aquifer biogeochemistry. Environmental Science & Technology, 34 ( 5 ), 826 – 831. https://doi.org/10.1021/es990583g Stolper, D. A., & Bucholz, C. E. ( 2019 ). Neoproterozoic to early Phanerozoic rise in island arc redox state due to deep ocean oxygenation and increased marine sulfate levels. Proceedings of the National Academy of Sciences, 116 ( 18 ), 8746 – 8755. https://doi.org/10.1073/pnas.1821847116 Stolper, D. A., Higgins, J. A., & Derry, L. A. ( 2021 ). The role of the solid Earth in regulating atmospheric O 2 levels. American Journal of Science, 321 ( 10 ), 1381 – 1444. https://doi.org/10.2475/10.2021.01 Stolper, D. A., & Keller, C. B. ( 2018 ). A record of deep-ocean dissolved O 2 from the oxidation state of iron in submarine basalts. Nature, 553 ( 7688 ), 323 – 327. https://doi.org/10.1038/nature25009 Swanson-Hysell, N. L., & Macdonald, F. A. ( 2017 ). Tropical weathering of the Taconic orogeny as a driver for Ordovician cooling. Geology, 45 ( 8 ), 719 – 722. https://doi.org/10.1130/G38985.1 Taylor, B., & Martinez, F. ( 2003 ). Back-arc basin basalt systematics. Earth and Planetary Science Letters, 210 ( 3–4 ), 481 – 497. https://doi.org/10.1016/S0012-821X(03)00167-5 Tostevin, R., & Mills, B. J. ( 2020 ). Reconciling proxy records and models of Earth’s oxygenation during the Neoproterozoic and Palaeozoic. Interface Focus, 10 ( 4 ), 20190137. https://doi.org/10.1098/rsfs.2019.0137 Varne, R., Brown, A. V., & Falloon, T. ( 2000 ). Macquarie island: Its geology, structural history, and the timing and tectonic setting of its N-MORB to E-MORB magmatism. Special Papers-Geological Society of America. 301–320. Wallace, M. W., Shuster, A., Greig, A., Planavsky, N. J., & Reed, C. P. ( 2017 ). Oxygenation history of the Neoproterozoic to early Phanerozoic and the rise of land plants. Earth and Planetary Science Letters, 466, 12 – 19. https://doi.org/10.1016/j.epsl.2017.02.046 Williams, H. ( 1973 ). Bay of islands map-area, Newfoundland: Canada geology. Survey Paper, 72 ( 34 ), 7. Williams, H., & Malpas, J. ( 1972 ). Sheeted dikes and brecciated dike rocks within transported igneous complexes Bay of Islands, Western Newfoundland. Canadian Journal of Earth Sciences, 9 ( 9 ), 1216 – 1229. https://doi.org/10.1139/e72-105 Wilson, A. D. ( 1960 ). The micro-determination of ferrous iron in silicate minerals by a volumetric and a colorimetric method. Analyst, 85 ( 1016 ), 823 – 827. https://doi.org/10.1039/AN9608500823 Wood, R., Donoghue, P. C., Lenton, T. M., Liu, A. G., & Poulton, S. W. ( 2020 ). The origin and rise of complex life: Progress requires interdisciplinary integration and hypothesis testing. Interface Focus, 10 ( 4 ), 20200024. https://doi.org/10.1098/rsfs.2020.0024 Yan, W., & Casey, J. F. ( 2020 ). A new concordia age for the ‘forearc’ Bay of Islands Ophiolite Complex, Western Newfoundland utilizing spatially-resolved LA-ICP-MS U-Pb analyses of zircon. Gondwana Research, 86, 1 – 22. https://doi.org/10.1016/j.gr.2020.05.007 Zhang, H. L., Cottrell, E., Solheid, P. A., Kelley, K. A., & Hirschmann, M. M. ( 2018 ). Determination of Fe 3+ /ΣFe of XANES basaltic glass standards by Mössbauer spectroscopy and its application to the oxidation state of iron in MORB. Chemical Geology, 479, 166 – 175. https://doi.org/10.1016/j.chemgeo.2018.01.006 Yeung, L. Y. ( 2017 ). Low oxygen and argon in the Neoproterozoic atmosphere at 815 Ma. Earth and Planetary Science Letters, 480, 66 – 74. https://doi.org/10.1016/j.epsl.2017.09.044 Alcott, L. J., Mills, B. J., & Poulton, S. W. ( 2019 ). Stepwise Earth oxygenation is an inherent property of global biogeochemical cycling. Science, 366 ( 6471 ), 1333 – 1337. https://doi.org/10.1126/science.aax6459 Algeo, T. J., Luo, G. M., Song, H. Y., Lyons, T. W., & Canfield, D. E. ( 2015 ). Reconstruction of secular variation in seawater sulfate concentrations. Biogeosciences, 12 ( 7 ), 2131 – 2151. https://doi.org/10.5194/bg-12-2131-2015 Alt, J. C., Laverne, C., Vanko, D. A., Tartarotti, P., Teagle, D. A., Bach, W., et al. ( 1996 ). Hydrothermal alteration of a section of upper oceanic crust in the eastern equatorial Pacific: A synthesis of results from site 504 (DSDP legs 69, 70, and 83, and ODP legs 111, 137, 140, and 148). Proceedings of the Ocean Drilling Program, Scientific Results, 148, 417 – 434. Archibald, D. A., & Farrar, E. ( 1976 ). K–Ar ages of amphiboles from the Bay of Islands ophiolite and the Little Port Complex, Western Newfoundland, and their geological implications. Canadian Journal of Earth Sciences, 13 ( 4 ), 520 – 529. https://doi.org/10.1139/e76-055 Bach, W., & Edwards, K. J. ( 2003 ). Iron and sulfide oxidation within the basaltic ocean crust: Implications for chemolithoautotrophic microbial biomass production. Geochimica et Cosmochimica Acta, 67 ( 20 ), 3871 – 3887. https://doi.org/10.1016/S0016-7037(03)00304-1 Blamey, N. J., Brand, U., Parnell, J., Spear, N., Lécuyer, C., Benison, K., et al. ( 2016 ). Paradigm shift in determining Neoproterozoic atmospheric oxygen. Geology, 44 ( 8 ), 651 – 654. https://doi.org/10.1130/G37937.1 Blättler, C. L., Bergmann, K. D., Kah, L. C., Gómez-Pérez, I., & Higgins, J. A. ( 2020 ). Constraints on Meso-to Neoproterozoic seawater from ancient evaporite deposits. Earth and Planetary Science Letters, 532, 115951. https://doi.org/10.1016/j.epsl.2019.115951 Brounce, M., Kelley, K. A., Cottrell, E., & Reagan, M. K. ( 2015 ). Temporal evolution of mantle wedge oxygen fugacity during subduction initiation. Geology, 43 ( 9 ), 775 – 778. https://doi.org/10.1130/G36742.1 Brounce, M. N., Kelley, K., & Cottrell, E. ( 2014 ). Variations in Fe 3+ /ΣFe of Mariana arc basalts and mantle wedge f O 2. Journal of Petrology, 55 ( 12 ), 2513 – 2536. https://doi.org/10.1093/petrology/egu065 Bucholz, C. E., & Spencer, C. J. ( 2019 ). Strongly peraluminous granites across the Archean–Proterozoic transition. Journal of Petrology, 60 ( 7 ), 1299 – 1348. https://doi.org/10.1093/petrology/egz033 Canfield, D. E. ( 1998 ). A new model for Proterozoic ocean chemistry. Nature, 396 ( 6710 ), 450 – 453. https://doi.org/10.1038/24839 Canfield, D. E. ( 2005 ). The early history of atmospheric oxygen: Homage to Robert M. Garrels. Annual Review of Earth and Planetary Sciences, 33, 1 – 36. https://doi.org/10.1146/annurev.earth.33.092203.122711 Casey, J. F., Dewey, J. F., Fox, P. J., Karson, J. A., & Rosencrantz, E. ( 1981 ). Heterogeneous nature of the oceanic crust and upper mantle: A perspective from the Bay of Islands Ophiolite. In C. Emiliani (Ed.), The Sea (Vol. 7, pp. 305 – 338 ). Wiley. Casey, J. F., Elthon, D. L., Siroky, F. X., Karson, J. A., & Sullivan, J. ( 1985 ). Geochemical and geological evidence bearing on the origin of the Bay of islands and coastal complex ophiolites of Western Newfoundland. Tectonophysics, 116 ( 1–2 ), 1 – 40. https://doi.org/10.1016/0040-1951(85)90220-3 Casey, J. F., & Kidd, W. S. F. ( 1981 ). A parallochthonous group of sedimentary rocks unconformable overlying the Bay of Islands ophiolite complex, North Arm Mountain, Newfoundland. Canadian Journal of Earth Sciences, 18 ( 6 ), 1035 – 1050. https://doi.org/10.1139/e81-100 Cawood, P. A., & Suhr, G. ( 1992 ). Generation and obduction of ophiolites: Constraints from the Bay of islands complex, Western Newfoundland. Tectonics, 11 ( 4 ), 884 – 897. https://doi.org/10.1029/92TC00471 Christensen, N. I., & Salisbury, M. H. ( 1982 ). Lateral heterogeneity in the seismic structure of the oceanic crust inferred from velocity studies in the Bay of Islands ophiolite, Newfoundland. Geophysical Journal International, 68 ( 3 ), 675 – 688. https://doi.org/10.1111/j.1365-246X.1982.tb04922.x IndexNoFollow iron redox Earth history hydrothermal ophiolites oxygen Geological Sciences Science Article 2022 ftumdeepblue https://doi.org/10.1029/2021GC01019610.1111/gbi.1218210.1038/nature1144510.1126/sciadv.abf438210.1038/nature1458910.1039/AN960850082310.1016/j.epsl.2017.09.04410.1130/G37937.110.1038/2483910.1146/annurev.earth.33.092203.12271110.1073/pnas.101128710710.103 2023-09-10T16:37:16Z The deep ocean is generally considered to have changed from anoxic in the Precambrian to oxygenated by the Late Paleozoic (∼420–400 Ma) due to changes in atmospheric oxygen concentrations. When the transition occurred, that is, in the Early Paleozoic or not until the Late Paleozoic, is less well constrained. To address this, we measured Fe3+/ΣFe of volcanic rocks, sheeted dykes, gabbros, and ultramafic rocks from the Early Paleozoic (∼485 Ma) Bay of Islands (BOI) ophiolite as a proxy for hydrothermal alteration in the presence or absence of O2 derived from deep marine fluids. Combining this data with previously published data from the BOI indicates that volcanic rocks are oxidized relative to intrusive crustal rocks (0.35 ± 0.02 vs. 0.19 ± 0.01, 1 standard error), which we interpret to indicate that the volcanic section was altered by marine-derived fluids that contained some dissolved O2. We compare our results directly to the Macquarie Island and Troodos ophiolites, drilled oceanic crust, previously compiled data for ophiolitic volcanic rocks, and newly compiled data for ophiolitic intrusive rocks. These comparisons show that the BOI volcanic (but not intrusive) rocks are oxidized relative to Precambrian equivalents, but are less oxidized relative to Late Paleozoic to modern equivalents. We interpret these results to indicate that the Early Paleozoic ocean contained dissolved O2, but at concentrations ∼2.4× lower than for the Late Paleozoic to today.Key PointsWe report Fe3+/ΣFe in volcanic and intrusive crustal rocks and ultramafic rocks from the Early Paleozoic Bay of Islands (BOI) ophioliteFe3+/ΣFe of the BOI volcanic rocks are elevated compared to Precambrian systems but lower than Late Paleozoic to modern systemsThis difference indicates deep-ocean O2 levels in the Early Paleozoic were elevated compared to the Precambrian but lower than today Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/172968/1/2021GC010196-sup-0001-Supporting_Information_SI-S01.pdf ... Article in Journal/Newspaper Macquarie Island University of Michigan: Deep Blue