Inter-laboratory differences in the apparent quantum yield for the photochemical production of dissolved inorganic carbon in inland waters and implications for photochemical rate modeling

Solar radiation initiates photochemical oxidation of dissolved organic carbon (DOC) to dissolved inorganic carbon (DIC) in inland waters, contributing to their carbon dioxide emissions to the atmosphere. Models can determine photochemical DIC production over large spatiotemporal scales and assess it...

Full description

Bibliographic Details
Published in:Archaeology, Ethnology & Anthropology of Eurasia
Main Authors: Koehler, Birgit, Powers, Leanne C., Cory, Rose M., Einarsdóttir, Karólína, Gu, Yufei, Tranvik, Lars J., Vähätalo, Anssi V., Ward, Collin P., Miller, William L.
Format: Article in Journal/Newspaper
Language:unknown
Published: John Wiley & Sons, Inc. 2022
Subjects:
Online Access:https://hdl.handle.net/2027.42/172964
https://doi.org/10.1002/lom3.10489
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/172964
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic Atmospheric and Oceanic Sciences
Science
spellingShingle Atmospheric and Oceanic Sciences
Science
Koehler, Birgit
Powers, Leanne C.
Cory, Rose M.
Einarsdóttir, Karólína
Gu, Yufei
Tranvik, Lars J.
Vähätalo, Anssi V.
Ward, Collin P.
Miller, William L.
Inter-laboratory differences in the apparent quantum yield for the photochemical production of dissolved inorganic carbon in inland waters and implications for photochemical rate modeling
topic_facet Atmospheric and Oceanic Sciences
Science
description Solar radiation initiates photochemical oxidation of dissolved organic carbon (DOC) to dissolved inorganic carbon (DIC) in inland waters, contributing to their carbon dioxide emissions to the atmosphere. Models can determine photochemical DIC production over large spatiotemporal scales and assess its role in aquatic C cycling. The apparent quantum yield (AQY) spectrum for photochemical DIC production, defined as mol DIC produced per mol chromophoric dissolved organic matter-absorbed photons, is a critical model parameter. In previous studies, the principle for the determination of AQY spectra is the same but methodological specifics differ, and the extent to which these differences influence AQY spectra and simulated aquatic DIC photoproduction is unclear. Here, four laboratories determined AQY spectra from water samples of eight inland waters that are situated in Alaska, Finland, and Sweden and span a nearly 10-fold range in DOM absorption coefficients. All AQY values fell within the range previously reported for inland waters. The inter-laboratory coefficient of variation (CV) for wavelength-integrated AQY spectra (300–450 nm) averaged 38% ± 3% SE, and the inter-water CV averaged 63% ± 1%. The inter-laboratory CV for simulated photochemical DIC production (conducted for the five Swedish lakes) averaged 49% ± 12%, and the inter-water CV averaged 77% ± 10%. This uncertainty is not surprising given the complexities and methodological choices involved in determining DIC AQY spectra and needs to be considered when applying photochemical rate modeling. Thus, we also highlight current methodological limitations and suggest future improvements for DIC AQY determination to reduce inter-laboratory uncertainty. Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/172964/1/lom310489-sup-0001-supinfo.pdf http://deepblue.lib.umich.edu/bitstream/2027.42/172964/2/lom310489_am.pdf http://deepblue.lib.umich.edu/bitstream/2027.42/172964/3/lom310489.pdf
format Article in Journal/Newspaper
author Koehler, Birgit
Powers, Leanne C.
Cory, Rose M.
Einarsdóttir, Karólína
Gu, Yufei
Tranvik, Lars J.
Vähätalo, Anssi V.
Ward, Collin P.
Miller, William L.
author_facet Koehler, Birgit
Powers, Leanne C.
Cory, Rose M.
Einarsdóttir, Karólína
Gu, Yufei
Tranvik, Lars J.
Vähätalo, Anssi V.
Ward, Collin P.
Miller, William L.
author_sort Koehler, Birgit
title Inter-laboratory differences in the apparent quantum yield for the photochemical production of dissolved inorganic carbon in inland waters and implications for photochemical rate modeling
title_short Inter-laboratory differences in the apparent quantum yield for the photochemical production of dissolved inorganic carbon in inland waters and implications for photochemical rate modeling
title_full Inter-laboratory differences in the apparent quantum yield for the photochemical production of dissolved inorganic carbon in inland waters and implications for photochemical rate modeling
title_fullStr Inter-laboratory differences in the apparent quantum yield for the photochemical production of dissolved inorganic carbon in inland waters and implications for photochemical rate modeling
title_full_unstemmed Inter-laboratory differences in the apparent quantum yield for the photochemical production of dissolved inorganic carbon in inland waters and implications for photochemical rate modeling
title_sort inter-laboratory differences in the apparent quantum yield for the photochemical production of dissolved inorganic carbon in inland waters and implications for photochemical rate modeling
publisher John Wiley & Sons, Inc.
publishDate 2022
url https://hdl.handle.net/2027.42/172964
https://doi.org/10.1002/lom3.10489
genre Arctic
Alaska
genre_facet Arctic
Alaska
op_relation Koehler, Birgit; Powers, Leanne C.; Cory, Rose M.; Einarsdóttir, Karólína
Gu, Yufei; Tranvik, Lars J.; Vähätalo, Anssi V.
Ward, Collin P.; Miller, William L. (2022). "Inter- laboratory differences in the apparent quantum yield for the photochemical production of dissolved inorganic carbon in inland waters and implications for photochemical rate modeling." Limnology and Oceanography: Methods 20(6): 320-337.
1541-5856
https://hdl.handle.net/2027.42/172964
doi:10.1002/lom3.10489
Limnology and Oceanography: Methods
Ravichandran, M. 2004. Interactions between mercury and dissolved organic matter—A review. Chemosphere 55: 319 – 331. doi:10.1016/j.chemosphere.2003.11.011
Powers, L. C., J. A. Brandes, A. Stubbins, and W. L. Miller. 2017a. MoDIE: Moderate dissolved inorganic carbon (DI13C) isotope enrichment for improved evaluation of DIC photochemical production in natural waters. Mar. Chem. 194: 1 – 9.
Powers, L. C., and W. L. Miller. 2015a. Photochemical production of CO and CO 2 in the Northern Gulf of Mexico: Estimates and challenges for quantifying the impact of photochemistry on carbon cycles. Mar. Chem. 171: 21 – 35.
Powers, L. C., and W. L. Miller. 2015b. Hydrogen peroxide and superoxide photoproduction in diverse marine waters: A simple proxy for estimating direct CO 2 photochemical fluxes. Geophys. Res. Lett. 42: 7696 – 7704.
R Development Core Team. 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing. doi:10.4045/tidsskr.14.1316
Raymond, P. A., and others. 2013. Global carbon dioxide emissions from inland waters. Nature 503: 355 – 359. doi:10.1038/nature12760
Ren, C., G. Yang, and X. Lu. 2014. Autumn photoproduction of carbon monoxide in Jiaozhou Bay, China. J. Ocean Univ. Chin. 13: 428 – 436. doi:10.1007/s11802-014-2225-1
Rundel, R. D. 1983. Action spectra and estimation of biologically effective UV radiation. Physiol. Plant. 58: 360 – 366. doi:10.1111/j.1399-3054.1983.tb04195.x
Sharp, J. H., R. Benner, L. Bennett, C. A. Carlson, S. E. Fitzwater, E. T. Peltzer, and L. M. Tupas. 1995. Analyses of dissolved organic carbon in seawater: the JGOFS EqPac methods comparison. Mar. Chem. 48: 91 – 108. doi:10.1016/0304-4203(94)00040-K
Stauffer, R. E. 1990. Electrode pH error, seasonal epilimnetic pCO 2, and the recent acidification of the Maine lakes. Water Air Soil Pollut. 50: 123 – 148.
Timko, S. A., M. Gonsior, and W. J. Cooper. 2015. Influence of pH on fluorescent dissolved organic matter photo-degradation. Water Res. 85: 266 – 274. doi:10.1016/j.watres.2015.08.047
Vachon, D., J. F. Lapierre, and P. A. Giorgio. 2016. Seasonality of photochemical dissolved organic carbon mineralization and its relative contribution to pelagic CO2 production in northern lakes. Eur. J. Vasc. Endovasc. Surg. 121: 864 – 878. 10.1002/2015JG003244
Vähätalo, A. V., M. Salkinoja-Salonen, P. Taalas, and K. Salonen. 2000. Spectrum of the quantum yield for photochemical mineralization of dissolved organic carbon in a humic lake. Limnol. Oceanogr. 45: 664 – 676. doi:10.4319/lo.2000.45.3.0664
Vähatalo, A. V., and R. G. Wetzel. 2004. Photochemical and microbial decomposition of chromophoric dissolved organic matter during long (months-years) exposures. Mar. Chem. 89: 313 – 326. doi:10.1016/j.marchem.2004.03.010
Wang, W., C. G. Johnson, K. Takeda, and O. C. Zafiriou. 2009. Measuring the photochemical production of carbon dioxide from marine dissolved organic matter by pool isotope exchange. Environ. Sci. Technol. 43: 8604 – 8609. doi:10.1021/es901543e
Ward, C. P., J. C. Bowen, D. H. Freeman, and C. M. Sharpless. 2021. Rapid and reproducible characterization of the wavelength dependence of aquatic photochemical reactions using light-emitting diodes. Environ. Sci. Technol. Lett. 8: 437 – 442. doi:10.1021/acs.estlett.1c00172
Ward, C. P., and R. M. Corry. 2020. Assessing the prevalence, products, and pathways of dissolved organic matter partial oxidation. Environ. Sci. Process. Impacts 22: 1214 – 1223. doi:10.1039/c9em00504h
Ward, C. P., S. G. Nalven, B. C. Crump, G. W. Kling, and R. M. Cory. 2017. Photochemical alteration of organic carbon draining permafrost soils shifts microbial metabolic pathways and stimulates respiration. Nat. Commun. 8: 1 – 8.
White, E. M., D. J. Kieber, and K. Mopper. 2008. Determination of photochemically produced carbon dioxide in seawater. Limnol. Oceanogr. Methods 6: 441 – 453. doi:10.4319/lom.2008.6.441
Xiao, Y. H., T. Sara-Aho, H. Hartikainen, and A. V. Vähätalo. 2013. Contribution of ferric iron to light absorption by chromophoric dissolved organic matter. Limnol. Oceanogr. 58: 653 – 662. doi:10.4319/lo.2013.58.2.0653
Xie, H., S. Bélanger, G. Song, R. Benner, A. Taalba, M. Blais, J. É. Tremblay, and M. Babin. 2012. Photoproduction of ammonium in the southeastern Beaufort Sea and its biogeochemical implications. Biogeosciences 9: 3047 – 3061. doi:10.5194/bg-9-3047-2012
Xie, H., O. C. Zafiriou, W. J. Cai, R. G. Zepp, and Y. Wang. 2004. Photooxidation and its effects on the carboxyl content of dissolved organic matter in two coastal rivers in the southeastern United States. Environ. Sci. Technol. 38: 4113 – 4119. doi:10.1021/es035407t
Zhang, Y., H. Xie, and G. Chen. 2006. Factors affecting the efficiency of carbon monoxide photoproduction in the St. Lawrence estuarine system (Canada). Environ. Sci. Technol. 40: 7771 – 7777. doi:10.1021/es0615268
Zhu, X., W. L. Miller, and C. D. G. Fichot. 2020. Simple method to determine the apparent quantum yield matrix of CDOM photobleaching in natural waters. Environ. Sci. Technol. 54: 14096 – 14106. doi:10.1021/acs.est.0c03605
Cullen, J. J., and P. J. Neale. 1994. Ultraviolet radiation, ozone depletion, and marine photosynthesis. Photosynth. Res. 39: 303 – 320. doi:10.1007/BF00014589
Aarnos, H., Y. Gélinas, V. Kasurinen, Y. Gu, V. M. Puupponen, and A. V. Vähätalo. 2018. Photochemical mineralization of terrigenous DOC to dissolved inorganic carbon in ocean. Global Biogeochem. Cycl. 32: 250 – 266. doi:10.1002/2017GB005698
Aarnos, H., P. Ylöstalo, and A. V. Vähätalo. 2012. Seasonal phototransformation of dissolved organic matter to ammonium, dissolved inorganic carbon, and labile substrates supporting bacterial biomass across the Baltic Sea. J. Geophys. Res. 117: G01004. doi:10.1029/2010JG001633
Allesson, L., B. Koehler, J. E. Thrane, T. Andersen, and D. O. Hessen. 2021. The role of photomineralization for CO 2 emissions in boreal lakes along a gradient of dissolved organic matter. Limnol. Oceanogr. 66: 158 – 170. doi:10.1002/lno.11594
Andrews, S. S., S. Caron, and O. C. Zafiriou. 2000. Photochemical oxygen consumption in marine waters: A major sink for colored dissolved organic matter? Limnol. Oceanogr. 45: 267 – 277. doi:10.4319/lo.2000.45.2.0267
Armstrong, A. W., L. Powers, and M. Gonsior. 2021. Reproducible determination of dissolved organic matter photosensitivity. Biogeosciences 18: 3367 – 3390. doi:10.5194/bg-18-3367-2021
Belanger, S., H. Xie, N. Krotkov, P. Larouche, W. F. Vincent, and M. Babin. 2006. Photomineralization of terrigenous dissolved organic matter in Arctic coastal waters from 1979 to 2003: Interannual variability and implications of climate change. Global Biogeochem. Cycl. 20: GB4005. doi:10.1029/2006GB002708
Bowen, J. C., C. P. Ward, G. W. Kling, and R. M. Cory. 2020. Arctic amplification of global warming strengthened by sunlight oxidation of permafrost carbon to CO 2. Geophys. Res. Let 47: e2020GL087085. doi:10.1029/2020GL087085
Bowie, A. R., E. P. Achterberg, P. L. Croot, H. J. W. de Baar, P. Laan, J. W. Moffett, S. Ussher, and P. J. Worsfold. 2006. A community-wide intercomparison exercise for the determination of dissolved iron in seawater. Mar. Chem. 98: 81 – 99. doi:10.1016/j.marchem.2005.07.002
Cole, J. J., and others. 2007. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems 10: 172 – 185. doi:10.1007/s10021-006-9013-8
Cory, R., K. Harrold, B. Neilson, and G. Kling. 2015. Controls on dissolved organic matter (DOM) degradation in a headwater stream: the influence of photochemical and hydrological conditions in determining light-limitation or substrate-limitation of photo-degradation. Biogeosciences 12: 6669 – 6685. doi:10.5194/bg-12-6669-2015
Cory, R. M., B. C. Crump, J. A. Dobkowski, and G. W. Kling. 2013. Surface exposure to sunlight stimulates CO 2 release from permafrost soil carbon in the Arctic. Proc. Natl. Acad. Sci. 110: 3429 – 3434. doi:10.1073/pnas.1214104110
Cory, R. M., and G. W. Kling. 2018. Interactions between sunlight and microorganisms influence dissolved organic matter degradation along the aquatic continuum. Limnol. Oceanogr. Lett. 3: 102 – 116. doi:10.1002/lol2.10060
Cory, R. M., C. P. Ward, B. C. Crump, and G. W. Kling. 2014. Sunlight controls water column processing of carbon in arctic fresh waters. Science 345: 925 – 928. doi:10.1126/science.1253119
Crawley, M. J. 2012. The R book, 2nd Edition. John Wiley & Sons.
Del Vecchio, R., and N. V. Blough. 2002. Photobleaching of chromophoric dissolved organic matter in natural waters: Kinetics and modeling. Mar. Chem. 78: 231 – 253. doi:10.1016/S0304-4203(02)00036-1
Drake, T. W., P. A. Raymond, and R. G. Spencer. 2018. Terrestrial carbon inputs to inland waters: A current synthesis of estimates and uncertainty. Limnol. Oceanogr. Lett. 3: 132 – 142. doi:10.1002/lol2.10055
Fellman, J. B., D. V. D’Amore, and E. Hood. 2008. An evaluation of freezing as a preservation technique for analyzing dissolved organic C, N and P in surface water samples. Sci. Total Environ. 392: 305 – 312.
Fichot, C. G., and W. L. Miller. 2010. An approach to quantify depth-resolved marine photochemical fluxes using remote sensing: Application to carbon monoxide (CO) photoproduction. Remote Sens. Environ. 114: 1363 – 1377. doi:10.1016/j.rse.2010.01.019
op_rights IndexNoFollow
op_doi https://doi.org/10.1002/lom3.1048910.1016/j.chemosphere.2003.11.01110.4045/tidsskr.14.131610.1038/nature1276010.1007/s11802-014-2225-110.1111/j.1399-3054.1983.tb04195.x10.1016/0304-4203(94)00040-K10.1016/j.watres.2015.08.04710.4319/lo.2000.45.3.066410.101
container_title Archaeology, Ethnology & Anthropology of Eurasia
container_volume 51
container_issue 2
container_start_page 27
op_container_end_page 37
_version_ 1774713583734620160
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/172964 2023-08-20T04:03:11+02:00 Inter-laboratory differences in the apparent quantum yield for the photochemical production of dissolved inorganic carbon in inland waters and implications for photochemical rate modeling Koehler, Birgit Powers, Leanne C. Cory, Rose M. Einarsdóttir, Karólína Gu, Yufei Tranvik, Lars J. Vähätalo, Anssi V. Ward, Collin P. Miller, William L. 2022-06 application/pdf https://hdl.handle.net/2027.42/172964 https://doi.org/10.1002/lom3.10489 unknown John Wiley & Sons, Inc. Koehler, Birgit; Powers, Leanne C.; Cory, Rose M.; Einarsdóttir, Karólína Gu, Yufei; Tranvik, Lars J.; Vähätalo, Anssi V. Ward, Collin P.; Miller, William L. (2022). "Inter- laboratory differences in the apparent quantum yield for the photochemical production of dissolved inorganic carbon in inland waters and implications for photochemical rate modeling." Limnology and Oceanography: Methods 20(6): 320-337. 1541-5856 https://hdl.handle.net/2027.42/172964 doi:10.1002/lom3.10489 Limnology and Oceanography: Methods Ravichandran, M. 2004. Interactions between mercury and dissolved organic matter—A review. Chemosphere 55: 319 – 331. doi:10.1016/j.chemosphere.2003.11.011 Powers, L. C., J. A. Brandes, A. Stubbins, and W. L. Miller. 2017a. MoDIE: Moderate dissolved inorganic carbon (DI13C) isotope enrichment for improved evaluation of DIC photochemical production in natural waters. Mar. Chem. 194: 1 – 9. Powers, L. C., and W. L. Miller. 2015a. Photochemical production of CO and CO 2 in the Northern Gulf of Mexico: Estimates and challenges for quantifying the impact of photochemistry on carbon cycles. Mar. Chem. 171: 21 – 35. Powers, L. C., and W. L. Miller. 2015b. Hydrogen peroxide and superoxide photoproduction in diverse marine waters: A simple proxy for estimating direct CO 2 photochemical fluxes. Geophys. Res. Lett. 42: 7696 – 7704. R Development Core Team. 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing. doi:10.4045/tidsskr.14.1316 Raymond, P. A., and others. 2013. Global carbon dioxide emissions from inland waters. Nature 503: 355 – 359. doi:10.1038/nature12760 Ren, C., G. Yang, and X. Lu. 2014. Autumn photoproduction of carbon monoxide in Jiaozhou Bay, China. J. Ocean Univ. Chin. 13: 428 – 436. doi:10.1007/s11802-014-2225-1 Rundel, R. D. 1983. Action spectra and estimation of biologically effective UV radiation. Physiol. Plant. 58: 360 – 366. doi:10.1111/j.1399-3054.1983.tb04195.x Sharp, J. H., R. Benner, L. Bennett, C. A. Carlson, S. E. Fitzwater, E. T. Peltzer, and L. M. Tupas. 1995. Analyses of dissolved organic carbon in seawater: the JGOFS EqPac methods comparison. Mar. Chem. 48: 91 – 108. doi:10.1016/0304-4203(94)00040-K Stauffer, R. E. 1990. Electrode pH error, seasonal epilimnetic pCO 2, and the recent acidification of the Maine lakes. Water Air Soil Pollut. 50: 123 – 148. Timko, S. A., M. Gonsior, and W. J. Cooper. 2015. Influence of pH on fluorescent dissolved organic matter photo-degradation. Water Res. 85: 266 – 274. doi:10.1016/j.watres.2015.08.047 Vachon, D., J. F. Lapierre, and P. A. Giorgio. 2016. Seasonality of photochemical dissolved organic carbon mineralization and its relative contribution to pelagic CO2 production in northern lakes. Eur. J. Vasc. Endovasc. Surg. 121: 864 – 878. 10.1002/2015JG003244 Vähätalo, A. V., M. Salkinoja-Salonen, P. Taalas, and K. Salonen. 2000. Spectrum of the quantum yield for photochemical mineralization of dissolved organic carbon in a humic lake. Limnol. Oceanogr. 45: 664 – 676. doi:10.4319/lo.2000.45.3.0664 Vähatalo, A. V., and R. G. Wetzel. 2004. Photochemical and microbial decomposition of chromophoric dissolved organic matter during long (months-years) exposures. Mar. Chem. 89: 313 – 326. doi:10.1016/j.marchem.2004.03.010 Wang, W., C. G. Johnson, K. Takeda, and O. C. Zafiriou. 2009. Measuring the photochemical production of carbon dioxide from marine dissolved organic matter by pool isotope exchange. Environ. Sci. Technol. 43: 8604 – 8609. doi:10.1021/es901543e Ward, C. P., J. C. Bowen, D. H. Freeman, and C. M. Sharpless. 2021. Rapid and reproducible characterization of the wavelength dependence of aquatic photochemical reactions using light-emitting diodes. Environ. Sci. Technol. Lett. 8: 437 – 442. doi:10.1021/acs.estlett.1c00172 Ward, C. P., and R. M. Corry. 2020. Assessing the prevalence, products, and pathways of dissolved organic matter partial oxidation. Environ. Sci. Process. Impacts 22: 1214 – 1223. doi:10.1039/c9em00504h Ward, C. P., S. G. Nalven, B. C. Crump, G. W. Kling, and R. M. Cory. 2017. Photochemical alteration of organic carbon draining permafrost soils shifts microbial metabolic pathways and stimulates respiration. Nat. Commun. 8: 1 – 8. White, E. M., D. J. Kieber, and K. Mopper. 2008. Determination of photochemically produced carbon dioxide in seawater. Limnol. Oceanogr. Methods 6: 441 – 453. doi:10.4319/lom.2008.6.441 Xiao, Y. H., T. Sara-Aho, H. Hartikainen, and A. V. Vähätalo. 2013. Contribution of ferric iron to light absorption by chromophoric dissolved organic matter. Limnol. Oceanogr. 58: 653 – 662. doi:10.4319/lo.2013.58.2.0653 Xie, H., S. Bélanger, G. Song, R. Benner, A. Taalba, M. Blais, J. É. Tremblay, and M. Babin. 2012. Photoproduction of ammonium in the southeastern Beaufort Sea and its biogeochemical implications. Biogeosciences 9: 3047 – 3061. doi:10.5194/bg-9-3047-2012 Xie, H., O. C. Zafiriou, W. J. Cai, R. G. Zepp, and Y. Wang. 2004. Photooxidation and its effects on the carboxyl content of dissolved organic matter in two coastal rivers in the southeastern United States. Environ. Sci. Technol. 38: 4113 – 4119. doi:10.1021/es035407t Zhang, Y., H. Xie, and G. Chen. 2006. Factors affecting the efficiency of carbon monoxide photoproduction in the St. Lawrence estuarine system (Canada). Environ. Sci. Technol. 40: 7771 – 7777. doi:10.1021/es0615268 Zhu, X., W. L. Miller, and C. D. G. Fichot. 2020. Simple method to determine the apparent quantum yield matrix of CDOM photobleaching in natural waters. Environ. Sci. Technol. 54: 14096 – 14106. doi:10.1021/acs.est.0c03605 Cullen, J. J., and P. J. Neale. 1994. Ultraviolet radiation, ozone depletion, and marine photosynthesis. Photosynth. Res. 39: 303 – 320. doi:10.1007/BF00014589 Aarnos, H., Y. Gélinas, V. Kasurinen, Y. Gu, V. M. Puupponen, and A. V. Vähätalo. 2018. Photochemical mineralization of terrigenous DOC to dissolved inorganic carbon in ocean. Global Biogeochem. Cycl. 32: 250 – 266. doi:10.1002/2017GB005698 Aarnos, H., P. Ylöstalo, and A. V. Vähätalo. 2012. Seasonal phototransformation of dissolved organic matter to ammonium, dissolved inorganic carbon, and labile substrates supporting bacterial biomass across the Baltic Sea. J. Geophys. Res. 117: G01004. doi:10.1029/2010JG001633 Allesson, L., B. Koehler, J. E. Thrane, T. Andersen, and D. O. Hessen. 2021. The role of photomineralization for CO 2 emissions in boreal lakes along a gradient of dissolved organic matter. Limnol. Oceanogr. 66: 158 – 170. doi:10.1002/lno.11594 Andrews, S. S., S. Caron, and O. C. Zafiriou. 2000. Photochemical oxygen consumption in marine waters: A major sink for colored dissolved organic matter? Limnol. Oceanogr. 45: 267 – 277. doi:10.4319/lo.2000.45.2.0267 Armstrong, A. W., L. Powers, and M. Gonsior. 2021. Reproducible determination of dissolved organic matter photosensitivity. Biogeosciences 18: 3367 – 3390. doi:10.5194/bg-18-3367-2021 Belanger, S., H. Xie, N. Krotkov, P. Larouche, W. F. Vincent, and M. Babin. 2006. Photomineralization of terrigenous dissolved organic matter in Arctic coastal waters from 1979 to 2003: Interannual variability and implications of climate change. Global Biogeochem. Cycl. 20: GB4005. doi:10.1029/2006GB002708 Bowen, J. C., C. P. Ward, G. W. Kling, and R. M. Cory. 2020. Arctic amplification of global warming strengthened by sunlight oxidation of permafrost carbon to CO 2. Geophys. Res. Let 47: e2020GL087085. doi:10.1029/2020GL087085 Bowie, A. R., E. P. Achterberg, P. L. Croot, H. J. W. de Baar, P. Laan, J. W. Moffett, S. Ussher, and P. J. Worsfold. 2006. A community-wide intercomparison exercise for the determination of dissolved iron in seawater. Mar. Chem. 98: 81 – 99. doi:10.1016/j.marchem.2005.07.002 Cole, J. J., and others. 2007. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems 10: 172 – 185. doi:10.1007/s10021-006-9013-8 Cory, R., K. Harrold, B. Neilson, and G. Kling. 2015. Controls on dissolved organic matter (DOM) degradation in a headwater stream: the influence of photochemical and hydrological conditions in determining light-limitation or substrate-limitation of photo-degradation. Biogeosciences 12: 6669 – 6685. doi:10.5194/bg-12-6669-2015 Cory, R. M., B. C. Crump, J. A. Dobkowski, and G. W. Kling. 2013. Surface exposure to sunlight stimulates CO 2 release from permafrost soil carbon in the Arctic. Proc. Natl. Acad. Sci. 110: 3429 – 3434. doi:10.1073/pnas.1214104110 Cory, R. M., and G. W. Kling. 2018. Interactions between sunlight and microorganisms influence dissolved organic matter degradation along the aquatic continuum. Limnol. Oceanogr. Lett. 3: 102 – 116. doi:10.1002/lol2.10060 Cory, R. M., C. P. Ward, B. C. Crump, and G. W. Kling. 2014. Sunlight controls water column processing of carbon in arctic fresh waters. Science 345: 925 – 928. doi:10.1126/science.1253119 Crawley, M. J. 2012. The R book, 2nd Edition. John Wiley & Sons. Del Vecchio, R., and N. V. Blough. 2002. Photobleaching of chromophoric dissolved organic matter in natural waters: Kinetics and modeling. Mar. Chem. 78: 231 – 253. doi:10.1016/S0304-4203(02)00036-1 Drake, T. W., P. A. Raymond, and R. G. Spencer. 2018. Terrestrial carbon inputs to inland waters: A current synthesis of estimates and uncertainty. Limnol. Oceanogr. Lett. 3: 132 – 142. doi:10.1002/lol2.10055 Fellman, J. B., D. V. D’Amore, and E. Hood. 2008. An evaluation of freezing as a preservation technique for analyzing dissolved organic C, N and P in surface water samples. Sci. Total Environ. 392: 305 – 312. Fichot, C. G., and W. L. Miller. 2010. An approach to quantify depth-resolved marine photochemical fluxes using remote sensing: Application to carbon monoxide (CO) photoproduction. Remote Sens. Environ. 114: 1363 – 1377. doi:10.1016/j.rse.2010.01.019 IndexNoFollow Atmospheric and Oceanic Sciences Science Article 2022 ftumdeepblue https://doi.org/10.1002/lom3.1048910.1016/j.chemosphere.2003.11.01110.4045/tidsskr.14.131610.1038/nature1276010.1007/s11802-014-2225-110.1111/j.1399-3054.1983.tb04195.x10.1016/0304-4203(94)00040-K10.1016/j.watres.2015.08.04710.4319/lo.2000.45.3.066410.101 2023-07-31T20:44:27Z Solar radiation initiates photochemical oxidation of dissolved organic carbon (DOC) to dissolved inorganic carbon (DIC) in inland waters, contributing to their carbon dioxide emissions to the atmosphere. Models can determine photochemical DIC production over large spatiotemporal scales and assess its role in aquatic C cycling. The apparent quantum yield (AQY) spectrum for photochemical DIC production, defined as mol DIC produced per mol chromophoric dissolved organic matter-absorbed photons, is a critical model parameter. In previous studies, the principle for the determination of AQY spectra is the same but methodological specifics differ, and the extent to which these differences influence AQY spectra and simulated aquatic DIC photoproduction is unclear. Here, four laboratories determined AQY spectra from water samples of eight inland waters that are situated in Alaska, Finland, and Sweden and span a nearly 10-fold range in DOM absorption coefficients. All AQY values fell within the range previously reported for inland waters. The inter-laboratory coefficient of variation (CV) for wavelength-integrated AQY spectra (300–450 nm) averaged 38% ± 3% SE, and the inter-water CV averaged 63% ± 1%. The inter-laboratory CV for simulated photochemical DIC production (conducted for the five Swedish lakes) averaged 49% ± 12%, and the inter-water CV averaged 77% ± 10%. This uncertainty is not surprising given the complexities and methodological choices involved in determining DIC AQY spectra and needs to be considered when applying photochemical rate modeling. Thus, we also highlight current methodological limitations and suggest future improvements for DIC AQY determination to reduce inter-laboratory uncertainty. Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/172964/1/lom310489-sup-0001-supinfo.pdf http://deepblue.lib.umich.edu/bitstream/2027.42/172964/2/lom310489_am.pdf http://deepblue.lib.umich.edu/bitstream/2027.42/172964/3/lom310489.pdf Article in Journal/Newspaper Arctic Alaska University of Michigan: Deep Blue Archaeology, Ethnology & Anthropology of Eurasia 51 2 27 37