Brown Carbon Fuel and Emission Source Attributions to Global Snow Darkening Effect

Snow and ice albedo reduction due to deposition of absorbing particles (snow darkening effect [SDE]) warms the Earth system and is largely attributed to black carbon (BC) and dust. Absorbing organic aerosol (BrC) also contributes to SDE but has received less attention due to uncertainty and challeng...

Full description

Bibliographic Details
Published in:Animals
Main Authors: Brown, Hunter, Wang, Hailong, Flanner, Mark, Liu, Xiaohong, Singh, Balwinder, Zhang, Rudong, Yang, Yang, Wu, Mingxuan
Format: Article in Journal/Newspaper
Language:unknown
Published: Cambridge University Press 2022
Subjects:
Online Access:https://hdl.handle.net/2027.42/172343
https://doi.org/10.1029/2021MS002768
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/172343
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic aerosol-snow interactions
brown carbon
climate model
CESM
biomass burning
SNICAR
Geological Sciences
Science
spellingShingle aerosol-snow interactions
brown carbon
climate model
CESM
biomass burning
SNICAR
Geological Sciences
Science
Brown, Hunter
Wang, Hailong
Flanner, Mark
Liu, Xiaohong
Singh, Balwinder
Zhang, Rudong
Yang, Yang
Wu, Mingxuan
Brown Carbon Fuel and Emission Source Attributions to Global Snow Darkening Effect
topic_facet aerosol-snow interactions
brown carbon
climate model
CESM
biomass burning
SNICAR
Geological Sciences
Science
description Snow and ice albedo reduction due to deposition of absorbing particles (snow darkening effect [SDE]) warms the Earth system and is largely attributed to black carbon (BC) and dust. Absorbing organic aerosol (BrC) also contributes to SDE but has received less attention due to uncertainty and challenges in model representation. This work incorporates the SDE of absorbing organic aerosol (BrC) from biomass burning and biofuel sources into the Snow Ice and Aerosol Radiative (SNICAR) model within a variant of the Community Earth System Model. Additionally, 12 different emission regions of BrC and BC from biomass burning and biofuel sources are tagged to quantify the relative contribution to global and regional SDE. BrC global SDE (0.021–0.056 Wm−2 over land area and 0.0061–0.016 Wm−2 over global area) is larger than other model estimates, corresponding to 37%–98% of the SDE from BC. When compared to observations, BrC simulations have a range in median bias (−2.5% to +21%), with better agreement in the simulations that include BrC photochemical bleaching. The largest relative contributions to global BrC SDE are traced to Northern Asia (23%–31%), Southeast Asia (16%–21%), and South Africa (13%–17%). Transport from Southeast Asia contributes nearly half of the regional BrC SDE in Antarctica (0.084–0.3 Wm−2), which is the largest regional input to global BrC SDE. Lower latitude BrC SDE is correlated with snowmelt, in-snow BrC concentrations, and snow cover fraction, while polar BrC SDE is correlated with surface insolation and snowmelt. This indicates the importance of in-snow processes and snow feedbacks on modeled BrC SDE.Plain Language SummaryBright surfaces like snow and ice reflect some of the sun’s light back to space, leading to less surface warming. These reflective surfaces can be coated by light absorbing particles such as soot and dust, reducing their reflectivity and speeding up the warming of the climate. “Brown carbon” is another absorbing particle that also darkens these surfaces. Fewer studies have looked ...
format Article in Journal/Newspaper
author Brown, Hunter
Wang, Hailong
Flanner, Mark
Liu, Xiaohong
Singh, Balwinder
Zhang, Rudong
Yang, Yang
Wu, Mingxuan
author_facet Brown, Hunter
Wang, Hailong
Flanner, Mark
Liu, Xiaohong
Singh, Balwinder
Zhang, Rudong
Yang, Yang
Wu, Mingxuan
author_sort Brown, Hunter
title Brown Carbon Fuel and Emission Source Attributions to Global Snow Darkening Effect
title_short Brown Carbon Fuel and Emission Source Attributions to Global Snow Darkening Effect
title_full Brown Carbon Fuel and Emission Source Attributions to Global Snow Darkening Effect
title_fullStr Brown Carbon Fuel and Emission Source Attributions to Global Snow Darkening Effect
title_full_unstemmed Brown Carbon Fuel and Emission Source Attributions to Global Snow Darkening Effect
title_sort brown carbon fuel and emission source attributions to global snow darkening effect
publisher Cambridge University Press
publishDate 2022
url https://hdl.handle.net/2027.42/172343
https://doi.org/10.1029/2021MS002768
genre Annals of Glaciology
Antarc*
Antarctica
Arctic
genre_facet Annals of Glaciology
Antarc*
Antarctica
Arctic
op_relation Brown, Hunter; Wang, Hailong; Flanner, Mark; Liu, Xiaohong; Singh, Balwinder; Zhang, Rudong; Yang, Yang; Wu, Mingxuan (2022). "Brown Carbon Fuel and Emission Source Attributions to Global Snow Darkening Effect." Journal of Advances in Modeling Earth Systems 14(4): n/a-n/a.
1942-2466
https://hdl.handle.net/2027.42/172343
doi:10.1029/2021MS002768
Journal of Advances in Modeling Earth Systems
Skeie, R. B., Berntsen, T. K., Myhre, G., Tanaka, K., Kvalevåg, M. M., & Hoyle, C. R. ( 2011 ). Anthropogenic radiative forcing time series from pre-industrial times until 2010. Atmospheric Chemistry and Physics, 11 ( 22 ), 11827 – 11857. https://doi.org/10.5194/acp-11-11827-2011
Saleh, R., Robinson, E. S., Tkacik, D. S., Ahern, A. T., Liu, S., Aiken, A. C., et al. ( 2014 ). Brownness of organics in aerosols from biomass burning linked to their black carbon content. Nature Geoscience, 7 ( 9 ), 647 – 650. https://doi.org/10.1038/ngeo2220
Schwarz, J. P., Gao, R. S., Perring, A. E., Spackman, J. R., & Fahey, D. W. ( 2013 ). Black carbon aerosol size in snow. Scientific Reports, 3 ( 1 ), 1356. https://doi.org/10.1038/srep01356
Skiles, S. M., Painter, T. H., Deems, J. S., Bryant, A. C., & Landry, C. C. ( 2012 ). Dust radiative forcing in snow of the Upper Colorado River Basin: 2. Interannual variability in radiative forcing and snowmelt rates: Dust radiative forcing snowmelt response. Water Resources Research, 48 ( 7 ). https://doi.org/10.1029/2012WR011986
Tedesco, M., Fettweis, X., van den Broeke, M. R., van de Wal, R. S. W., Smeets, C. J. P. P., van de Berg, W. J., et al. ( 2011 ). The role of albedo and accumulation in the 2010 melting record in Greenland. Environmental Research Letters, 6 ( 1 ), 014005. https://doi.org/10.1088/1748-9326/6/1/014005
Torres, O., Bhartia, P. K., Taha, G., Jethva, H., Das, S., Colarco, P., et al. ( 2020 ). Stratospheric injection of massive smoke plume from Canadian Boreal fires in 2017 as seen by DSCOVR-EPIC, CALIOP, and OMPS-LP observations. Journal of Geophysical Research: Atmospheres, 125 ( 10 ). https://doi.org/10.1029/2020JD032579
Tuccella, P., Pitari, G., Colaiuda, V., Raparelli, E., & Curci, G. ( 2021 ). Present-day radiative effect from radiation-absorbing aerosols in snow. Atmospheric Chemistry and Physics, 21 ( 9 ), 6875 – 6893. https://doi.org/10.5194/acp-21-6875-2021
van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., et al. ( 2017 ). Global fire emissions estimates during 1997–2016. Earth System Science Data, 9 ( 2 ), 697 – 720. https://doi.org/10.5194/essd-9-697-2017
Wang, H., Easter, R. C., Zhang, R., Ma, P., Singh, B., Zhang, K., et al. ( 2020 ). Aerosols in the E3SM version 1: New developments and their impacts on radiative forcing. Journal of Advances in Modeling Earth Systems, 12 ( 1 ). https://doi.org/10.1029/2019MS001851
Wang, H., Rasch, P. J., Easter, R. C., Singh, B., Zhang, R., Ma, P.-L., et al. ( 2014 ). Using an explicit emission tagging method in global modeling of source-receptor relationships for black carbon in the Arctic: Variations, sources, and transport pathways: Source attribution of BC in the Arctic. Journal of Geophysical Research: Atmospheres, 119 ( 22 ), 12888 – 12909. https://doi.org/10.1002/2014JD022297
Wang, M., Xu, B., Cao, J., Tie, X., Wang, H., Zhang, R., et al. ( 2015 ). Carbonaceous aerosols recorded in a southeastern Tibetan glacier: Analysis of temporal variations and model estimates of sources and radiative forcing. Atmospheric Chemistry and Physics, 15 ( 3 ), 1191 – 1204. https://doi.org/10.5194/acp-15-1191-2015
Wang, X., Doherty, S. J., & Huang, J. ( 2013 ). Black carbon and other light-absorbing impurities in snow across Northern China. Journal of Geophysical Research: Atmospheres, 118 ( 3 ), 1471 – 1492. https://doi.org/10.1029/2012JD018291
Wang, X., Heald, C. L., Liu, J., Weber, R. J., Campuzano-Jost, P., Jimenez, J. L., et al. ( 2018 ). Exploring the observational constraints on the simulation of brown carbon. Atmospheric Chemistry and Physics, 18 ( 2 ), 635 – 653. https://doi.org/10.5194/acp-18-635-2018
Wang, X., Heald, C. L., Sedlacek, A. J., Sá, S. S., Martin, S. T., Alexander, M. L., et al. ( 2016 ). Deriving brown carbon from multiwavelength absorption measurements: Method and application to AERONET and Aethalometer observations. Atmospheric Chemistry and Physics, 16 ( 19 ), 12733 – 12752. https://doi.org/10.5194/acp-16-12733-2016
Ward, J. L., Flanner, M. G., Bergin, M., Dibb, J. E., Polashenski, C. M., Soja, A. J., & Thomas, J. L. ( 2018 ). Modeled response of Greenland snowmelt to the presence of biomass burning-based absorbing aerosols in the atmosphere and snow. Journal of Geophysical Research: Atmospheres, 123 ( 11 ), 6122 – 6141. https://doi.org/10.1029/2017JD027878
Warren, S. G. ( 1984 ). Impurities in snow: Effects on albedo and snowmelt (review). Annals of Glaciology, 5, 177 – 179. https://doi.org/10.3189/1984AoG5-1-177-179
Warren, S. G. ( 2013 ). Can black carbon in snow be detected by remote sensing? Journal of Geophysical Research: Atmospheres, 118 ( 2 ), 779 – 786. https://doi.org/10.1029/2012JD018476
Warren, S. G., & Wiscombe, W. J. ( 1980 ). A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols. Journal of the Atmospheric Sciences, 37 ( 12 ), 2734 – 2745. https://doi.org/10.1175/1520-0469(1980)037<2734:amftsa>2.0.co;2
Wu, C., Liu, X., Lin, Z., Rahimi-Esfarjani, S. R., & Lu, Z. ( 2018 ). Impacts of absorbing aerosol deposition on snowpack and hydrologic cycle in the Rocky Mountain region based on variable-resolution CESM (VR-CESM) simulations. Atmospheric Chemistry and Physics, 18 ( 2 ), 511 – 533. https://doi.org/10.5194/acp-18-511-2018
Wu, M., Liu, X., Yang, K., Luo, T., Wang, Z., Wu, C., et al. ( 2019 ). Modeling dust in East Asia by CESM and sources of biases. Journal of Geophysical Research: Atmospheres, 124 ( 14 ), 8043 – 8064. https://doi.org/10.1029/2019JD030799
Xu, B., Cao, J., Hansen, J., Yao, T., Joswia, D. R., Wang, N., et al. ( 2009 ). Black soot and the survival of Tibetan glaciers. Proceedings of the National Academy of Sciences, 106 ( 52 ), 22114 – 22118. https://doi.org/10.1073/pnas.0910444106
Yang, Y., Lou, S., Wang, H., Wang, P., & Liao, H. ( 2020 ). Trends and source apportionment of aerosols in Europe during 1980–2018. Atmospheric Chemistry and Physics, 20 ( 4 ), 2579 – 2590. https://doi.org/10.5194/acp-20-2579-2020
Yang, Y., Wang, H., Smith, S. J., Ma, P.-L., & Rasch, P. J. ( 2017 ). Source attribution of black carbon and its direct radiative forcing in China. Atmospheric Chemistry and Physics, 17 ( 6 ), 4319 – 4336. https://doi.org/10.5194/acp-17-4319-2017
Yang, Y., Wang, H., Smith, S. J., Zhang, R., Lou, S., Qian, Y., et al. ( 2018 ). Recent intensification of winter haze in China linked to foreign emissions and meteorology. Scientific Reports, 8 ( 1 ), 2107. https://doi.org/10.1038/s41598-018-20437-7
Yang, Y., Wang, H., Smith, S. J., Zhang, R., Lou, S., Yu, H., et al. ( 2018 ). Source apportionments of aerosols and their direct radiative forcing and long-term trends over continental United States. Earth’s Future, 6 ( 6 ), 793 – 808. https://doi.org/10.1029/2018EF000859
Yasunari, T. J., Aoki, T., Aoki, K., Murao, N., Yamagata, S., & Kodama, Y. ( 2014 ). The GOddard Snow Impurity Module (GOSWIM) for the NASA GEOS-5 Earth system model: Preliminary comparisons with observations in Sapporo, Japan. SOLA, 10, 8. https://doi.org/10.2151/sola.2014-011
Yasunari, T. J., Koster, R. D., Lau, W. K. M., & Kim, K.-M. ( 2015 ). Impact of snow darkening via dust, black carbon, and organic carbon on boreal spring climate in the Earth system. Journal of Geophysical Research: Atmospheres, 120 ( 11 ), 2014JD022977. https://doi.org/10.1002/2014JD022977
Zhang, R., Wang, H., Hegg, D. A., Qian, Y., Doherty, S. J., Dang, C., et al. ( 2015 ). Quantifying sources of black carbon in Western North America using observationally based analysis and an emission tagging technique in the Community Atmosphere Model. Atmospheric Chemistry and Physics Discussions, 15 ( 9 ), 12957 – 13000. https://doi.org/10.5194/acpd-15-12957-2015
Zhang, R., Wang, H., Qian, Y., Rasch, P. J., Easter, R. C., Ma, P.-L., et al. ( 2015 ). Quantifying sources, transport, deposition, and radiative forcing of black carbon over the Himalayas and Tibetan Plateau. Atmospheric Chemistry and Physics, 15 ( 11 ), 6205 – 6223. https://doi.org/10.5194/acp-15-6205-2015
Zhong, M., & Jang, M. ( 2014 ). Dynamic light absorption of biomass-burning organic carbon photochemically aged under natural sunlight. Atmospheric Chemistry and Physics, 14 ( 3 ), 1517 – 1525. https://doi.org/10.5194/acp-14-1517-2014
Abatzoglou, J. T., & Williams, A. P. ( 2016 ). Impact of anthropogenic climate change on wildfire across Western US forests. Proceedings of the National Academy of Sciences, 113 ( 42 ), 11770 – 11775. https://doi.org/10.1073/pnas.1607171113
Adler, G., Wagner, N. L., Lamb, K. D., Manfred, K. M., Schwarz, J. P., Franchin, A., et al. ( 2019 ). Evidence in biomass burning smoke for a light-absorbing aerosol with properties intermediate between brown and black carbon. Aerosol Science and Technology, 53 ( 9 ), 976 – 989. https://doi.org/10.1080/02786826.2019.1617832
Albani, S., Mahowald, N. M., Perry, A. T., Scanza, R. A., Zender, C. S., Heavens, N. G., et al. ( 2014 ). Improved dust representation in the community atmosphere model. Journal of Advances in Modeling Earth Systems, 6 ( 3 ), 541 – 570. https://doi.org/10.1002/2013MS000279
Beres, N. D., Sengupta, D., Samburova, V., Khlystov, A. Y., & Moosmüller, H. ( 2020 ). Deposition of brown carbon onto snow: Changes in snow optical and radiative properties. Atmospheric Chemistry and Physics, 20 ( 10 ), 6095 – 6114. https://doi.org/10.5194/acp-20-6095-2020
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., et al. ( 2013 ). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres, 118 ( 11 ), 5380 – 5552. https://doi.org/10.1002/jgrd.50171
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., et al. ( 2013 ). Clouds and aerosols. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, et al. (Eds.), Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press.
Brown, H., Liu, X., Feng, Y., Jiang, Y., Wu, M., Lu, Z., et al. ( 2018 ). Radiative effect and climate impacts of brown carbon with the Community Atmosphere Model (CAM5). Atmospheric Chemistry and Physics, 18 ( 24 ), 17745 – 17768. https://doi.org/10.5194/acp-18-17745-2018
Brown, H., Liu, X., Pokhrel, R., Murphy, S., Lu, Z., Saleh, R., et al. ( 2021 ). Biomass burning aerosols in most climate models are too absorbing. Nature Communications, 12 ( 1 ), 277. https://doi.org/10.1038/s41467-020-20482-9
Clarke, A. D., & Noone, K. J. ( 1985 ). Soot in the Arctic snowpack: A cause for perturbations in radiative transfer. Atmospheric Environment, 19, 2045 – 2053. https://doi.org/10.1016/0004-6981(85)90113-1
Dang, C., Brandt, R. E., & Warren, S. G. ( 2015 ). Parameterizations for narrowband and broadband albedo of pure snow and snow containing mineral dust and black carbon. Journal of Geophysical Research: Atmospheres, 120 ( 11 ), 5446 – 5468. https://doi.org/10.1002/2014JD022646
de Sá, S. S., Rizzo, L. V., Palm, B. B., Campuzano-Jost, P., Day, D. A., Yee, L. D., et al. ( 2019 ). Contributions of biomass-burning, urban, and biogenic emissions to the concentrations and light-absorbing properties of particulate matter in central Amazonia during the dry season. Atmospheric Chemistry and Physics Discussions, 1 – 77. https://doi.org/10.5194/acp-2018-1309
Doherty, S. J., Dang, C., Hegg, D. A., Zhang, R., & Warren, S. G. ( 2014 ). Black carbon and other light-absorbing particles in snow of central North America: Black carbon in North American snow. Journal of Geophysical Research: Atmospheres, 119 ( 22 ), 12807 – 12831. https://doi.org/10.1002/2014JD022350
Doherty, S. J., Warren, S. G., Grenfell, T. C., Clarke, A. D., & Brandt, R. E. ( 2010 ). Light-absorbing impurities in Arctic snow. Atmospheric Chemistry and Physics, 10 ( 23 ), 11647 – 11680. https://doi.org/10.5194/acp-10-11647-2010
Feng, L., Smith, S. J., Braun, C., Crippa, M., Gidden, M. J., Hoesly, R., et al. ( 2020 ). The generation of gridded emissions data for CMIP6. Geoscientific Model Development, 13 ( 2 ), 461 – 482. https://doi.org/10.5194/gmd-13-461-2020
Flanner, M. G., Liu, X., Zhou, C., Penner, J. E., & Jiao, C. ( 2012 ). Enhanced solar energy absorption by internally-mixed black carbon in snow grains. Atmospheric Chemistry and Physics, 12 ( 10 ), 4699 – 4721. https://doi.org/10.5194/acp-12-4699-2012
op_rights IndexNoFollow
op_doi https://doi.org/10.1029/2021MS00276810.1038/ngeo222010.1088/1748-9326/6/1/01400510.1029/2020JD03257910.5194/essd-9-697-201710.1029/2019MS00185110.1002/2014JD02229710.5194/acp-15-1191-201510.5194/acp-18-635-201810.5194/acp-16-12733-201610.3189/1984AoG5-1-1
container_title Animals
container_volume 11
container_issue 1
container_start_page 233
_version_ 1774715820841107456
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/172343 2023-08-20T03:59:50+02:00 Brown Carbon Fuel and Emission Source Attributions to Global Snow Darkening Effect Brown, Hunter Wang, Hailong Flanner, Mark Liu, Xiaohong Singh, Balwinder Zhang, Rudong Yang, Yang Wu, Mingxuan 2022-04 application/pdf https://hdl.handle.net/2027.42/172343 https://doi.org/10.1029/2021MS002768 unknown Cambridge University Press Wiley Periodicals, Inc. Brown, Hunter; Wang, Hailong; Flanner, Mark; Liu, Xiaohong; Singh, Balwinder; Zhang, Rudong; Yang, Yang; Wu, Mingxuan (2022). "Brown Carbon Fuel and Emission Source Attributions to Global Snow Darkening Effect." Journal of Advances in Modeling Earth Systems 14(4): n/a-n/a. 1942-2466 https://hdl.handle.net/2027.42/172343 doi:10.1029/2021MS002768 Journal of Advances in Modeling Earth Systems Skeie, R. B., Berntsen, T. K., Myhre, G., Tanaka, K., Kvalevåg, M. M., & Hoyle, C. R. ( 2011 ). Anthropogenic radiative forcing time series from pre-industrial times until 2010. Atmospheric Chemistry and Physics, 11 ( 22 ), 11827 – 11857. https://doi.org/10.5194/acp-11-11827-2011 Saleh, R., Robinson, E. S., Tkacik, D. S., Ahern, A. T., Liu, S., Aiken, A. C., et al. ( 2014 ). Brownness of organics in aerosols from biomass burning linked to their black carbon content. Nature Geoscience, 7 ( 9 ), 647 – 650. https://doi.org/10.1038/ngeo2220 Schwarz, J. P., Gao, R. S., Perring, A. E., Spackman, J. R., & Fahey, D. W. ( 2013 ). Black carbon aerosol size in snow. Scientific Reports, 3 ( 1 ), 1356. https://doi.org/10.1038/srep01356 Skiles, S. M., Painter, T. H., Deems, J. S., Bryant, A. C., & Landry, C. C. ( 2012 ). Dust radiative forcing in snow of the Upper Colorado River Basin: 2. Interannual variability in radiative forcing and snowmelt rates: Dust radiative forcing snowmelt response. Water Resources Research, 48 ( 7 ). https://doi.org/10.1029/2012WR011986 Tedesco, M., Fettweis, X., van den Broeke, M. R., van de Wal, R. S. W., Smeets, C. J. P. P., van de Berg, W. J., et al. ( 2011 ). The role of albedo and accumulation in the 2010 melting record in Greenland. Environmental Research Letters, 6 ( 1 ), 014005. https://doi.org/10.1088/1748-9326/6/1/014005 Torres, O., Bhartia, P. K., Taha, G., Jethva, H., Das, S., Colarco, P., et al. ( 2020 ). Stratospheric injection of massive smoke plume from Canadian Boreal fires in 2017 as seen by DSCOVR-EPIC, CALIOP, and OMPS-LP observations. Journal of Geophysical Research: Atmospheres, 125 ( 10 ). https://doi.org/10.1029/2020JD032579 Tuccella, P., Pitari, G., Colaiuda, V., Raparelli, E., & Curci, G. ( 2021 ). Present-day radiative effect from radiation-absorbing aerosols in snow. Atmospheric Chemistry and Physics, 21 ( 9 ), 6875 – 6893. https://doi.org/10.5194/acp-21-6875-2021 van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., et al. ( 2017 ). Global fire emissions estimates during 1997–2016. Earth System Science Data, 9 ( 2 ), 697 – 720. https://doi.org/10.5194/essd-9-697-2017 Wang, H., Easter, R. C., Zhang, R., Ma, P., Singh, B., Zhang, K., et al. ( 2020 ). Aerosols in the E3SM version 1: New developments and their impacts on radiative forcing. Journal of Advances in Modeling Earth Systems, 12 ( 1 ). https://doi.org/10.1029/2019MS001851 Wang, H., Rasch, P. J., Easter, R. C., Singh, B., Zhang, R., Ma, P.-L., et al. ( 2014 ). Using an explicit emission tagging method in global modeling of source-receptor relationships for black carbon in the Arctic: Variations, sources, and transport pathways: Source attribution of BC in the Arctic. Journal of Geophysical Research: Atmospheres, 119 ( 22 ), 12888 – 12909. https://doi.org/10.1002/2014JD022297 Wang, M., Xu, B., Cao, J., Tie, X., Wang, H., Zhang, R., et al. ( 2015 ). Carbonaceous aerosols recorded in a southeastern Tibetan glacier: Analysis of temporal variations and model estimates of sources and radiative forcing. Atmospheric Chemistry and Physics, 15 ( 3 ), 1191 – 1204. https://doi.org/10.5194/acp-15-1191-2015 Wang, X., Doherty, S. J., & Huang, J. ( 2013 ). Black carbon and other light-absorbing impurities in snow across Northern China. Journal of Geophysical Research: Atmospheres, 118 ( 3 ), 1471 – 1492. https://doi.org/10.1029/2012JD018291 Wang, X., Heald, C. L., Liu, J., Weber, R. J., Campuzano-Jost, P., Jimenez, J. L., et al. ( 2018 ). Exploring the observational constraints on the simulation of brown carbon. Atmospheric Chemistry and Physics, 18 ( 2 ), 635 – 653. https://doi.org/10.5194/acp-18-635-2018 Wang, X., Heald, C. L., Sedlacek, A. J., Sá, S. S., Martin, S. T., Alexander, M. L., et al. ( 2016 ). Deriving brown carbon from multiwavelength absorption measurements: Method and application to AERONET and Aethalometer observations. Atmospheric Chemistry and Physics, 16 ( 19 ), 12733 – 12752. https://doi.org/10.5194/acp-16-12733-2016 Ward, J. L., Flanner, M. G., Bergin, M., Dibb, J. E., Polashenski, C. M., Soja, A. J., & Thomas, J. L. ( 2018 ). Modeled response of Greenland snowmelt to the presence of biomass burning-based absorbing aerosols in the atmosphere and snow. Journal of Geophysical Research: Atmospheres, 123 ( 11 ), 6122 – 6141. https://doi.org/10.1029/2017JD027878 Warren, S. G. ( 1984 ). Impurities in snow: Effects on albedo and snowmelt (review). Annals of Glaciology, 5, 177 – 179. https://doi.org/10.3189/1984AoG5-1-177-179 Warren, S. G. ( 2013 ). Can black carbon in snow be detected by remote sensing? Journal of Geophysical Research: Atmospheres, 118 ( 2 ), 779 – 786. https://doi.org/10.1029/2012JD018476 Warren, S. G., & Wiscombe, W. J. ( 1980 ). A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols. Journal of the Atmospheric Sciences, 37 ( 12 ), 2734 – 2745. https://doi.org/10.1175/1520-0469(1980)037<2734:amftsa>2.0.co;2 Wu, C., Liu, X., Lin, Z., Rahimi-Esfarjani, S. R., & Lu, Z. ( 2018 ). Impacts of absorbing aerosol deposition on snowpack and hydrologic cycle in the Rocky Mountain region based on variable-resolution CESM (VR-CESM) simulations. Atmospheric Chemistry and Physics, 18 ( 2 ), 511 – 533. https://doi.org/10.5194/acp-18-511-2018 Wu, M., Liu, X., Yang, K., Luo, T., Wang, Z., Wu, C., et al. ( 2019 ). Modeling dust in East Asia by CESM and sources of biases. Journal of Geophysical Research: Atmospheres, 124 ( 14 ), 8043 – 8064. https://doi.org/10.1029/2019JD030799 Xu, B., Cao, J., Hansen, J., Yao, T., Joswia, D. R., Wang, N., et al. ( 2009 ). Black soot and the survival of Tibetan glaciers. Proceedings of the National Academy of Sciences, 106 ( 52 ), 22114 – 22118. https://doi.org/10.1073/pnas.0910444106 Yang, Y., Lou, S., Wang, H., Wang, P., & Liao, H. ( 2020 ). Trends and source apportionment of aerosols in Europe during 1980–2018. Atmospheric Chemistry and Physics, 20 ( 4 ), 2579 – 2590. https://doi.org/10.5194/acp-20-2579-2020 Yang, Y., Wang, H., Smith, S. J., Ma, P.-L., & Rasch, P. J. ( 2017 ). Source attribution of black carbon and its direct radiative forcing in China. Atmospheric Chemistry and Physics, 17 ( 6 ), 4319 – 4336. https://doi.org/10.5194/acp-17-4319-2017 Yang, Y., Wang, H., Smith, S. J., Zhang, R., Lou, S., Qian, Y., et al. ( 2018 ). Recent intensification of winter haze in China linked to foreign emissions and meteorology. Scientific Reports, 8 ( 1 ), 2107. https://doi.org/10.1038/s41598-018-20437-7 Yang, Y., Wang, H., Smith, S. J., Zhang, R., Lou, S., Yu, H., et al. ( 2018 ). Source apportionments of aerosols and their direct radiative forcing and long-term trends over continental United States. Earth’s Future, 6 ( 6 ), 793 – 808. https://doi.org/10.1029/2018EF000859 Yasunari, T. J., Aoki, T., Aoki, K., Murao, N., Yamagata, S., & Kodama, Y. ( 2014 ). The GOddard Snow Impurity Module (GOSWIM) for the NASA GEOS-5 Earth system model: Preliminary comparisons with observations in Sapporo, Japan. SOLA, 10, 8. https://doi.org/10.2151/sola.2014-011 Yasunari, T. J., Koster, R. D., Lau, W. K. M., & Kim, K.-M. ( 2015 ). Impact of snow darkening via dust, black carbon, and organic carbon on boreal spring climate in the Earth system. Journal of Geophysical Research: Atmospheres, 120 ( 11 ), 2014JD022977. https://doi.org/10.1002/2014JD022977 Zhang, R., Wang, H., Hegg, D. A., Qian, Y., Doherty, S. J., Dang, C., et al. ( 2015 ). Quantifying sources of black carbon in Western North America using observationally based analysis and an emission tagging technique in the Community Atmosphere Model. Atmospheric Chemistry and Physics Discussions, 15 ( 9 ), 12957 – 13000. https://doi.org/10.5194/acpd-15-12957-2015 Zhang, R., Wang, H., Qian, Y., Rasch, P. J., Easter, R. C., Ma, P.-L., et al. ( 2015 ). Quantifying sources, transport, deposition, and radiative forcing of black carbon over the Himalayas and Tibetan Plateau. Atmospheric Chemistry and Physics, 15 ( 11 ), 6205 – 6223. https://doi.org/10.5194/acp-15-6205-2015 Zhong, M., & Jang, M. ( 2014 ). Dynamic light absorption of biomass-burning organic carbon photochemically aged under natural sunlight. Atmospheric Chemistry and Physics, 14 ( 3 ), 1517 – 1525. https://doi.org/10.5194/acp-14-1517-2014 Abatzoglou, J. T., & Williams, A. P. ( 2016 ). Impact of anthropogenic climate change on wildfire across Western US forests. Proceedings of the National Academy of Sciences, 113 ( 42 ), 11770 – 11775. https://doi.org/10.1073/pnas.1607171113 Adler, G., Wagner, N. L., Lamb, K. D., Manfred, K. M., Schwarz, J. P., Franchin, A., et al. ( 2019 ). Evidence in biomass burning smoke for a light-absorbing aerosol with properties intermediate between brown and black carbon. Aerosol Science and Technology, 53 ( 9 ), 976 – 989. https://doi.org/10.1080/02786826.2019.1617832 Albani, S., Mahowald, N. M., Perry, A. T., Scanza, R. A., Zender, C. S., Heavens, N. G., et al. ( 2014 ). Improved dust representation in the community atmosphere model. Journal of Advances in Modeling Earth Systems, 6 ( 3 ), 541 – 570. https://doi.org/10.1002/2013MS000279 Beres, N. D., Sengupta, D., Samburova, V., Khlystov, A. Y., & Moosmüller, H. ( 2020 ). Deposition of brown carbon onto snow: Changes in snow optical and radiative properties. Atmospheric Chemistry and Physics, 20 ( 10 ), 6095 – 6114. https://doi.org/10.5194/acp-20-6095-2020 Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., et al. ( 2013 ). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres, 118 ( 11 ), 5380 – 5552. https://doi.org/10.1002/jgrd.50171 Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., et al. ( 2013 ). Clouds and aerosols. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, et al. (Eds.), Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press. Brown, H., Liu, X., Feng, Y., Jiang, Y., Wu, M., Lu, Z., et al. ( 2018 ). Radiative effect and climate impacts of brown carbon with the Community Atmosphere Model (CAM5). Atmospheric Chemistry and Physics, 18 ( 24 ), 17745 – 17768. https://doi.org/10.5194/acp-18-17745-2018 Brown, H., Liu, X., Pokhrel, R., Murphy, S., Lu, Z., Saleh, R., et al. ( 2021 ). Biomass burning aerosols in most climate models are too absorbing. Nature Communications, 12 ( 1 ), 277. https://doi.org/10.1038/s41467-020-20482-9 Clarke, A. D., & Noone, K. J. ( 1985 ). Soot in the Arctic snowpack: A cause for perturbations in radiative transfer. Atmospheric Environment, 19, 2045 – 2053. https://doi.org/10.1016/0004-6981(85)90113-1 Dang, C., Brandt, R. E., & Warren, S. G. ( 2015 ). Parameterizations for narrowband and broadband albedo of pure snow and snow containing mineral dust and black carbon. Journal of Geophysical Research: Atmospheres, 120 ( 11 ), 5446 – 5468. https://doi.org/10.1002/2014JD022646 de Sá, S. S., Rizzo, L. V., Palm, B. B., Campuzano-Jost, P., Day, D. A., Yee, L. D., et al. ( 2019 ). Contributions of biomass-burning, urban, and biogenic emissions to the concentrations and light-absorbing properties of particulate matter in central Amazonia during the dry season. Atmospheric Chemistry and Physics Discussions, 1 – 77. https://doi.org/10.5194/acp-2018-1309 Doherty, S. J., Dang, C., Hegg, D. A., Zhang, R., & Warren, S. G. ( 2014 ). Black carbon and other light-absorbing particles in snow of central North America: Black carbon in North American snow. Journal of Geophysical Research: Atmospheres, 119 ( 22 ), 12807 – 12831. https://doi.org/10.1002/2014JD022350 Doherty, S. J., Warren, S. G., Grenfell, T. C., Clarke, A. D., & Brandt, R. E. ( 2010 ). Light-absorbing impurities in Arctic snow. Atmospheric Chemistry and Physics, 10 ( 23 ), 11647 – 11680. https://doi.org/10.5194/acp-10-11647-2010 Feng, L., Smith, S. J., Braun, C., Crippa, M., Gidden, M. J., Hoesly, R., et al. ( 2020 ). The generation of gridded emissions data for CMIP6. Geoscientific Model Development, 13 ( 2 ), 461 – 482. https://doi.org/10.5194/gmd-13-461-2020 Flanner, M. G., Liu, X., Zhou, C., Penner, J. E., & Jiao, C. ( 2012 ). Enhanced solar energy absorption by internally-mixed black carbon in snow grains. Atmospheric Chemistry and Physics, 12 ( 10 ), 4699 – 4721. https://doi.org/10.5194/acp-12-4699-2012 IndexNoFollow aerosol-snow interactions brown carbon climate model CESM biomass burning SNICAR Geological Sciences Science Article 2022 ftumdeepblue https://doi.org/10.1029/2021MS00276810.1038/ngeo222010.1088/1748-9326/6/1/01400510.1029/2020JD03257910.5194/essd-9-697-201710.1029/2019MS00185110.1002/2014JD02229710.5194/acp-15-1191-201510.5194/acp-18-635-201810.5194/acp-16-12733-201610.3189/1984AoG5-1-1 2023-07-31T20:32:10Z Snow and ice albedo reduction due to deposition of absorbing particles (snow darkening effect [SDE]) warms the Earth system and is largely attributed to black carbon (BC) and dust. Absorbing organic aerosol (BrC) also contributes to SDE but has received less attention due to uncertainty and challenges in model representation. This work incorporates the SDE of absorbing organic aerosol (BrC) from biomass burning and biofuel sources into the Snow Ice and Aerosol Radiative (SNICAR) model within a variant of the Community Earth System Model. Additionally, 12 different emission regions of BrC and BC from biomass burning and biofuel sources are tagged to quantify the relative contribution to global and regional SDE. BrC global SDE (0.021–0.056 Wm−2 over land area and 0.0061–0.016 Wm−2 over global area) is larger than other model estimates, corresponding to 37%–98% of the SDE from BC. When compared to observations, BrC simulations have a range in median bias (−2.5% to +21%), with better agreement in the simulations that include BrC photochemical bleaching. The largest relative contributions to global BrC SDE are traced to Northern Asia (23%–31%), Southeast Asia (16%–21%), and South Africa (13%–17%). Transport from Southeast Asia contributes nearly half of the regional BrC SDE in Antarctica (0.084–0.3 Wm−2), which is the largest regional input to global BrC SDE. Lower latitude BrC SDE is correlated with snowmelt, in-snow BrC concentrations, and snow cover fraction, while polar BrC SDE is correlated with surface insolation and snowmelt. This indicates the importance of in-snow processes and snow feedbacks on modeled BrC SDE.Plain Language SummaryBright surfaces like snow and ice reflect some of the sun’s light back to space, leading to less surface warming. These reflective surfaces can be coated by light absorbing particles such as soot and dust, reducing their reflectivity and speeding up the warming of the climate. “Brown carbon” is another absorbing particle that also darkens these surfaces. Fewer studies have looked ... Article in Journal/Newspaper Annals of Glaciology Antarc* Antarctica Arctic University of Michigan: Deep Blue Animals 11 1 233