Synergistic Use of Far- and Mid-Infrared Spectral Radiances for Satellite-Based Detection of Polar Ice Clouds Over Ocean

Cloud phase is an important factor affecting cloud contributions to the polar energy budget. Brightness temperature differences (BTDs) between two mid-infrared (mid-IR) spectral channels are commonly used in satellite remote sensing to determine the cloud phase, but the mid-IR has limitations for cl...

Full description

Bibliographic Details
Main Authors: Peterson, Colten A., Huang, Xianglei, Chen, Xiuhong, Yang, Ping
Format: Article in Journal/Newspaper
Language:unknown
Published: Copernicus ClimateChange Service (C3S) Climate Data Store (CDS) 2022
Subjects:
Online Access:https://hdl.handle.net/2027.42/172281
https://doi.org/10.1029/2021JD035733
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/172281
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic Atmospheric and Oceanic Sciences
Science
spellingShingle Atmospheric and Oceanic Sciences
Science
Peterson, Colten A.
Huang, Xianglei
Chen, Xiuhong
Yang, Ping
Synergistic Use of Far- and Mid-Infrared Spectral Radiances for Satellite-Based Detection of Polar Ice Clouds Over Ocean
topic_facet Atmospheric and Oceanic Sciences
Science
description Cloud phase is an important factor affecting cloud contributions to the polar energy budget. Brightness temperature differences (BTDs) between two mid-infrared (mid-IR) spectral channels are commonly used in satellite remote sensing to determine the cloud phase, but the mid-IR has limitations for cloud phase determination in polar regions. This study explores the synergy between the far- and mid-IR for ice cloud phase determinations over polar oceans. A far-IR BTD test (BTD449-521) is developed based on the spectral variations of both ice cloud scattering and absorption properties in the far-IR “dirty window” region (400–600 cm−1 or 16.7–25 μm). Synthetic IR radiances at 1 cm−1 spectral resolution are generated using ERA5 reanalysis data for both polar regions. A subset of these spectra is used to compare the ice phase determination skill of the far-IR test with an “AIRS-Like” mid-IR BTD test (BTD1231-960) for combinations of effective ice particle diameter (Deff_ice), cloud optical depth (COD), and cloud top pressure (CTP). The far-IR test is performing better for ice clouds with the smallest Deff_ice that we have studied (20 μm) due to the sensitivity of far-IR scattering to ice particle size. The mid-IR test was either comparable to or more successful than the far-IR test for ice clouds with large particle sizes. For all Deff_ice, increasing COD leads to enhanced far-IR BTD signals due to stronger multiple scattering in the far-IR than in the mid-IR. Overall, the variations in far-IR and mid-IR BTD test performance are strongly sensitive to Deff_ice, followed by COD and CTP.Key PointsFar-infrared (IR) scattering and absorption can be used together for ice cloud detection in passive remote sensing of polar regionsThe far-IR ice phase test is most useful for ice particle effective diameters less than 40 µmBoth the far-IR and mid-IR ice phase tests are more sensitive to ice particle size than to cloud top pressure and optical depth Peer Reviewed ...
format Article in Journal/Newspaper
author Peterson, Colten A.
Huang, Xianglei
Chen, Xiuhong
Yang, Ping
author_facet Peterson, Colten A.
Huang, Xianglei
Chen, Xiuhong
Yang, Ping
author_sort Peterson, Colten A.
title Synergistic Use of Far- and Mid-Infrared Spectral Radiances for Satellite-Based Detection of Polar Ice Clouds Over Ocean
title_short Synergistic Use of Far- and Mid-Infrared Spectral Radiances for Satellite-Based Detection of Polar Ice Clouds Over Ocean
title_full Synergistic Use of Far- and Mid-Infrared Spectral Radiances for Satellite-Based Detection of Polar Ice Clouds Over Ocean
title_fullStr Synergistic Use of Far- and Mid-Infrared Spectral Radiances for Satellite-Based Detection of Polar Ice Clouds Over Ocean
title_full_unstemmed Synergistic Use of Far- and Mid-Infrared Spectral Radiances for Satellite-Based Detection of Polar Ice Clouds Over Ocean
title_sort synergistic use of far- and mid-infrared spectral radiances for satellite-based detection of polar ice clouds over ocean
publisher Copernicus ClimateChange Service (C3S) Climate Data Store (CDS)
publishDate 2022
url https://hdl.handle.net/2027.42/172281
https://doi.org/10.1029/2021JD035733
genre Arctic
genre_facet Arctic
op_relation Peterson, Colten A.; Huang, Xianglei; Chen, Xiuhong; Yang, Ping (2022). "Synergistic Use of Far- and Mid-Infrared Spectral Radiances for Satellite-Based Detection of Polar Ice Clouds Over Ocean." Journal of Geophysical Research: Atmospheres 127(9): n/a-n/a.
2169-897X
2169-8996
https://hdl.handle.net/2027.42/172281
doi:10.1029/2021JD035733
Journal of Geophysical Research: Atmospheres
Rowe, P. M., Cox, C. J., Neshyba, S., & Walden, V. P. ( 2019 ). Toward autonomous surface-based infrared remote sensing of polar clouds: Retrievals of cloud optical and microphysical properties. Atmospheric Measurement Techniques, 12 ( 9 ), 5071 – 5086. https://doi.org/10.5194/amt-12-5071-2019
Palchetti, L., Brindley, H., Bantges, R., Buehler, S. A., Camy-Peyret, C., Carli, B., et al. ( 2020 ). FORUM: Unique far-infrared satellite observations to better understand how Earth radiates energy to space. Bulletin of the American Meteorological Society, 101 ( 12 ), E2030 – E2046. https://doi.org/10.1175/BAMS-D-19-0322.1
Peterson, C. A., Huang, X., Chen, X., & Yang, P. ( 2022 ). Synergistic use of far- and mid-infrared spectral radiances for polar ice cloud detection from space. Zenodo. https://doi.org/10.5281/zenodo.5874365
Peterson, C. A., Yue, Q., Kahn, B. H., Fetzer, E., & Huang, X. ( 2020 ). Evaluation of AIRS cloud phase classification over the Arctic Ocean against combined CloudSat–CALIPSO observations. Journal of Applied Meteorology and Climatology, 59 ( 8 ), 1277 – 1294. https://doi.org/10.1175/JAMC-D-20-0016.1
Rathke, C., Fischer, J., Neshyba, S., & Shupe, M. ( 2002 ). Improving IR cloud phase determination with 20 microns spectral observations. Geophysical Research Letters, 29 ( 8 ), 50-1 – 50-4. https://doi.org/10.1029/2001GL014594
Ridolfi, M., Del Bianco, S., Di Roma, A., Castelli, E., Belotti, C., Dandini, P., et al. ( 2020 ). FORUM earth explorer 9: Characteristics of level 2 products and synergies with IASI-NG. Remote Sensing, 12 ( 9 ), 1496. https://doi.org/10.3390/rs12091496
Rossow, W. B., & Schiffer, R. A. ( 1999 ). Advances in understanding clouds from ISCCP. Bulletin of the American Meteorological Society, 80 ( 11 ), 2261 – 2287. https://doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2
Rowe, P. M., Cox, C. J., & Walden, V. P. ( 2016 ). Toward autonomous surface-based infrared remote sensing of polar clouds: Cloud-height retrievals. Atmospheric Measurement Techniques, 9, 3641 – 3659. https://doi.org/10.5194/amt-9-3641-2016
Saito, M., Yang, P., Huang, X., Brindley, H. E., Mlynczak, M. G., & Kahn, B. H. ( 2020 ). Spaceborne middle- and far-infrared observations improving nighttime ice cloud property retrievals. Geophysical Research Letters, 47 ( 18 ), e2020GL087491. https://doi.org/10.1029/2020GL087491
Scott, R. C., Lubin, D., Vogelmann, A. M., & Kato, S. ( 2017 ). West Antarctic ice sheet cloud cover and surface radiation budget from NASA A-Train satellites. Journal of Climate, 30 ( 16 ), 6151 – 6170. https://doi.org/10.1175/JCLI-D-16-0644.1
Sgheri, L., Belotti, C., Ben-Yami, M., Bianchini, G., Carnicero Dominguez, B., Cortesi, U., et al. ( 2021 ). The FORUM end-to-end simulator project: Architecture and results. Atmospheric Measurement Techniques Discussion. https://doi.org/10.5194/amt-2021-196
Shupe, M. D. ( 2011 ). Clouds at Arctic atmospheric observatories. Part ii: Thermodynamic phase characteristics. Journal of Applied Meteorology and Climatology, 50 ( 3 ), 645 – 661. https://doi.org/10.1175/2010jamc2468.1
Shupe, M. D., & Intrieri, J. M. ( 2004 ). Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle. Journal of Climate, 17 ( 3 ), 616 – 628. https://doi.org/10.1175/1520-0442(2004)017<0616:crfota>2.0.co.2
Stamnes, K., Tsay, S. C., Wiscombe, W., & Jayaweera, K. ( 1988 ). Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Applied Optics, 27 ( 12 ), 2502 – 2509. https://doi.org/10.1364/AO.27.002502
Strabala, K. I., Ackerman, S. A., & Menzel, W. P. ( 1994 ). Cloud properties inferred from 8–12-µm data. Journal of Applied Meteorology and Climatology, 33 ( 2 ), 212 – 229. https://doi.org/10.1175/1520-0450(1994)033<0212:CPIFD>2.0.CO;2
Turner, D. D. ( 2005 ). Arctic mixed-phase cloud properties from AERI lidar observations: Algorithm and results from SHEBA. Journal of Applied Meteorology, 44 ( 4 ), 427 – 444. https://doi.org/10.1175/JAM2208.1
Vergara-Temprado, J., Miltenberger, A. K., Furtado, K., Grosvenor, D. P., Shipway, B. J., Hill, A. A., et al. ( 2018 ). Strong control of Southern Ocean cloud reflectivity by ice-nucleating particles. Proceedings of the National Academy of Sciences of the United States of America, 115 ( 11 ), 2687 – 2692. https://doi.org/10.1073/pnas.1721627115
Yang, P., Bi, L., Baum, B. A., Liou, K., Kattawar, G. W., Mishchenko, M. I., & Cole, B. ( 2013a ). Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 μm. Journal of the Atmospheric Sciences, 70 ( 1 ), 330 – 347. https://doi.org/10.1175/JAS-D-12-039.1
Yang, P., Bi, L., Baum, B. A., Liou, K., Kattawar, G. W., Mishchenko, M. I., & Cole, B. ( 2013b ). Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 μm (Version 1) [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.6468778
Yang, P., Mlynczak, M. G., Wei, H., Kratz, D. P., Baum, B. A., Hu, Y. X., et al. ( 2003 ). Spectral signature of ice clouds in the far-infrared region: Single-scattering calculations and radiative sensitivity study. Journal of Geophysical Physics, 108, 4569. https://doi.org/10.1029/2002JD003291
Ackerman, S. A., Smith, W. L., Spinhirne, J. D., & Revercomb, H. E. ( 1990 ). The 27-28 October 1986 FIRE IFO cirrus case study: Spectral properties of cirrus clouds in the 8-12 μm window. Monthly Weather Review, 118 ( 11 ), 2377 – 2388. https://doi.org/10.1175/1520-0493(1990)118<2377:TOFICC>2.0.CO;2
Baum, B., Kratz, D., Yang, P., Ou, S., Hu, Y., Soulen, P., & Tsay, S. ( 2000 ). Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS: 1. Data and models. Journal of Geophysical Research, 105 ( D9 ), 11767 – 11780. https://doi.org/10.1029/1999JD901089
Baum, B. A., Menzel, W. P., Frey, R. A., Tobin, D. C., Holz, R. E., Ackerman, S. A., et al. ( 2012 ). MODIS cloud-top property refinements for Collection 6. Journal of Applied Meteorology and Climatology, 51 ( 6 ), 1145 – 1163. https://doi.org/10.1175/jamc-d-11-0203.1
Baum, B. A., Yang, P., Heymsfield, A. J., Bansemer, A. R., Cole, B. H., Merrelli, A., et al. ( 2014 ). Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 um. Journal of Quantitative Spectroscopy and Radiative Transfer, 146, 123 – 139. https://doi.org/10.1016/j.jqsrt.2014.02.029
Berk, A., Anderson, G. P., Acharya, P. K., Bernstein, L. S., Muratov, L., Lee, J., et al. ( 2005 ). MODTRAN5: A reformulated atmospheric band model with auxiliary species and practical multiple scattering options. Proceedings, Multispectral and Hyperspectral Remote Sensing Instruments and Applications II (p. 5665 ). https://doi.org/10.1117/12.578758
Cesana, G., Kay, J. E., Chepfer, H., English, J. M., & de Boer, G. ( 2012 ). Ubiquitous low-level liquid-containing Arctic clouds: New observations and climate model constraints from CALIPSO-GOCCP. Geophysical Research Letters, 39, L20804. https://doi.org/10.1029/2012gl053385
Cho, H. M., Nasiri, S. L., & Yang, P. ( 2009 ). Application of CALIOP measurements to the evaluation of cloud phase derived from MODIS infrared channels. Journal of Applied Meteorology and Climatology, 48 ( 10 ), 2169 – 2180. https://doi.org/10.1175/2009jamc2238.1
Chou, M., Lee, K., Tsay, S., & Fu, Q. ( 1999 ). Parameterization for cloud longwave scattering for use in atmospheric models. Journal of Climate, 12 ( 1 ), 159 – 169. https://doi.org/10.1175/1520-0442(1999)012<019:PFCLSF>2.0.CO;2
Cossich, W., Maestri, T., Magurno, D., Martinazzo, M., Natale, G. D., Palchetti, L., et al. ( 2021 ). Ice and mixed-phase cloud statistics on Antarctic plateau. Atmospheric Chemistry and Physics, 21, 13811 – 13833. https://doi.org/10.5194/acp-21-13811-2021
de Boer, G., Morrison, H., Shupe, M. D., & Hildner, R. ( 2011 ). Evidence of liquid dependent ice nucleation in high-latitude stratiform clouds from surface remote sensors. Geophysical Research Letters, 38 ( 1 ), L01803. https://doi.org/10.1029/2010GL046016
Di Natale, G., Bianchini, G., Del Guasta, M., Ridolfi, M., Maestri, T., Cossich, W., et al. ( 2020 ). Characterization of the far infrared properties and radiative forcing of Antarctic ice and water clouds exploiting the spectrometer-LiDAR synergy. Remote Sensing, 12 ( 21 ), 3574. https://doi.org/10.3390/rs12213574
Fu, Q., Liou, K. N., Cribb, M. C., Charlock, T. P., & Grossman, A. ( 1997 ). Multiple scattering parameterization in thermal infrared radiative transfer. Journal of the Atmospheric Sciences, 54 ( 24 ), 2799 – 2812. https://doi.org/10.1175/15200469(1997)054<2799:MSPITI>2.0.CO;2
Garrett, T., & Zhao, C. ( 2006 ). Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes. Nature, 440 ( 7085 ), 787 – 789. https://doi.org/10.1038/nature04636
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., et al. ( 2018a ). ERA5 hourly data on single levels from 1979 to present [Dataset]. Copernicus ClimateChange Service (C3S) Climate Data Store (CDS). Retrieved from https://cds.climate.copernicus.eu
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., et al. ( 2018b ). ERA5 hourly data on pressure levels from 1979 to present [Dataset]. Copernicus ClimateChange Service (C3S) Climate Data Store (CDS). Retrieved from https://cds.climate.copernicus.eu
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., et al. ( 2020 ). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146, 1999 – 2049. https://doi.org/10.1002/qj.3803
Huang, X. L., Chen, X. H., Zhou, D. K., & Liu, X. ( 2016 ). An observationally based global band-by-band surface emissivity dataset for climate and weather simulations. Journal of the Atmospheric Sciences, 73 ( 9 ), 3541 – 3555. https://doi.org/10.1175/JAS-D-15-0355.1
Intrieri, J. M., Fairall, C. W., Shupe, M. D., Persson, P. O. G., Andreas, E. L., Guest, P. S., & Moritz, R. E. ( 2002 ). An annual cycle of Arctic surface cloud forcing at SHEBA. Journal of Geophysical Research, 107 ( C10 ), 14. https://doi.org/10.1029/2000jc000439
Kahn, B. H., Irion, F. W., Dang, V. T., Manning, E. M., Nasiri, S. L., Naud, C. M., et al. ( 2014 ). The Atmospheric Infrared Sounder version 6 cloud products. Atmospheric Chemistry and Physics, 14 ( 1 ), 399 – 426. https://doi.org/10.5194/acp-14-399-2014
Kay, J. E., Bourdages, L., Miller, N. B., Morrison, A., Yettella, V., Chepfer, H., & Eaton, B. ( 2016 ). Evaluating and improving cloud phase in the Community Atmosphere Model version 5 using spaceborne lidar observations. Journal of Geophysical Research: Atmospheres, 121 ( 8 ), 4162 – 4176. https://doi.org/10.1002/2015jd024699
Korolev, A., McFarquhar, G., Field, P. R., Franklin, C., Lawson, P., Wang, Z., et al. ( 2017 ). Mixed-phase clouds: Progress and challenges. Meteorological Monographs, 58, 5 – 15. https://doi.org/10.1175/AMSMONOGRAPHS-D-17-0001.1.50
Lawson, R., & Gettelman, A. ( 2014 ). Impact of Antarctic cloud on climate. Proceedings of the National Academy of Sciences, 111 ( 51 ), 18156 – 18161. https://doi.org/10.1073/pnas.1418197111
L’Ecuyer, T. S., Drouin, B. J., Anheuser, J., Grames, M., Henderson, D., Huang, X., et al. ( 2021 ). The polar radiant energy in the far InfraRed experiment: A new perspective on polar longwave energy exchanges. Bulletin of the American Meteorological Society, 102 ( 7 ), 1 – 46. https://doi.org/10.1175/BAMS-D-20-0155.1
Libois, Q., & Blanchet, J. P. ( 2017 ). Added value of far-infrared radiometry for remote sensing of ice clouds. Journal of Geophysical Research: Atmospheres, 122 ( 12 ), 6541 – 6564. https://doi.org/10.1002/2016jd026423
op_rights IndexNoFollow
op_doi https://doi.org/10.1029/2021JD03573310.1175/BAMS-D-19-0322.110.3390/rs1209149610.5194/amt-2021-19610.1175/2010jamc2468.110.1175/JAM2208.110.1073/pnas.172162711510.1029/2002JD00329110.1175/jamc-d-11-0203.110.1016/j.jqsrt.2014.02.02910.1117/12.57875810.5194
_version_ 1774713580906610688
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/172281 2023-08-20T04:03:10+02:00 Synergistic Use of Far- and Mid-Infrared Spectral Radiances for Satellite-Based Detection of Polar Ice Clouds Over Ocean Peterson, Colten A. Huang, Xianglei Chen, Xiuhong Yang, Ping 2022-05-16 application/pdf https://hdl.handle.net/2027.42/172281 https://doi.org/10.1029/2021JD035733 unknown Copernicus ClimateChange Service (C3S) Climate Data Store (CDS) Wiley Periodicals, Inc. Peterson, Colten A.; Huang, Xianglei; Chen, Xiuhong; Yang, Ping (2022). "Synergistic Use of Far- and Mid-Infrared Spectral Radiances for Satellite-Based Detection of Polar Ice Clouds Over Ocean." Journal of Geophysical Research: Atmospheres 127(9): n/a-n/a. 2169-897X 2169-8996 https://hdl.handle.net/2027.42/172281 doi:10.1029/2021JD035733 Journal of Geophysical Research: Atmospheres Rowe, P. M., Cox, C. J., Neshyba, S., & Walden, V. P. ( 2019 ). Toward autonomous surface-based infrared remote sensing of polar clouds: Retrievals of cloud optical and microphysical properties. Atmospheric Measurement Techniques, 12 ( 9 ), 5071 – 5086. https://doi.org/10.5194/amt-12-5071-2019 Palchetti, L., Brindley, H., Bantges, R., Buehler, S. A., Camy-Peyret, C., Carli, B., et al. ( 2020 ). FORUM: Unique far-infrared satellite observations to better understand how Earth radiates energy to space. Bulletin of the American Meteorological Society, 101 ( 12 ), E2030 – E2046. https://doi.org/10.1175/BAMS-D-19-0322.1 Peterson, C. A., Huang, X., Chen, X., & Yang, P. ( 2022 ). Synergistic use of far- and mid-infrared spectral radiances for polar ice cloud detection from space. Zenodo. https://doi.org/10.5281/zenodo.5874365 Peterson, C. A., Yue, Q., Kahn, B. H., Fetzer, E., & Huang, X. ( 2020 ). Evaluation of AIRS cloud phase classification over the Arctic Ocean against combined CloudSat–CALIPSO observations. Journal of Applied Meteorology and Climatology, 59 ( 8 ), 1277 – 1294. https://doi.org/10.1175/JAMC-D-20-0016.1 Rathke, C., Fischer, J., Neshyba, S., & Shupe, M. ( 2002 ). Improving IR cloud phase determination with 20 microns spectral observations. Geophysical Research Letters, 29 ( 8 ), 50-1 – 50-4. https://doi.org/10.1029/2001GL014594 Ridolfi, M., Del Bianco, S., Di Roma, A., Castelli, E., Belotti, C., Dandini, P., et al. ( 2020 ). FORUM earth explorer 9: Characteristics of level 2 products and synergies with IASI-NG. Remote Sensing, 12 ( 9 ), 1496. https://doi.org/10.3390/rs12091496 Rossow, W. B., & Schiffer, R. A. ( 1999 ). Advances in understanding clouds from ISCCP. Bulletin of the American Meteorological Society, 80 ( 11 ), 2261 – 2287. https://doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2 Rowe, P. M., Cox, C. J., & Walden, V. P. ( 2016 ). Toward autonomous surface-based infrared remote sensing of polar clouds: Cloud-height retrievals. Atmospheric Measurement Techniques, 9, 3641 – 3659. https://doi.org/10.5194/amt-9-3641-2016 Saito, M., Yang, P., Huang, X., Brindley, H. E., Mlynczak, M. G., & Kahn, B. H. ( 2020 ). Spaceborne middle- and far-infrared observations improving nighttime ice cloud property retrievals. Geophysical Research Letters, 47 ( 18 ), e2020GL087491. https://doi.org/10.1029/2020GL087491 Scott, R. C., Lubin, D., Vogelmann, A. M., & Kato, S. ( 2017 ). West Antarctic ice sheet cloud cover and surface radiation budget from NASA A-Train satellites. Journal of Climate, 30 ( 16 ), 6151 – 6170. https://doi.org/10.1175/JCLI-D-16-0644.1 Sgheri, L., Belotti, C., Ben-Yami, M., Bianchini, G., Carnicero Dominguez, B., Cortesi, U., et al. ( 2021 ). The FORUM end-to-end simulator project: Architecture and results. Atmospheric Measurement Techniques Discussion. https://doi.org/10.5194/amt-2021-196 Shupe, M. D. ( 2011 ). Clouds at Arctic atmospheric observatories. Part ii: Thermodynamic phase characteristics. Journal of Applied Meteorology and Climatology, 50 ( 3 ), 645 – 661. https://doi.org/10.1175/2010jamc2468.1 Shupe, M. D., & Intrieri, J. M. ( 2004 ). Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle. Journal of Climate, 17 ( 3 ), 616 – 628. https://doi.org/10.1175/1520-0442(2004)017<0616:crfota>2.0.co.2 Stamnes, K., Tsay, S. C., Wiscombe, W., & Jayaweera, K. ( 1988 ). Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Applied Optics, 27 ( 12 ), 2502 – 2509. https://doi.org/10.1364/AO.27.002502 Strabala, K. I., Ackerman, S. A., & Menzel, W. P. ( 1994 ). Cloud properties inferred from 8–12-µm data. Journal of Applied Meteorology and Climatology, 33 ( 2 ), 212 – 229. https://doi.org/10.1175/1520-0450(1994)033<0212:CPIFD>2.0.CO;2 Turner, D. D. ( 2005 ). Arctic mixed-phase cloud properties from AERI lidar observations: Algorithm and results from SHEBA. Journal of Applied Meteorology, 44 ( 4 ), 427 – 444. https://doi.org/10.1175/JAM2208.1 Vergara-Temprado, J., Miltenberger, A. K., Furtado, K., Grosvenor, D. P., Shipway, B. J., Hill, A. A., et al. ( 2018 ). Strong control of Southern Ocean cloud reflectivity by ice-nucleating particles. Proceedings of the National Academy of Sciences of the United States of America, 115 ( 11 ), 2687 – 2692. https://doi.org/10.1073/pnas.1721627115 Yang, P., Bi, L., Baum, B. A., Liou, K., Kattawar, G. W., Mishchenko, M. I., & Cole, B. ( 2013a ). Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 μm. Journal of the Atmospheric Sciences, 70 ( 1 ), 330 – 347. https://doi.org/10.1175/JAS-D-12-039.1 Yang, P., Bi, L., Baum, B. A., Liou, K., Kattawar, G. W., Mishchenko, M. I., & Cole, B. ( 2013b ). Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 μm (Version 1) [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.6468778 Yang, P., Mlynczak, M. G., Wei, H., Kratz, D. P., Baum, B. A., Hu, Y. X., et al. ( 2003 ). Spectral signature of ice clouds in the far-infrared region: Single-scattering calculations and radiative sensitivity study. Journal of Geophysical Physics, 108, 4569. https://doi.org/10.1029/2002JD003291 Ackerman, S. A., Smith, W. L., Spinhirne, J. D., & Revercomb, H. E. ( 1990 ). The 27-28 October 1986 FIRE IFO cirrus case study: Spectral properties of cirrus clouds in the 8-12 μm window. Monthly Weather Review, 118 ( 11 ), 2377 – 2388. https://doi.org/10.1175/1520-0493(1990)118<2377:TOFICC>2.0.CO;2 Baum, B., Kratz, D., Yang, P., Ou, S., Hu, Y., Soulen, P., & Tsay, S. ( 2000 ). Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS: 1. Data and models. Journal of Geophysical Research, 105 ( D9 ), 11767 – 11780. https://doi.org/10.1029/1999JD901089 Baum, B. A., Menzel, W. P., Frey, R. A., Tobin, D. C., Holz, R. E., Ackerman, S. A., et al. ( 2012 ). MODIS cloud-top property refinements for Collection 6. Journal of Applied Meteorology and Climatology, 51 ( 6 ), 1145 – 1163. https://doi.org/10.1175/jamc-d-11-0203.1 Baum, B. A., Yang, P., Heymsfield, A. J., Bansemer, A. R., Cole, B. H., Merrelli, A., et al. ( 2014 ). Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 um. Journal of Quantitative Spectroscopy and Radiative Transfer, 146, 123 – 139. https://doi.org/10.1016/j.jqsrt.2014.02.029 Berk, A., Anderson, G. P., Acharya, P. K., Bernstein, L. S., Muratov, L., Lee, J., et al. ( 2005 ). MODTRAN5: A reformulated atmospheric band model with auxiliary species and practical multiple scattering options. Proceedings, Multispectral and Hyperspectral Remote Sensing Instruments and Applications II (p. 5665 ). https://doi.org/10.1117/12.578758 Cesana, G., Kay, J. E., Chepfer, H., English, J. M., & de Boer, G. ( 2012 ). Ubiquitous low-level liquid-containing Arctic clouds: New observations and climate model constraints from CALIPSO-GOCCP. Geophysical Research Letters, 39, L20804. https://doi.org/10.1029/2012gl053385 Cho, H. M., Nasiri, S. L., & Yang, P. ( 2009 ). Application of CALIOP measurements to the evaluation of cloud phase derived from MODIS infrared channels. Journal of Applied Meteorology and Climatology, 48 ( 10 ), 2169 – 2180. https://doi.org/10.1175/2009jamc2238.1 Chou, M., Lee, K., Tsay, S., & Fu, Q. ( 1999 ). Parameterization for cloud longwave scattering for use in atmospheric models. Journal of Climate, 12 ( 1 ), 159 – 169. https://doi.org/10.1175/1520-0442(1999)012<019:PFCLSF>2.0.CO;2 Cossich, W., Maestri, T., Magurno, D., Martinazzo, M., Natale, G. D., Palchetti, L., et al. ( 2021 ). Ice and mixed-phase cloud statistics on Antarctic plateau. Atmospheric Chemistry and Physics, 21, 13811 – 13833. https://doi.org/10.5194/acp-21-13811-2021 de Boer, G., Morrison, H., Shupe, M. D., & Hildner, R. ( 2011 ). Evidence of liquid dependent ice nucleation in high-latitude stratiform clouds from surface remote sensors. Geophysical Research Letters, 38 ( 1 ), L01803. https://doi.org/10.1029/2010GL046016 Di Natale, G., Bianchini, G., Del Guasta, M., Ridolfi, M., Maestri, T., Cossich, W., et al. ( 2020 ). Characterization of the far infrared properties and radiative forcing of Antarctic ice and water clouds exploiting the spectrometer-LiDAR synergy. Remote Sensing, 12 ( 21 ), 3574. https://doi.org/10.3390/rs12213574 Fu, Q., Liou, K. N., Cribb, M. C., Charlock, T. P., & Grossman, A. ( 1997 ). Multiple scattering parameterization in thermal infrared radiative transfer. Journal of the Atmospheric Sciences, 54 ( 24 ), 2799 – 2812. https://doi.org/10.1175/15200469(1997)054<2799:MSPITI>2.0.CO;2 Garrett, T., & Zhao, C. ( 2006 ). Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes. Nature, 440 ( 7085 ), 787 – 789. https://doi.org/10.1038/nature04636 Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., et al. ( 2018a ). ERA5 hourly data on single levels from 1979 to present [Dataset]. Copernicus ClimateChange Service (C3S) Climate Data Store (CDS). Retrieved from https://cds.climate.copernicus.eu Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., et al. ( 2018b ). ERA5 hourly data on pressure levels from 1979 to present [Dataset]. Copernicus ClimateChange Service (C3S) Climate Data Store (CDS). Retrieved from https://cds.climate.copernicus.eu Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., et al. ( 2020 ). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146, 1999 – 2049. https://doi.org/10.1002/qj.3803 Huang, X. L., Chen, X. H., Zhou, D. K., & Liu, X. ( 2016 ). An observationally based global band-by-band surface emissivity dataset for climate and weather simulations. Journal of the Atmospheric Sciences, 73 ( 9 ), 3541 – 3555. https://doi.org/10.1175/JAS-D-15-0355.1 Intrieri, J. M., Fairall, C. W., Shupe, M. D., Persson, P. O. G., Andreas, E. L., Guest, P. S., & Moritz, R. E. ( 2002 ). An annual cycle of Arctic surface cloud forcing at SHEBA. Journal of Geophysical Research, 107 ( C10 ), 14. https://doi.org/10.1029/2000jc000439 Kahn, B. H., Irion, F. W., Dang, V. T., Manning, E. M., Nasiri, S. L., Naud, C. M., et al. ( 2014 ). The Atmospheric Infrared Sounder version 6 cloud products. Atmospheric Chemistry and Physics, 14 ( 1 ), 399 – 426. https://doi.org/10.5194/acp-14-399-2014 Kay, J. E., Bourdages, L., Miller, N. B., Morrison, A., Yettella, V., Chepfer, H., & Eaton, B. ( 2016 ). Evaluating and improving cloud phase in the Community Atmosphere Model version 5 using spaceborne lidar observations. Journal of Geophysical Research: Atmospheres, 121 ( 8 ), 4162 – 4176. https://doi.org/10.1002/2015jd024699 Korolev, A., McFarquhar, G., Field, P. R., Franklin, C., Lawson, P., Wang, Z., et al. ( 2017 ). Mixed-phase clouds: Progress and challenges. Meteorological Monographs, 58, 5 – 15. https://doi.org/10.1175/AMSMONOGRAPHS-D-17-0001.1.50 Lawson, R., & Gettelman, A. ( 2014 ). Impact of Antarctic cloud on climate. Proceedings of the National Academy of Sciences, 111 ( 51 ), 18156 – 18161. https://doi.org/10.1073/pnas.1418197111 L’Ecuyer, T. S., Drouin, B. J., Anheuser, J., Grames, M., Henderson, D., Huang, X., et al. ( 2021 ). The polar radiant energy in the far InfraRed experiment: A new perspective on polar longwave energy exchanges. Bulletin of the American Meteorological Society, 102 ( 7 ), 1 – 46. https://doi.org/10.1175/BAMS-D-20-0155.1 Libois, Q., & Blanchet, J. P. ( 2017 ). Added value of far-infrared radiometry for remote sensing of ice clouds. Journal of Geophysical Research: Atmospheres, 122 ( 12 ), 6541 – 6564. https://doi.org/10.1002/2016jd026423 IndexNoFollow Atmospheric and Oceanic Sciences Science Article 2022 ftumdeepblue https://doi.org/10.1029/2021JD03573310.1175/BAMS-D-19-0322.110.3390/rs1209149610.5194/amt-2021-19610.1175/2010jamc2468.110.1175/JAM2208.110.1073/pnas.172162711510.1029/2002JD00329110.1175/jamc-d-11-0203.110.1016/j.jqsrt.2014.02.02910.1117/12.57875810.5194 2023-07-31T20:50:42Z Cloud phase is an important factor affecting cloud contributions to the polar energy budget. Brightness temperature differences (BTDs) between two mid-infrared (mid-IR) spectral channels are commonly used in satellite remote sensing to determine the cloud phase, but the mid-IR has limitations for cloud phase determination in polar regions. This study explores the synergy between the far- and mid-IR for ice cloud phase determinations over polar oceans. A far-IR BTD test (BTD449-521) is developed based on the spectral variations of both ice cloud scattering and absorption properties in the far-IR “dirty window” region (400–600 cm−1 or 16.7–25 μm). Synthetic IR radiances at 1 cm−1 spectral resolution are generated using ERA5 reanalysis data for both polar regions. A subset of these spectra is used to compare the ice phase determination skill of the far-IR test with an “AIRS-Like” mid-IR BTD test (BTD1231-960) for combinations of effective ice particle diameter (Deff_ice), cloud optical depth (COD), and cloud top pressure (CTP). The far-IR test is performing better for ice clouds with the smallest Deff_ice that we have studied (20 μm) due to the sensitivity of far-IR scattering to ice particle size. The mid-IR test was either comparable to or more successful than the far-IR test for ice clouds with large particle sizes. For all Deff_ice, increasing COD leads to enhanced far-IR BTD signals due to stronger multiple scattering in the far-IR than in the mid-IR. Overall, the variations in far-IR and mid-IR BTD test performance are strongly sensitive to Deff_ice, followed by COD and CTP.Key PointsFar-infrared (IR) scattering and absorption can be used together for ice cloud detection in passive remote sensing of polar regionsThe far-IR ice phase test is most useful for ice particle effective diameters less than 40 µmBoth the far-IR and mid-IR ice phase tests are more sensitive to ice particle size than to cloud top pressure and optical depth Peer Reviewed ... Article in Journal/Newspaper Arctic University of Michigan: Deep Blue