Bioregions are predominantly climatic for fishes of northern lakes

AimRecurrent species assemblages integrate important biotic interactions and joint responses to environmental and spatial filters that enable local coexistence. Here, we applied a bipartite (site–species) network approach to develop a natural typology of lakes sharing distinct fish faunas and provid...

Full description

Bibliographic Details
Main Authors: Loewen, Charlie J. G., Jackson, Donald A., Chu, Cindy, Alofs, Karen M., Hansen, Gretchen J. A., Honsey, Andrew E., Minns, Charles K., Wehrly, Kevin E.
Format: Article in Journal/Newspaper
Language:unknown
Published: Ontario Ministry of Natural Resources 2022
Subjects:
Online Access:https://hdl.handle.net/2027.42/171225
https://doi.org/10.1111/geb.13424
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/171225
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic community assembly
conservation biogeography
environmental filtering
freshwater fishes
lake connectivity
latent variable approach
network modularity
species sorting
bioregionalization
climate change adaptation
Geology and Earth Sciences
Ecology and Evolutionary Biology
Science
spellingShingle community assembly
conservation biogeography
environmental filtering
freshwater fishes
lake connectivity
latent variable approach
network modularity
species sorting
bioregionalization
climate change adaptation
Geology and Earth Sciences
Ecology and Evolutionary Biology
Science
Loewen, Charlie J. G.
Jackson, Donald A.
Chu, Cindy
Alofs, Karen M.
Hansen, Gretchen J. A.
Honsey, Andrew E.
Minns, Charles K.
Wehrly, Kevin E.
Bioregions are predominantly climatic for fishes of northern lakes
topic_facet community assembly
conservation biogeography
environmental filtering
freshwater fishes
lake connectivity
latent variable approach
network modularity
species sorting
bioregionalization
climate change adaptation
Geology and Earth Sciences
Ecology and Evolutionary Biology
Science
description AimRecurrent species assemblages integrate important biotic interactions and joint responses to environmental and spatial filters that enable local coexistence. Here, we applied a bipartite (site–species) network approach to develop a natural typology of lakes sharing distinct fish faunas and provide a detailed, hierarchical view of their bioregions. We then compared the roles of key biogeographical factors to evaluate alternative hypotheses about how fish communities are assembled from the regional species pool.LocationOntario, Canada and the Upper Midwest, USA.Time period1957–2017.Major taxa studiedFreshwater fishes.MethodsBipartite modularity analysis was performed on 90 taxa from 10,016 inland lakes in the Southwestern Hudson Bay, Mississippi River and St. Lawrence River drainages, uncovering bioregionalization of North American fishes at a large, subcontinental scale. We then used a latent variable approach, pairing non‐metric partial least‐squares structural equation modelling with multiple logistic regression, to show differences in the biogeographical templates of each type of community. Indicators of contemporary and historical connectivity, climate and habitat constructs were estimated using a geographical information system.ResultsFish assemblages reflected broad, overlapping patterns of postglacial colonization, climate and geological setting, but community differentiation was most linked to temperature, precipitation and, for certain groups, lake area and water quality. Bioregions were also marked by non‐native species, showing broad‐scale impacts of introductions to the Great Lakes and surrounding basins.Main conclusionsThe dominant effects of climate across broad spatial gradients indicate differing sensitivities of fish communities to rapidly accelerating climate change and opportunities for targeted conservation strategies. By assessing biological variation at the level of recurrent assemblages, we accounted for the non‐stationarity of macroecological processes structuring different sets of ...
format Article in Journal/Newspaper
author Loewen, Charlie J. G.
Jackson, Donald A.
Chu, Cindy
Alofs, Karen M.
Hansen, Gretchen J. A.
Honsey, Andrew E.
Minns, Charles K.
Wehrly, Kevin E.
author_facet Loewen, Charlie J. G.
Jackson, Donald A.
Chu, Cindy
Alofs, Karen M.
Hansen, Gretchen J. A.
Honsey, Andrew E.
Minns, Charles K.
Wehrly, Kevin E.
author_sort Loewen, Charlie J. G.
title Bioregions are predominantly climatic for fishes of northern lakes
title_short Bioregions are predominantly climatic for fishes of northern lakes
title_full Bioregions are predominantly climatic for fishes of northern lakes
title_fullStr Bioregions are predominantly climatic for fishes of northern lakes
title_full_unstemmed Bioregions are predominantly climatic for fishes of northern lakes
title_sort bioregions are predominantly climatic for fishes of northern lakes
publisher Ontario Ministry of Natural Resources
publishDate 2022
url https://hdl.handle.net/2027.42/171225
https://doi.org/10.1111/geb.13424
long_lat ENVELOPE(-115.002,-115.002,58.384,58.384)
geographic Hudson Bay
Canada
Hudson
Lawrence River
geographic_facet Hudson Bay
Canada
Hudson
Lawrence River
genre Hudson Bay
genre_facet Hudson Bay
op_relation Loewen, Charlie J. G.; Jackson, Donald A.; Chu, Cindy; Alofs, Karen M.; Hansen, Gretchen J. A.; Honsey, Andrew E.; Minns, Charles K.; Wehrly, Kevin E. (2022). "Bioregions are predominantly climatic for fishes of northern lakes." Global Ecology and Biogeography (2): 233-246.
1466-822X
1466-8238
https://hdl.handle.net/2027.42/171225
doi:10.1111/geb.13424
Global Ecology and Biogeography
Neff, M. R., & Jackson, D. A. ( 2012 ). Geology as a structuring mechanism of stream fish communities. Transactions of the American Fisheries Society, 141 ( 4 ), 962 – 974. https://doi.org/10.1080/00028487.2012.676591
Loewen, C. J. G., Strecker, A. L., Gilbert, B., & Jackson, D. A. ( 2020 ). Climate warming moderates the impacts of introduced sportfish on multiple dimensions of prey biodiversity. Global Change Biology, 26 ( 9 ), 4937 – 4951. https://doi.org/10.1111/gcb.15225
Lynch, A. J., Myers, B. J. E., Chu, C., Eby, L. A., Falke, J. A., Kovach, R. P., Krabbenhoft, T. J., Kwak, T. J., Lyons, J., Paukert, C. P., & Whitney, J. E. ( 2016 ). Climate change effects on North American inland fish populations and assemblages. Fisheries, 41 ( 7 ), 346 – 361. https://doi.org/10.1080/03632415.2016.1186016
MacArthur, R. H., & Wilson, E. O. ( 1963 ). An equilibrium theory of insular zoogeography. Evolution, 17 ( 4 ), 373 – 387. https://doi.org/10.1111/j.1558‐5646.1963.tb03295.x
Magnuson, J. J., Crowder, L. B., & Medvick, P. A. ( 1979 ). Temperature as an ecological resource. American Zoology, 19 ( 1 ), 331 – 343. https://doi.org/10.1093/icb/19.1.331
Mandrak, N. E. ( 1995 ). Biogeographic patterns of fish species richness in Ontario lakes in relation to historical and environmental factors. Canadian Journal of Fisheries and Aquatic Sciences, 52 ( 7 ), 1462 – 1474. https://doi.org/10.1139/f95‐141
Mandrak, N. E., & Crossman, E. J. ( 1992 ). Postglacial dispersal of freshwater fishes into Ontario. Canadian Journal of Zoology, 70 ( 11 ), 2247 – 2259. https://doi.org/10.1139/z92‐302
Mantyka‐Pringle, C. S., Martin, T. G., Moffatt, D. B., Linke, S., & Rhodes, J. R. ( 2014 ). Understanding and predicting the combined effects of climate change and land‐use change on freshwater macroinvertebrates and fish. Journal of Applied Ecology ( 3 ), 51, 572 – 581. https://doi.org/10.1111/1365‐2664.12236
McGarvey, D. J., & Veech, J. A. ( 2018 ). Modular structure in fish co‐occurrence networks: A comparison across spatial scales and grouping methodologies. PLoS One, 13 ( 12 ), e0208720. https://doi.org/10.1371/journal.pone.0208720
Melles, S. J., Chu, C., Alofs, K. M., & Jackson, D. A. ( 2015 ). Potential spread of Great Lakes fishes given climate change and proposed dams: An approach using circuit theory to evaluate invasion risk. Landscape Ecology, 30 ( 5 ), 919 – 935. https://doi.org/10.1007/s10980‐014‐0114‐z
Mitchell, T. D., & Jones, P. D. ( 2005 ). An improved method of constructing a database of monthly climate observations and associated high‐resolution grids. International Journal of Climatology, 25 ( 6 ), 693 – 712. https://doi.org/10.1002/joc.1181
Montalvo‐Mancheno, C. S., Ondei, S., Brook, B. W., & Buettel, J. C. ( 2020 ). Bioregionalization approaches for conservation: Methods, biases, and their implications for Australian biodiversity. Biodiversity and Conservation, 29 ( 1 ), 1 – 17. https://doi.org/10.1007/s10531‐019‐01913‐6
Notaro, M., Bennington, V., & Vavrus, S. ( 2015 ). Dynamically downscaled projections of lake‐effect snow in the Great Lakes Basin. Journal of Climate, 28 ( 4 ), 1661 – 1684. https://doi.org/10.1175/JCLI‐D‐14‐00467.1
Oikonomou, A., Leprieur, F., & Leonardos, I. D. ( 2014 ). Biogeography of freshwater fishes of the Balkan Peninsula. Hydrobiologia, 738 ( 1 ), 205 – 220. https://doi.org/10.1007/s10750‐014‐1930‐5
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., & Wagner, H. ( 2020 ). vegan: Community ecology package. R package version 2.5‐7. https://CRAN.R‐project.org/package=vegan
Olden, J. D., Kennard, M. J., Leprieur, F., Tedesco, P. A., Winemiller, K. O., & García‐Berthou, E. ( 2010 ). Conservation biogeography of freshwater fishes: Recent progress and future challenges. Diversity and Distributions, 16 ( 3 ), 496 – 513. https://doi.org/10.1111/j.1472‐4642.2010.00655.x
Olden, J. D., Kennard, M. J., & Pusey, B. J. ( 2008 ). Species invasions and the changing biogeography of Australian freshwater fishes. Global Ecology and Biogeography, 17 ( 1 ), 25 – 37. https://doi.org/10.1111/j.1466‐8238.2007.00340.x
Ortega, J. C. G., Figueiredo, B. R. S., da Graça, W. J., Agostinho, A. A., & Bini, L. M. ( 2020 ). Negative effect of turbidity on prey capture for both visual and non‐visual aquatic predators. Journal of Animal Ecology, 89 ( 11 ), 2427 – 2439. https://doi.org/10.1111/1365‐2656.13329
Petrarca, F., Russolillo, G., & Trinchera, L. ( 2017 ). Integrating non‐metric data in partial least squares path models: Methods and application. In H. Latan, & R. Noonan (Eds.), Partial least squares path modeling (pp. 259 – 279 ). Springer International Publishing.
R Core Team. ( 2019 ). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R‐project.org/
Reid, A. J., Carlson, A. K., Creed, I. F., Eliason, E. J., Gell, P. A., Johnson, P. T. J., Kidd, K. A., MacCormack, T. J., Olden, J. D., Ormerod, S. J., Smol, J. P., Taylor, W. W., Tockner, K., Vermaire, J. C., Dudgeon, D., & Cooke, S. J. ( 2019 ). Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews ( 3 ), 94, 849 – 873. https://doi.org/10.1111/brv.12480
Rosvall, M., & Bergstrom, C. T. ( 2008 ). Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences of the United States of America, 105 ( 4 ), 1118 – 1123. https://doi.org/10.1073/pnas.0706851105
Sanchez, G. ( 2013 ). PLS path modeling with R. Trowchez Editions.
Sanchez, G., Trinchera, L., & Russolillo, G. ( 2017 ). plspm: Tools for partial least squares path modeling (PLS‐PM). R package version 0.4.9. https://CRAN.R‐project.org/package=plspm
Sandstrom, S., Rawson, M., & Lester, N. P. ( 2013 ). Manual of instructions for broad‐scale fish community monitoring using North American (NA1) and Ontario small mesh (ON2) gillnets. Ontario Ministry of Natural Resources.
Shuter, B. J., & Post, J. R. ( 1990 ). Climate, population viability, and the zoogeography of temperate fishes. Transactions of the American Fisheries Society, 119 ( 2 ), 314 – 336.
Smith, C. L., & Powell, C. R. ( 1971 ). The summer fish communities of Brier Creek, Marshall County, Oklahoma. No. 2458. American Museum of Natural History. http://hdl.handle.net/2246/2666
Strona, G., Nappo, D., Boccacci, F., Fattorini, S., & San‐Miguel‐Ayanz, J. ( 2014 ). A fast and unbiased procedure to randomize ecological binary matrices with fixed row and column totals. Nature Communications, 5 ( 1 ), 4114. https://doi.org/10.1038/ncomms5114
Thébault, E. ( 2013 ). Identifying compartments in presence–absence matrices and bipartite networks: Insights into modularity measures. Journal of Biogeography, 40 ( 4 ), 759 – 768. https://doi.org/10.1111/jbi.12015
Tilzer, M. M. ( 1988 ). Secchi disk — chlorophyll relationships in a lake with highly variable phytoplankton biomass. Hydrobiologia, 162 ( 2 ), 163 – 171. https://doi.org/10.1007/BF00014539
Tjur, T. ( 2009 ). Coefficients of determination in logistic regression models—a new proposal: The coefficient of discrimination. The American Statistician, 63 ( 4 ), 366 – 372. https://doi.org/10.1198/tast.2009.08210
Tonn, W. M., & Magnuson, J. J. ( 1982 ). Patterns in the species composition and richness of fish assemblages in northern Wisconsin lakes. Ecology, 63 ( 4 ), 1149 – 1166. https://doi.org/10.2307/1937251
Wang, T., Hamann, A., Spittlehouse, D., & Carroll, C. ( 2016 ). Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS One, 11 ( 6 ), e0156720. https://doi.org/10.1371/journal.pone.0156720
Wehrly, K. E., Breck, J. E., Wang, L., & Szabo‐Kraft, L. ( 2012 ). A landscape‐based classification of fish assemblages in sampled and unsampled lakes. Transactions of the American Fisheries Society, 141 ( 2 ), 414 – 425. https://doi.org/10.1080/00028487.2012.667046
Wehrly, K. E., Carter, G. S., & Breck, J. E. ( 2021 ). Standardized sampling methods for the inland lakes status and trends program. Fisheries Special Report. Michigan Department of Natural Resources.
D’Arcy, P., & Carignan, R. ( 1997 ). Influence of catchment topography on water chemistry in southeastern Québec Shield lakes. Canadian Journal of Fisheries and Aquatic Sciences, 54 ( 10 ), 2215 – 2227. https://doi.org/10.1139/f97‐129
Dias, M. S., Oberdorff, T., Hugueny, B., Leprieur, F., Jézéquel, C., Cornu, J.‐F., Brosse, S., Grenouillet, G., & Tedesco, P. A. ( 2014 ). Global imprint of historical connectivity on freshwater fish biodiversity. Ecology Letters, 17 ( 9 ), 1130 – 1140. https://doi.org/10.1111/ele.12319
Dodge, D. P., Goodchild, G. A., Tilt, J. C., Waldriff, D. G., & MacRitchie, I. ( 1987 ). Manual of instructions: Aquatic habitat inventory surveys. Ontario Ministry of Natural Resources.
Abell, R., Thieme, M. L., Revenga, C., Bryer, M., Kottelat, M., Bogutskaya, N., Coad, B., Mandrak, N., Balderas, S. C., Bussing, W., Stiassny, M. L. J., Skelton, P., Allen, G. R., Unmack, P., Naseka, A., Ng, R., Sindorf, N., Robertson, J., Armijo, E., … Petry, P. ( 2008 ). Freshwater ecoregions of the world: A new map of biogeographic units for freshwater biodiversity conservation. BioScience, 58 ( 5 ), 403 – 414. https://doi.org/10.1641/B580507
Alofs, K. M., Jackson, D. A., & Lester, N. P. ( 2014 ). Ontario freshwater fishes demonstrate differing range‐boundary shifts in a warming climate. Diversity and Distributions, 20 ( 2 ), 123 – 136. https://doi.org/10.1111/ddi.12130
Bailey, R. M., & Smith, G. R. ( 1981 ). Origin and geography of the fish fauna of the Laurentian Great Lakes Basin. Canadian Journal of Fisheries and Aquatic Sciences, 38 ( 12 ), 1539 – 1561. https://doi.org/10.1139/f81‐206
Barbosa, A. M., Real, R., Muñoz, A.‐R., & Brown, J. A. ( 2015 ). New measures for assessing model equilibrium and prediction mismatch in species distribution models. Diversity and Distributions, 19 ( 10 ), 1333 – 1338. https://doi.org/10.1111/ddi.12100
Beckett, S. J. ( 2016 ). Improved community detection in weighted bipartite networks. Royal Society Open Science, 3 ( 1 ), 140536. https://doi.org/10.1098/rsos.140536
Bernardo‐Madrid, R., Calatayud, J., González‐Suárez, M., Rosvall, M., Lucas, P. M., Rueda, M., Antonelli, A., & Revilla, E. ( 2019 ). Human activity is altering the world’s zoogeographical regions. Ecology Letters ( 8 ), 22, 1297 – 1305. https://doi.org/10.1111/ele.13321
op_rights IndexNoFollow
op_doi https://doi.org/10.1111/geb.1342410.1139/f95‐14110.1111/jbi.1201510.1007/BF0001453910.1198/tast.2009.0821010.1641/B58050710.1098/rsos.14053610.1111/jbi.14044
_version_ 1774718509150896128
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/171225 2023-08-20T04:07:05+02:00 Bioregions are predominantly climatic for fishes of northern lakes Loewen, Charlie J. G. Jackson, Donald A. Chu, Cindy Alofs, Karen M. Hansen, Gretchen J. A. Honsey, Andrew E. Minns, Charles K. Wehrly, Kevin E. 2022-02 application/pdf https://hdl.handle.net/2027.42/171225 https://doi.org/10.1111/geb.13424 unknown Ontario Ministry of Natural Resources Wiley Periodicals, Inc. Loewen, Charlie J. G.; Jackson, Donald A.; Chu, Cindy; Alofs, Karen M.; Hansen, Gretchen J. A.; Honsey, Andrew E.; Minns, Charles K.; Wehrly, Kevin E. (2022). "Bioregions are predominantly climatic for fishes of northern lakes." Global Ecology and Biogeography (2): 233-246. 1466-822X 1466-8238 https://hdl.handle.net/2027.42/171225 doi:10.1111/geb.13424 Global Ecology and Biogeography Neff, M. R., & Jackson, D. A. ( 2012 ). Geology as a structuring mechanism of stream fish communities. Transactions of the American Fisheries Society, 141 ( 4 ), 962 – 974. https://doi.org/10.1080/00028487.2012.676591 Loewen, C. J. G., Strecker, A. L., Gilbert, B., & Jackson, D. A. ( 2020 ). Climate warming moderates the impacts of introduced sportfish on multiple dimensions of prey biodiversity. Global Change Biology, 26 ( 9 ), 4937 – 4951. https://doi.org/10.1111/gcb.15225 Lynch, A. J., Myers, B. J. E., Chu, C., Eby, L. A., Falke, J. A., Kovach, R. P., Krabbenhoft, T. J., Kwak, T. J., Lyons, J., Paukert, C. P., & Whitney, J. E. ( 2016 ). Climate change effects on North American inland fish populations and assemblages. Fisheries, 41 ( 7 ), 346 – 361. https://doi.org/10.1080/03632415.2016.1186016 MacArthur, R. H., & Wilson, E. O. ( 1963 ). An equilibrium theory of insular zoogeography. Evolution, 17 ( 4 ), 373 – 387. https://doi.org/10.1111/j.1558‐5646.1963.tb03295.x Magnuson, J. J., Crowder, L. B., & Medvick, P. A. ( 1979 ). Temperature as an ecological resource. American Zoology, 19 ( 1 ), 331 – 343. https://doi.org/10.1093/icb/19.1.331 Mandrak, N. E. ( 1995 ). Biogeographic patterns of fish species richness in Ontario lakes in relation to historical and environmental factors. Canadian Journal of Fisheries and Aquatic Sciences, 52 ( 7 ), 1462 – 1474. https://doi.org/10.1139/f95‐141 Mandrak, N. E., & Crossman, E. J. ( 1992 ). Postglacial dispersal of freshwater fishes into Ontario. Canadian Journal of Zoology, 70 ( 11 ), 2247 – 2259. https://doi.org/10.1139/z92‐302 Mantyka‐Pringle, C. S., Martin, T. G., Moffatt, D. B., Linke, S., & Rhodes, J. R. ( 2014 ). Understanding and predicting the combined effects of climate change and land‐use change on freshwater macroinvertebrates and fish. Journal of Applied Ecology ( 3 ), 51, 572 – 581. https://doi.org/10.1111/1365‐2664.12236 McGarvey, D. J., & Veech, J. A. ( 2018 ). Modular structure in fish co‐occurrence networks: A comparison across spatial scales and grouping methodologies. PLoS One, 13 ( 12 ), e0208720. https://doi.org/10.1371/journal.pone.0208720 Melles, S. J., Chu, C., Alofs, K. M., & Jackson, D. A. ( 2015 ). Potential spread of Great Lakes fishes given climate change and proposed dams: An approach using circuit theory to evaluate invasion risk. Landscape Ecology, 30 ( 5 ), 919 – 935. https://doi.org/10.1007/s10980‐014‐0114‐z Mitchell, T. D., & Jones, P. D. ( 2005 ). An improved method of constructing a database of monthly climate observations and associated high‐resolution grids. International Journal of Climatology, 25 ( 6 ), 693 – 712. https://doi.org/10.1002/joc.1181 Montalvo‐Mancheno, C. S., Ondei, S., Brook, B. W., & Buettel, J. C. ( 2020 ). Bioregionalization approaches for conservation: Methods, biases, and their implications for Australian biodiversity. Biodiversity and Conservation, 29 ( 1 ), 1 – 17. https://doi.org/10.1007/s10531‐019‐01913‐6 Notaro, M., Bennington, V., & Vavrus, S. ( 2015 ). Dynamically downscaled projections of lake‐effect snow in the Great Lakes Basin. Journal of Climate, 28 ( 4 ), 1661 – 1684. https://doi.org/10.1175/JCLI‐D‐14‐00467.1 Oikonomou, A., Leprieur, F., & Leonardos, I. D. ( 2014 ). Biogeography of freshwater fishes of the Balkan Peninsula. Hydrobiologia, 738 ( 1 ), 205 – 220. https://doi.org/10.1007/s10750‐014‐1930‐5 Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., & Wagner, H. ( 2020 ). vegan: Community ecology package. R package version 2.5‐7. https://CRAN.R‐project.org/package=vegan Olden, J. D., Kennard, M. J., Leprieur, F., Tedesco, P. A., Winemiller, K. O., & García‐Berthou, E. ( 2010 ). Conservation biogeography of freshwater fishes: Recent progress and future challenges. Diversity and Distributions, 16 ( 3 ), 496 – 513. https://doi.org/10.1111/j.1472‐4642.2010.00655.x Olden, J. D., Kennard, M. J., & Pusey, B. J. ( 2008 ). Species invasions and the changing biogeography of Australian freshwater fishes. Global Ecology and Biogeography, 17 ( 1 ), 25 – 37. https://doi.org/10.1111/j.1466‐8238.2007.00340.x Ortega, J. C. G., Figueiredo, B. R. S., da Graça, W. J., Agostinho, A. A., & Bini, L. M. ( 2020 ). Negative effect of turbidity on prey capture for both visual and non‐visual aquatic predators. Journal of Animal Ecology, 89 ( 11 ), 2427 – 2439. https://doi.org/10.1111/1365‐2656.13329 Petrarca, F., Russolillo, G., & Trinchera, L. ( 2017 ). Integrating non‐metric data in partial least squares path models: Methods and application. In H. Latan, & R. Noonan (Eds.), Partial least squares path modeling (pp. 259 – 279 ). Springer International Publishing. R Core Team. ( 2019 ). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R‐project.org/ Reid, A. J., Carlson, A. K., Creed, I. F., Eliason, E. J., Gell, P. A., Johnson, P. T. J., Kidd, K. A., MacCormack, T. J., Olden, J. D., Ormerod, S. J., Smol, J. P., Taylor, W. W., Tockner, K., Vermaire, J. C., Dudgeon, D., & Cooke, S. J. ( 2019 ). Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews ( 3 ), 94, 849 – 873. https://doi.org/10.1111/brv.12480 Rosvall, M., & Bergstrom, C. T. ( 2008 ). Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences of the United States of America, 105 ( 4 ), 1118 – 1123. https://doi.org/10.1073/pnas.0706851105 Sanchez, G. ( 2013 ). PLS path modeling with R. Trowchez Editions. Sanchez, G., Trinchera, L., & Russolillo, G. ( 2017 ). plspm: Tools for partial least squares path modeling (PLS‐PM). R package version 0.4.9. https://CRAN.R‐project.org/package=plspm Sandstrom, S., Rawson, M., & Lester, N. P. ( 2013 ). Manual of instructions for broad‐scale fish community monitoring using North American (NA1) and Ontario small mesh (ON2) gillnets. Ontario Ministry of Natural Resources. Shuter, B. J., & Post, J. R. ( 1990 ). Climate, population viability, and the zoogeography of temperate fishes. Transactions of the American Fisheries Society, 119 ( 2 ), 314 – 336. Smith, C. L., & Powell, C. R. ( 1971 ). The summer fish communities of Brier Creek, Marshall County, Oklahoma. No. 2458. American Museum of Natural History. http://hdl.handle.net/2246/2666 Strona, G., Nappo, D., Boccacci, F., Fattorini, S., & San‐Miguel‐Ayanz, J. ( 2014 ). A fast and unbiased procedure to randomize ecological binary matrices with fixed row and column totals. Nature Communications, 5 ( 1 ), 4114. https://doi.org/10.1038/ncomms5114 Thébault, E. ( 2013 ). Identifying compartments in presence–absence matrices and bipartite networks: Insights into modularity measures. Journal of Biogeography, 40 ( 4 ), 759 – 768. https://doi.org/10.1111/jbi.12015 Tilzer, M. M. ( 1988 ). Secchi disk — chlorophyll relationships in a lake with highly variable phytoplankton biomass. Hydrobiologia, 162 ( 2 ), 163 – 171. https://doi.org/10.1007/BF00014539 Tjur, T. ( 2009 ). Coefficients of determination in logistic regression models—a new proposal: The coefficient of discrimination. The American Statistician, 63 ( 4 ), 366 – 372. https://doi.org/10.1198/tast.2009.08210 Tonn, W. M., & Magnuson, J. J. ( 1982 ). Patterns in the species composition and richness of fish assemblages in northern Wisconsin lakes. Ecology, 63 ( 4 ), 1149 – 1166. https://doi.org/10.2307/1937251 Wang, T., Hamann, A., Spittlehouse, D., & Carroll, C. ( 2016 ). Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS One, 11 ( 6 ), e0156720. https://doi.org/10.1371/journal.pone.0156720 Wehrly, K. E., Breck, J. E., Wang, L., & Szabo‐Kraft, L. ( 2012 ). A landscape‐based classification of fish assemblages in sampled and unsampled lakes. Transactions of the American Fisheries Society, 141 ( 2 ), 414 – 425. https://doi.org/10.1080/00028487.2012.667046 Wehrly, K. E., Carter, G. S., & Breck, J. E. ( 2021 ). Standardized sampling methods for the inland lakes status and trends program. Fisheries Special Report. Michigan Department of Natural Resources. D’Arcy, P., & Carignan, R. ( 1997 ). Influence of catchment topography on water chemistry in southeastern Québec Shield lakes. Canadian Journal of Fisheries and Aquatic Sciences, 54 ( 10 ), 2215 – 2227. https://doi.org/10.1139/f97‐129 Dias, M. S., Oberdorff, T., Hugueny, B., Leprieur, F., Jézéquel, C., Cornu, J.‐F., Brosse, S., Grenouillet, G., & Tedesco, P. A. ( 2014 ). Global imprint of historical connectivity on freshwater fish biodiversity. Ecology Letters, 17 ( 9 ), 1130 – 1140. https://doi.org/10.1111/ele.12319 Dodge, D. P., Goodchild, G. A., Tilt, J. C., Waldriff, D. G., & MacRitchie, I. ( 1987 ). Manual of instructions: Aquatic habitat inventory surveys. Ontario Ministry of Natural Resources. Abell, R., Thieme, M. L., Revenga, C., Bryer, M., Kottelat, M., Bogutskaya, N., Coad, B., Mandrak, N., Balderas, S. C., Bussing, W., Stiassny, M. L. J., Skelton, P., Allen, G. R., Unmack, P., Naseka, A., Ng, R., Sindorf, N., Robertson, J., Armijo, E., … Petry, P. ( 2008 ). Freshwater ecoregions of the world: A new map of biogeographic units for freshwater biodiversity conservation. BioScience, 58 ( 5 ), 403 – 414. https://doi.org/10.1641/B580507 Alofs, K. M., Jackson, D. A., & Lester, N. P. ( 2014 ). Ontario freshwater fishes demonstrate differing range‐boundary shifts in a warming climate. Diversity and Distributions, 20 ( 2 ), 123 – 136. https://doi.org/10.1111/ddi.12130 Bailey, R. M., & Smith, G. R. ( 1981 ). Origin and geography of the fish fauna of the Laurentian Great Lakes Basin. Canadian Journal of Fisheries and Aquatic Sciences, 38 ( 12 ), 1539 – 1561. https://doi.org/10.1139/f81‐206 Barbosa, A. M., Real, R., Muñoz, A.‐R., & Brown, J. A. ( 2015 ). New measures for assessing model equilibrium and prediction mismatch in species distribution models. Diversity and Distributions, 19 ( 10 ), 1333 – 1338. https://doi.org/10.1111/ddi.12100 Beckett, S. J. ( 2016 ). Improved community detection in weighted bipartite networks. Royal Society Open Science, 3 ( 1 ), 140536. https://doi.org/10.1098/rsos.140536 Bernardo‐Madrid, R., Calatayud, J., González‐Suárez, M., Rosvall, M., Lucas, P. M., Rueda, M., Antonelli, A., & Revilla, E. ( 2019 ). Human activity is altering the world’s zoogeographical regions. Ecology Letters ( 8 ), 22, 1297 – 1305. https://doi.org/10.1111/ele.13321 IndexNoFollow community assembly conservation biogeography environmental filtering freshwater fishes lake connectivity latent variable approach network modularity species sorting bioregionalization climate change adaptation Geology and Earth Sciences Ecology and Evolutionary Biology Science Article 2022 ftumdeepblue https://doi.org/10.1111/geb.1342410.1139/f95‐14110.1111/jbi.1201510.1007/BF0001453910.1198/tast.2009.0821010.1641/B58050710.1098/rsos.14053610.1111/jbi.14044 2023-07-31T20:54:09Z AimRecurrent species assemblages integrate important biotic interactions and joint responses to environmental and spatial filters that enable local coexistence. Here, we applied a bipartite (site–species) network approach to develop a natural typology of lakes sharing distinct fish faunas and provide a detailed, hierarchical view of their bioregions. We then compared the roles of key biogeographical factors to evaluate alternative hypotheses about how fish communities are assembled from the regional species pool.LocationOntario, Canada and the Upper Midwest, USA.Time period1957–2017.Major taxa studiedFreshwater fishes.MethodsBipartite modularity analysis was performed on 90 taxa from 10,016 inland lakes in the Southwestern Hudson Bay, Mississippi River and St. Lawrence River drainages, uncovering bioregionalization of North American fishes at a large, subcontinental scale. We then used a latent variable approach, pairing non‐metric partial least‐squares structural equation modelling with multiple logistic regression, to show differences in the biogeographical templates of each type of community. Indicators of contemporary and historical connectivity, climate and habitat constructs were estimated using a geographical information system.ResultsFish assemblages reflected broad, overlapping patterns of postglacial colonization, climate and geological setting, but community differentiation was most linked to temperature, precipitation and, for certain groups, lake area and water quality. Bioregions were also marked by non‐native species, showing broad‐scale impacts of introductions to the Great Lakes and surrounding basins.Main conclusionsThe dominant effects of climate across broad spatial gradients indicate differing sensitivities of fish communities to rapidly accelerating climate change and opportunities for targeted conservation strategies. By assessing biological variation at the level of recurrent assemblages, we accounted for the non‐stationarity of macroecological processes structuring different sets of ... Article in Journal/Newspaper Hudson Bay University of Michigan: Deep Blue Hudson Bay Canada Hudson Lawrence River ENVELOPE(-115.002,-115.002,58.384,58.384)