Roughness of Ice Shelves Is Correlated With Basal Melt Rates

Ice shelf collapse could trigger widespread retreat of marine‐based portions of the Antarctic ice sheet. However, little is known about the processes that control the stability of ice shelves. Recent observations have revealed that ice shelves have topographic features that span a spectrum of wavele...

Full description

Bibliographic Details
Published in:Geophysical Research Letters
Main Authors: Watkins, Ray H., Bassis, Jeremy N., Thouless, M. D.
Format: Article in Journal/Newspaper
Language:unknown
Published: U.S. Antarctic Program Data Center 2021
Subjects:
Online Access:https://hdl.handle.net/2027.42/171036
https://doi.org/10.1029/2021GL094743
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/171036
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic ice shelf
roughness
Geological Sciences
Science
spellingShingle ice shelf
roughness
Geological Sciences
Science
Watkins, Ray H.
Bassis, Jeremy N.
Thouless, M. D.
Roughness of Ice Shelves Is Correlated With Basal Melt Rates
topic_facet ice shelf
roughness
Geological Sciences
Science
description Ice shelf collapse could trigger widespread retreat of marine‐based portions of the Antarctic ice sheet. However, little is known about the processes that control the stability of ice shelves. Recent observations have revealed that ice shelves have topographic features that span a spectrum of wavelengths, including basal channels and crevasses. Here we use ground‐penetrating radar data to quantify patterns of roughness within and between ice shelves. We find that roughness follows a power law with the scaling exponent approximately constant between ice shelves. However, the level of roughness varies by nearly an order of magnitude between ice shelves. Critically, we find that roughness strongly correlates with basal melt, suggesting that increased melt not only leads to larger melt channels, but also to increased fracturing, rifting and decreased ice shelf stability. This hints that the mechanical stability of ice shelves may be more tightly controlled by ocean forcing than previously thought.Plain Language SummaryThe future stability of the Antarctic ice sheet is linked to the stability of floating portions of the ice sheet called ice shelves. There has been recent speculation that the collapse of ice shelves could trigger an acceleration of the discharge of grounded ice, resulting in an accelerated sea level rise. Observations show that the topography of ice shelves is related to features, such as melt channels and crevasses, that are a direct result of melting and fracturing. Here we use ground‐penetrating data collected from various airborne survey campaigns to calculate roughness of seven ice shelves across Antarctica. We find that roughness varies considerably between ice shelves and that increased roughness strongly correlates with increased basal melt. This connection hints at a complex interplay between increased melt rates and roughening of ice shelves, and suggests that basal melt may trigger widespread fracturing, influencing the mechanical stability of ice shelves.Key PointsIce shelves have bumps in ...
format Article in Journal/Newspaper
author Watkins, Ray H.
Bassis, Jeremy N.
Thouless, M. D.
author_facet Watkins, Ray H.
Bassis, Jeremy N.
Thouless, M. D.
author_sort Watkins, Ray H.
title Roughness of Ice Shelves Is Correlated With Basal Melt Rates
title_short Roughness of Ice Shelves Is Correlated With Basal Melt Rates
title_full Roughness of Ice Shelves Is Correlated With Basal Melt Rates
title_fullStr Roughness of Ice Shelves Is Correlated With Basal Melt Rates
title_full_unstemmed Roughness of Ice Shelves Is Correlated With Basal Melt Rates
title_sort roughness of ice shelves is correlated with basal melt rates
publisher U.S. Antarctic Program Data Center
publishDate 2021
url https://hdl.handle.net/2027.42/171036
https://doi.org/10.1029/2021GL094743
geographic Antarctic
The Antarctic
geographic_facet Antarctic
The Antarctic
genre Annals of Glaciology
Antarc*
Antarctic
Antarctica
Antarctica Journal
Ice Sheet
Ice Shelf
Ice Shelves
The Cryosphere
genre_facet Annals of Glaciology
Antarc*
Antarctic
Antarctica
Antarctica Journal
Ice Sheet
Ice Shelf
Ice Shelves
The Cryosphere
op_relation Watkins, Ray H.; Bassis, Jeremy N.; Thouless, M. D. (2021). "Roughness of Ice Shelves Is Correlated With Basal Melt Rates." Geophysical Research Letters 48(21): n/a-n/a.
0094-8276
1944-8007
https://hdl.handle.net/2027.42/171036
doi:10.1029/2021GL094743
Geophysical Research Letters
Rignot, E., Mouginot, J., Scheuchl, B., van den Broeke, M., van Wessem, M. J., & Morlighem, M. ( 2019 ). Four decades of Antarctic ice sheet mass balance from 1979–2017. Proceedings of the National Academy of Sciences, 116 ( 4 ), 1095 – 1103. https://doi.org/10.1073/2Fpnas.1812883116
Nakayama, Y., Manucharyan, G., Zhang, H., Dutrieux, P., Torres, H. S., Klein, P., & Menemenlis, D. ( 2019 ). Pathways of ocean heat towards Pine Island and thwaites grounding lines. Scientific Reports, 9 ( 1 ). https://doi.org/10.1038/s41598-019-53190-6
Paden, J., Li, J., Leuschen, C., Rodriguez‐Morales, F., & Hale, R. ( 2010 ). Icebridge mcords l2 ice thickness, version 1. NASA National Snow and ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/gdq0cucvte2q
Pritchard, H. D., Ligtenberg, S. R. M., Fricker, H. A., Vaughan, D. G., van den Broeke, M. R., & Padman, L. ( 2012 ). Antarctic ice‐sheet loss driven by basal melting of ice shelves. Nature, 484 ( 7395 ), 502 – 505. https://doi.org/10.1038/nature10968
Rignot, E. ( 2004 ). Accelerated ice discharge from the Antarctic peninsula following the collapse of larsen b ice shelf. Geophysical Research Letters, 31 ( 18 ). https://doi.org/10.1029/2004gl020697
Rignot, E., Jacobs, S., Mouginot, J., & Scheuchl, B. ( 2013 ). Ice‐shelf melting around Antarctica. Science, 341 ( 6143 ), 266 – 270. https://doi.org/10.1126/science.1235798
Robel, A. A., & Banwell, A. F. ( 2019 ). A speed limit on ice shelf collapse through hydrofracture. Geophysical Research Letters, 46 ( 21 ), 12092 – 12100. https://doi.org/10.1029/2019gl084397
Rott, H., Skvarca, P., & Nagler, T. ( 1996 ). Rapid collapse of northern Larsen ice shelf, Antarctica. Science, 271 ( 5250 ), 788 – 792. https://doi.org/10.1126/science.271.5250.788
Scambos, T., Hulbe, C., & Fahnestock, M. ( 2003 ). Climate‐induced ice shelf disintegration in the Antarctic peninsula. In Antarctic peninsula climate variability: Historical and paleoenvironmental perspectives (pp. 79 – 92 ). American Geophysical Union. https://doi.org/10.1029/ar079p0079
Scambos, T. A. ( 2004 ). Glacier acceleration and thinning after ice shelf collapse in the larsen b embayment, Antarctica. Geophysical Research Letters, 31 ( 18 ). https://doi.org/10.1029/2004gl020670
Selley, H. L., Hogg, A. E., Cornford, S., Dutrieux, P., Shepherd, A., Wuite, J., & Kim, T.‐W. ( 2021 ). Widespread increase in dynamic imbalance in the getz region of antarctica from 1994 to 2018. Nature Communications, 12 ( 1 ). https://doi.org/10.1038/s41467-021-21321-1
Shean, D. E., Joughin, I. R., Dutrieux, P., Smith, B. E., & Berthier, E. ( 2019 ). October). Ice shelf basal melt rates from a high‐resolution digital elevation model (DEM) record for pine island glacier, Antarctica. The Cryosphere, 13 ( 10 ), 2633 – 2656. https://doi.org/10.5194/tc-13-2633-2019
Shepherd, A., Fricker, H. A., & Farrell, S. L. ( 2018 ). Trends and connections across the Antarctic cryosphere. Nature, 558 ( 7709 ), 223 – 232. https://doi.org/10.1038/s41586-018-0171-6
Sifuzzaman, M. ( 2009 ). Application of wavelet transform and its advantages compared to fourier transform.
Stanton, T. P., Shaw, W. J., Truffer, M., Corr, H. F. J., Peters, L. E., Riverman, K. L., & Anandakrishnan, S. ( 2013 ). Channelized ice melting in the ocean boundary layer beneath pine island glacier, Antarctica. Science, 341 ( 6151 ), 1236 – 1239. https://doi.org/10.1126/science.1239373
Still, H., Campbell, A., & Hulbe, C. ( 2018 ). Mechanical analysis of pinning points in the ross ice shelf, Antarctica. Annals of Glaciology, 60 ( 78 ), 32 – 41. https://doi.org/10.1017/aog.2018.31
Trusel, L. D., Frey, K. E., Das, S. B., Munneke, P. K., & van den Broeke, M. R. ( 2013 ). Satellite‐based estimates of Antarctic surface meltwater fluxes. Geophysical Research Letters, 40 ( 23 ), 6148 – 6153. https://doi.org/10.1002/2013gl058138
Vaughan, D. G., Corr, H. F. J., Bindschadler, R. A., Dutrieux, P., Gudmundsson, G. H., Jenkins, A., & Wingham, D. J. ( 2012 ). Subglacial melt channels and fracture in the floating part of pine island glacier, Antarctica. Journal of Geophysical Research: Earth Surface, 117 ( F3 ). https://doi.org/10.1029/2012jf002360
Webber, B. G. M., Heywood, K. J., Stevens, D. P., Dutrieux, P., Abrahamsen, E. P., Jenkins, A., & Kim, T. W. ( 2017 ). Mechanisms driving variability in the ocean forcing of pine island glacier. Nature Communications, 8 ( 1 ). https://doi.org/10.1038/ncomms14507
Werner, M., Jouzel, J., Masson‐Delmotte, V., & Lohmann, G. ( 2018 ). Reconciling glacial antarctic water stable isotopes with ice sheet topography and the isotopic paleothermometer. Nature Communications, 9 ( 1 ). https://doi.org/10.1038/s41467-018-05430-y
Whitehouse, D. J. ( 2004 ). Surfaces and their measurement. Kogan Page Science.
Lovejoy, S. ( 1982 ). Area‐perimeter relation for rain and cloud areas. Science, 216 ( 4542 ), 185 – 187. https://doi.org/10.1126/science.216.4542.185
Adusumilli, S., Fricker, H. A., Medley, B., Padman, L., & Siegfried, M. R. ( 2020 ). Interannual variations in meltwater input to the southern ocean from Antarctic ice shelves. Nature Geoscience, 13 ( 9 ), 616 – 620. https://doi.org/10.1038/s41561-020-0616-z
Alley, K. E., Scambos, T. A., Siegfried, M. R., & Fricker, H. A. ( 2016 ). Impacts of warm water on Antarctic ice shelf stability through basal channel formation. Nature Geoscience, 9 ( 4 ), 290 – 293. https://doi.org/10.1038/ngeo2675
Arndt, J. E., Larter, R. D., Friedl, P., Gohl, K., & Höppner., K. ( 2018 ). Bathymetric controls on calving processes at pine island glacier. The Cryosphere, 12 ( 6 ), 2039 – 2050. https://doi.org/10.5194/tc-12-2039-2018
Bassis, J., & Ma, Y. ( 2015 ). Evolution of basal crevasses links ice shelf stability to ocean forcing. Earth and Planetary Science Letters, 409, 203 – 211. https://doi.org/10.1016/j.epsl.2014.11.003
Bell, R., Cordero, I., Das, I., Dhakal, T., Frearson, N., Fricker, H., & Tinto, K. ( 2020 ). Basal melt, ice thickness and structure of the ross ice shelf using airborne radar dataU.S. Antarctic Program (USAP) Data Center. Retrieved from http://www.usap-dc.org/view/dataset/601242
Clauset, A., Shalizi, C. R., & Newman, M. E. J. ( 2009 ). Power‐law distributions in empirical data. SIAM Review, 51 ( 4 ), 661 – 703. https://doi.org/10.1137/070710111
Cochran, J. R., Tinto, K. J., & Bell, R. E. ( 2020 ). Detailed bathymetry of the continental shelf beneath the getz ice shelf, west antarctica. Journal of Geophysical Research: Earth Surface, 125 ( 10 ). https://doi.org/10.1029/2019jf005493
Dixon, D. ( 2007 ). (USAP‐DC), via National Snow and Ice Data Center (NSIDC). Antarctic mean annual temperature map. U.S. Antarctic Program Data Center. Retrieved from http://www.usap-dc.org/view/dataset/609318
Drews, R. ( 2015 ). Evolution of ice‐shelf channels in Antarctic ice shelves. The Cryosphere, 9 ( 3 ), 1169 – 1181. https://doi.org/10.5194/tc-9-1169-2015
Dupont, T. K., & Alley, R. B. ( 2005 ). Assessment of the importance of ice‐shelf buttressing to ice‐sheet flow. Geophysical Research Letters, 32 ( 4 ). https://doi.org/10.1029/2004gl022024
Dutrieux, P., Stewart, C., Jenkins, A., Nicholls, K. W., Corr, H. F. J., Rignot, E., & Steffen, K. ( 2014 ). Basal terraces on melting ice shelves. Geophysical Research Letters, 41 ( 15 ), 5506 – 5513. https://doi.org/10.1002/2014gl060618
Dutrieux, P., Vaughan, D. G., Corr, H. F. J., Jenkins, A., Holland, P. R., Joughin, I., & Fleming, A. H. ( 2013 ). Pine island glacier ice shelf melt distributed at kilometre scales. The Cryosphere, 7 ( 5 ), 1543 – 1555. https://doi.org/10.5194/tc-7-1543-2013
Favier, L., Durand, G., Cornford, S. L., Gudmundsson, G. H., Gagliardini, O., Gillet‐Chaulet, F., & Brocq, A. M. L. ( 2014 ). Retreat of pine island glacier controlled by marine ice‐sheet instability. Nature Climate Change, 4 ( 2 ), 117 – 121. https://doi.org/10.1038/nclimate2094
Favier, L., Pattyn, F., Berger, S., & Drews, R. ( 2016 ). Dynamic influence of pinning points on marine ice‐sheet stability: A numerical study in dronning maud land, east Antarctica. The Cryosphere, 10 ( 6 ), 2623 – 2635. https://doi.org/10.5194/tc-10-2623-2016
Gourmelen, N., Goldberg, D. N., Snow, K., Henley, S. F., Bingham, R. G., Kimura, S., & Berg, W. J. ( 2017 ). Channelized melting drives thinning under a rapidly melting antarctic ice shelf. Geophysical Research Letters, 44 ( 19 ), 9796 – 9804. https://doi.org/10.1002/2017gl074929
Greene, C. A., Gwyther, D. E., & Blankenship, D. D. ( 2017 ). Antarctic mapping tools for matlab. Computers & Geosciences, 104, 151 – 157. https://doi.org/10.1016/j.cageo.2016.08.003
Gudmundsson, G. H. ( 2013 ). Ice‐shelf buttressing and the stability of marine ice sheets. The Cryosphere, 7 ( 2 ), 647 – 655. https://doi.org/10.5194/tc-7-647-2013
Haran, T., Bohlander, J., Scambos, T., Painter, T., & Fahnestock, M. ( 2014 ). Modis mosaic of Antarctica 2008‐2009 (moa2009) image map. Digital media.
Holland, P. R., Corr, H. F. J., Vaughan, D. G., Jenkins, A., & Skvarca, P. ( 2009 ). June)Marine ice in larsen ice shelf. Geophysical Research Letters, 36 ( 11 ). https://doi.org/10.1029/2009gl038162
Jenkins, A., Nicholls, K. W., & Corr, H. F. J. ( 2010 ). Observation and parameterization of ablation at the base of ronne ice shelf, Antarctica. Journal of Physical Oceanography, 40 ( 10 ), 2298 – 2312. https://doi.org/10.1175/2010jpo4317.1
Jenkins, A., Shoosmith, D., Dutrieux, P., Jacobs, S., Kim, T. W., Lee, S. H., & Stammerjohn, S. ( 2018 ). West Antarctic ice sheet retreat in the Amundsen sea driven by decadal oceanic variability. Nature Geoscience, 11 ( 10 ), 733 – 738. https://doi.org/10.1038/s41561-018-0207-4
Jeong, S., Howat, I. M., & Bassis, J. N. ( 2016 ). Accelerated ice shelf rifting and retreat at pine island glacier, west Antarctica. Geophysical Research Letters, 43 ( 22 ). https://doi.org/10.1002/2016gl071360
op_rights IndexNoFollow
op_doi https://doi.org/10.1029/2021GL09474310.1029/2004gl02069710.1029/2004gl02067010.1126/science.216.4542.18510.5194/tc-9-1169-201510.5194/tc-7-647-2013
container_title Geophysical Research Letters
container_volume 48
container_issue 21
_version_ 1774715815088619520
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/171036 2023-08-20T03:59:50+02:00 Roughness of Ice Shelves Is Correlated With Basal Melt Rates Watkins, Ray H. Bassis, Jeremy N. Thouless, M. D. 2021-11-16 application/pdf https://hdl.handle.net/2027.42/171036 https://doi.org/10.1029/2021GL094743 unknown U.S. Antarctic Program Data Center Wiley Periodicals, Inc. Watkins, Ray H.; Bassis, Jeremy N.; Thouless, M. D. (2021). "Roughness of Ice Shelves Is Correlated With Basal Melt Rates." Geophysical Research Letters 48(21): n/a-n/a. 0094-8276 1944-8007 https://hdl.handle.net/2027.42/171036 doi:10.1029/2021GL094743 Geophysical Research Letters Rignot, E., Mouginot, J., Scheuchl, B., van den Broeke, M., van Wessem, M. J., & Morlighem, M. ( 2019 ). Four decades of Antarctic ice sheet mass balance from 1979–2017. Proceedings of the National Academy of Sciences, 116 ( 4 ), 1095 – 1103. https://doi.org/10.1073/2Fpnas.1812883116 Nakayama, Y., Manucharyan, G., Zhang, H., Dutrieux, P., Torres, H. S., Klein, P., & Menemenlis, D. ( 2019 ). Pathways of ocean heat towards Pine Island and thwaites grounding lines. Scientific Reports, 9 ( 1 ). https://doi.org/10.1038/s41598-019-53190-6 Paden, J., Li, J., Leuschen, C., Rodriguez‐Morales, F., & Hale, R. ( 2010 ). Icebridge mcords l2 ice thickness, version 1. NASA National Snow and ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/gdq0cucvte2q Pritchard, H. D., Ligtenberg, S. R. M., Fricker, H. A., Vaughan, D. G., van den Broeke, M. R., & Padman, L. ( 2012 ). Antarctic ice‐sheet loss driven by basal melting of ice shelves. Nature, 484 ( 7395 ), 502 – 505. https://doi.org/10.1038/nature10968 Rignot, E. ( 2004 ). Accelerated ice discharge from the Antarctic peninsula following the collapse of larsen b ice shelf. Geophysical Research Letters, 31 ( 18 ). https://doi.org/10.1029/2004gl020697 Rignot, E., Jacobs, S., Mouginot, J., & Scheuchl, B. ( 2013 ). Ice‐shelf melting around Antarctica. Science, 341 ( 6143 ), 266 – 270. https://doi.org/10.1126/science.1235798 Robel, A. A., & Banwell, A. F. ( 2019 ). A speed limit on ice shelf collapse through hydrofracture. Geophysical Research Letters, 46 ( 21 ), 12092 – 12100. https://doi.org/10.1029/2019gl084397 Rott, H., Skvarca, P., & Nagler, T. ( 1996 ). Rapid collapse of northern Larsen ice shelf, Antarctica. Science, 271 ( 5250 ), 788 – 792. https://doi.org/10.1126/science.271.5250.788 Scambos, T., Hulbe, C., & Fahnestock, M. ( 2003 ). Climate‐induced ice shelf disintegration in the Antarctic peninsula. In Antarctic peninsula climate variability: Historical and paleoenvironmental perspectives (pp. 79 – 92 ). American Geophysical Union. https://doi.org/10.1029/ar079p0079 Scambos, T. A. ( 2004 ). Glacier acceleration and thinning after ice shelf collapse in the larsen b embayment, Antarctica. Geophysical Research Letters, 31 ( 18 ). https://doi.org/10.1029/2004gl020670 Selley, H. L., Hogg, A. E., Cornford, S., Dutrieux, P., Shepherd, A., Wuite, J., & Kim, T.‐W. ( 2021 ). Widespread increase in dynamic imbalance in the getz region of antarctica from 1994 to 2018. Nature Communications, 12 ( 1 ). https://doi.org/10.1038/s41467-021-21321-1 Shean, D. E., Joughin, I. R., Dutrieux, P., Smith, B. E., & Berthier, E. ( 2019 ). October). Ice shelf basal melt rates from a high‐resolution digital elevation model (DEM) record for pine island glacier, Antarctica. The Cryosphere, 13 ( 10 ), 2633 – 2656. https://doi.org/10.5194/tc-13-2633-2019 Shepherd, A., Fricker, H. A., & Farrell, S. L. ( 2018 ). Trends and connections across the Antarctic cryosphere. Nature, 558 ( 7709 ), 223 – 232. https://doi.org/10.1038/s41586-018-0171-6 Sifuzzaman, M. ( 2009 ). Application of wavelet transform and its advantages compared to fourier transform. Stanton, T. P., Shaw, W. J., Truffer, M., Corr, H. F. J., Peters, L. E., Riverman, K. L., & Anandakrishnan, S. ( 2013 ). Channelized ice melting in the ocean boundary layer beneath pine island glacier, Antarctica. Science, 341 ( 6151 ), 1236 – 1239. https://doi.org/10.1126/science.1239373 Still, H., Campbell, A., & Hulbe, C. ( 2018 ). Mechanical analysis of pinning points in the ross ice shelf, Antarctica. Annals of Glaciology, 60 ( 78 ), 32 – 41. https://doi.org/10.1017/aog.2018.31 Trusel, L. D., Frey, K. E., Das, S. B., Munneke, P. K., & van den Broeke, M. R. ( 2013 ). Satellite‐based estimates of Antarctic surface meltwater fluxes. Geophysical Research Letters, 40 ( 23 ), 6148 – 6153. https://doi.org/10.1002/2013gl058138 Vaughan, D. G., Corr, H. F. J., Bindschadler, R. A., Dutrieux, P., Gudmundsson, G. H., Jenkins, A., & Wingham, D. J. ( 2012 ). Subglacial melt channels and fracture in the floating part of pine island glacier, Antarctica. Journal of Geophysical Research: Earth Surface, 117 ( F3 ). https://doi.org/10.1029/2012jf002360 Webber, B. G. M., Heywood, K. J., Stevens, D. P., Dutrieux, P., Abrahamsen, E. P., Jenkins, A., & Kim, T. W. ( 2017 ). Mechanisms driving variability in the ocean forcing of pine island glacier. Nature Communications, 8 ( 1 ). https://doi.org/10.1038/ncomms14507 Werner, M., Jouzel, J., Masson‐Delmotte, V., & Lohmann, G. ( 2018 ). Reconciling glacial antarctic water stable isotopes with ice sheet topography and the isotopic paleothermometer. Nature Communications, 9 ( 1 ). https://doi.org/10.1038/s41467-018-05430-y Whitehouse, D. J. ( 2004 ). Surfaces and their measurement. Kogan Page Science. Lovejoy, S. ( 1982 ). Area‐perimeter relation for rain and cloud areas. Science, 216 ( 4542 ), 185 – 187. https://doi.org/10.1126/science.216.4542.185 Adusumilli, S., Fricker, H. A., Medley, B., Padman, L., & Siegfried, M. R. ( 2020 ). Interannual variations in meltwater input to the southern ocean from Antarctic ice shelves. Nature Geoscience, 13 ( 9 ), 616 – 620. https://doi.org/10.1038/s41561-020-0616-z Alley, K. E., Scambos, T. A., Siegfried, M. R., & Fricker, H. A. ( 2016 ). Impacts of warm water on Antarctic ice shelf stability through basal channel formation. Nature Geoscience, 9 ( 4 ), 290 – 293. https://doi.org/10.1038/ngeo2675 Arndt, J. E., Larter, R. D., Friedl, P., Gohl, K., & Höppner., K. ( 2018 ). Bathymetric controls on calving processes at pine island glacier. The Cryosphere, 12 ( 6 ), 2039 – 2050. https://doi.org/10.5194/tc-12-2039-2018 Bassis, J., & Ma, Y. ( 2015 ). Evolution of basal crevasses links ice shelf stability to ocean forcing. Earth and Planetary Science Letters, 409, 203 – 211. https://doi.org/10.1016/j.epsl.2014.11.003 Bell, R., Cordero, I., Das, I., Dhakal, T., Frearson, N., Fricker, H., & Tinto, K. ( 2020 ). Basal melt, ice thickness and structure of the ross ice shelf using airborne radar dataU.S. Antarctic Program (USAP) Data Center. Retrieved from http://www.usap-dc.org/view/dataset/601242 Clauset, A., Shalizi, C. R., & Newman, M. E. J. ( 2009 ). Power‐law distributions in empirical data. SIAM Review, 51 ( 4 ), 661 – 703. https://doi.org/10.1137/070710111 Cochran, J. R., Tinto, K. J., & Bell, R. E. ( 2020 ). Detailed bathymetry of the continental shelf beneath the getz ice shelf, west antarctica. Journal of Geophysical Research: Earth Surface, 125 ( 10 ). https://doi.org/10.1029/2019jf005493 Dixon, D. ( 2007 ). (USAP‐DC), via National Snow and Ice Data Center (NSIDC). Antarctic mean annual temperature map. U.S. Antarctic Program Data Center. Retrieved from http://www.usap-dc.org/view/dataset/609318 Drews, R. ( 2015 ). Evolution of ice‐shelf channels in Antarctic ice shelves. The Cryosphere, 9 ( 3 ), 1169 – 1181. https://doi.org/10.5194/tc-9-1169-2015 Dupont, T. K., & Alley, R. B. ( 2005 ). Assessment of the importance of ice‐shelf buttressing to ice‐sheet flow. Geophysical Research Letters, 32 ( 4 ). https://doi.org/10.1029/2004gl022024 Dutrieux, P., Stewart, C., Jenkins, A., Nicholls, K. W., Corr, H. F. J., Rignot, E., & Steffen, K. ( 2014 ). Basal terraces on melting ice shelves. Geophysical Research Letters, 41 ( 15 ), 5506 – 5513. https://doi.org/10.1002/2014gl060618 Dutrieux, P., Vaughan, D. G., Corr, H. F. J., Jenkins, A., Holland, P. R., Joughin, I., & Fleming, A. H. ( 2013 ). Pine island glacier ice shelf melt distributed at kilometre scales. The Cryosphere, 7 ( 5 ), 1543 – 1555. https://doi.org/10.5194/tc-7-1543-2013 Favier, L., Durand, G., Cornford, S. L., Gudmundsson, G. H., Gagliardini, O., Gillet‐Chaulet, F., & Brocq, A. M. L. ( 2014 ). Retreat of pine island glacier controlled by marine ice‐sheet instability. Nature Climate Change, 4 ( 2 ), 117 – 121. https://doi.org/10.1038/nclimate2094 Favier, L., Pattyn, F., Berger, S., & Drews, R. ( 2016 ). Dynamic influence of pinning points on marine ice‐sheet stability: A numerical study in dronning maud land, east Antarctica. The Cryosphere, 10 ( 6 ), 2623 – 2635. https://doi.org/10.5194/tc-10-2623-2016 Gourmelen, N., Goldberg, D. N., Snow, K., Henley, S. F., Bingham, R. G., Kimura, S., & Berg, W. J. ( 2017 ). Channelized melting drives thinning under a rapidly melting antarctic ice shelf. Geophysical Research Letters, 44 ( 19 ), 9796 – 9804. https://doi.org/10.1002/2017gl074929 Greene, C. A., Gwyther, D. E., & Blankenship, D. D. ( 2017 ). Antarctic mapping tools for matlab. Computers & Geosciences, 104, 151 – 157. https://doi.org/10.1016/j.cageo.2016.08.003 Gudmundsson, G. H. ( 2013 ). Ice‐shelf buttressing and the stability of marine ice sheets. The Cryosphere, 7 ( 2 ), 647 – 655. https://doi.org/10.5194/tc-7-647-2013 Haran, T., Bohlander, J., Scambos, T., Painter, T., & Fahnestock, M. ( 2014 ). Modis mosaic of Antarctica 2008‐2009 (moa2009) image map. Digital media. Holland, P. R., Corr, H. F. J., Vaughan, D. G., Jenkins, A., & Skvarca, P. ( 2009 ). June)Marine ice in larsen ice shelf. Geophysical Research Letters, 36 ( 11 ). https://doi.org/10.1029/2009gl038162 Jenkins, A., Nicholls, K. W., & Corr, H. F. J. ( 2010 ). Observation and parameterization of ablation at the base of ronne ice shelf, Antarctica. Journal of Physical Oceanography, 40 ( 10 ), 2298 – 2312. https://doi.org/10.1175/2010jpo4317.1 Jenkins, A., Shoosmith, D., Dutrieux, P., Jacobs, S., Kim, T. W., Lee, S. H., & Stammerjohn, S. ( 2018 ). West Antarctic ice sheet retreat in the Amundsen sea driven by decadal oceanic variability. Nature Geoscience, 11 ( 10 ), 733 – 738. https://doi.org/10.1038/s41561-018-0207-4 Jeong, S., Howat, I. M., & Bassis, J. N. ( 2016 ). Accelerated ice shelf rifting and retreat at pine island glacier, west Antarctica. Geophysical Research Letters, 43 ( 22 ). https://doi.org/10.1002/2016gl071360 IndexNoFollow ice shelf roughness Geological Sciences Science Article 2021 ftumdeepblue https://doi.org/10.1029/2021GL09474310.1029/2004gl02069710.1029/2004gl02067010.1126/science.216.4542.18510.5194/tc-9-1169-201510.5194/tc-7-647-2013 2023-07-31T20:48:15Z Ice shelf collapse could trigger widespread retreat of marine‐based portions of the Antarctic ice sheet. However, little is known about the processes that control the stability of ice shelves. Recent observations have revealed that ice shelves have topographic features that span a spectrum of wavelengths, including basal channels and crevasses. Here we use ground‐penetrating radar data to quantify patterns of roughness within and between ice shelves. We find that roughness follows a power law with the scaling exponent approximately constant between ice shelves. However, the level of roughness varies by nearly an order of magnitude between ice shelves. Critically, we find that roughness strongly correlates with basal melt, suggesting that increased melt not only leads to larger melt channels, but also to increased fracturing, rifting and decreased ice shelf stability. This hints that the mechanical stability of ice shelves may be more tightly controlled by ocean forcing than previously thought.Plain Language SummaryThe future stability of the Antarctic ice sheet is linked to the stability of floating portions of the ice sheet called ice shelves. There has been recent speculation that the collapse of ice shelves could trigger an acceleration of the discharge of grounded ice, resulting in an accelerated sea level rise. Observations show that the topography of ice shelves is related to features, such as melt channels and crevasses, that are a direct result of melting and fracturing. Here we use ground‐penetrating data collected from various airborne survey campaigns to calculate roughness of seven ice shelves across Antarctica. We find that roughness varies considerably between ice shelves and that increased roughness strongly correlates with increased basal melt. This connection hints at a complex interplay between increased melt rates and roughening of ice shelves, and suggests that basal melt may trigger widespread fracturing, influencing the mechanical stability of ice shelves.Key PointsIce shelves have bumps in ... Article in Journal/Newspaper Annals of Glaciology Antarc* Antarctic Antarctica Antarctica Journal Ice Sheet Ice Shelf Ice Shelves The Cryosphere University of Michigan: Deep Blue Antarctic The Antarctic Geophysical Research Letters 48 21