Factors regulating lake periphyton biomass and nutrient limitation status across a large trophic gradient

Because of the historical focus of limnology on pelagic processes, the factors controlling lake periphyton growth and nutrient limitation are understudied compared to the phytoplankton.We deployed nutrient‐diffusing substrata at 28 sites spanning a wide trophic status gradient in Lakes Superior and...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Biogeosciences
Main Authors: Ozersky, Ted, Camilleri, Andrew
Format: Article in Journal/Newspaper
Language:unknown
Published: John Wiley & Sons Ltd. 2021
Subjects:
Online Access:https://hdl.handle.net/2027.42/171015
https://doi.org/10.1111/fwb.13836
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/171015
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic eutrophication
benthic algae
Laurentian Great Lakes
nitrogen
phosphorus
Ecology and Evolutionary Biology
Science
spellingShingle eutrophication
benthic algae
Laurentian Great Lakes
nitrogen
phosphorus
Ecology and Evolutionary Biology
Science
Ozersky, Ted
Camilleri, Andrew
Factors regulating lake periphyton biomass and nutrient limitation status across a large trophic gradient
topic_facet eutrophication
benthic algae
Laurentian Great Lakes
nitrogen
phosphorus
Ecology and Evolutionary Biology
Science
description Because of the historical focus of limnology on pelagic processes, the factors controlling lake periphyton growth and nutrient limitation are understudied compared to the phytoplankton.We deployed nutrient‐diffusing substrata at 28 sites spanning a wide trophic status gradient in Lakes Superior and Michigan to assess periphyton biomass accrual on control substrata and the response of periphyton to single and combined phosphorus (P) and nitrogen (N) additions.Periphyton growth was unimodally related to a composite metric of site trophic status, with highest biomass at mesotrophic sites and lower growth at oligotrophic and highly eutrophic sites. Contrary to expectations, P limitation was rare. Instead, several lines of evidence pointed to primary N or N + P co‐limitation of periphyton. Limitation extent was negatively related to site trophic status, with stronger nutrient limitation at oligotrophic sites.Our results support the hypothesis that phytoplankton and periphyton biomass respond differently to nutrient enrichment and suggest that different nutrients may limit pelagic and benthic primary production, even in the same system.Our findings also support the use of periphyton as an early warning indicator of nutrient pollution and help explain why large, oligotrophic lakes may be especially susceptible to localised benthic algal blooms. Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/171015/1/fwb13836.pdf http://deepblue.lib.umich.edu/bitstream/2027.42/171015/2/fwb13836_am.pdf
format Article in Journal/Newspaper
author Ozersky, Ted
Camilleri, Andrew
author_facet Ozersky, Ted
Camilleri, Andrew
author_sort Ozersky, Ted
title Factors regulating lake periphyton biomass and nutrient limitation status across a large trophic gradient
title_short Factors regulating lake periphyton biomass and nutrient limitation status across a large trophic gradient
title_full Factors regulating lake periphyton biomass and nutrient limitation status across a large trophic gradient
title_fullStr Factors regulating lake periphyton biomass and nutrient limitation status across a large trophic gradient
title_full_unstemmed Factors regulating lake periphyton biomass and nutrient limitation status across a large trophic gradient
title_sort factors regulating lake periphyton biomass and nutrient limitation status across a large trophic gradient
publisher John Wiley & Sons Ltd.
publishDate 2021
url https://hdl.handle.net/2027.42/171015
https://doi.org/10.1111/fwb.13836
genre Arctic
genre_facet Arctic
op_relation Ozersky, Ted; Camilleri, Andrew (2021). "Factors regulating lake periphyton biomass and nutrient limitation status across a large trophic gradient." Freshwater Biology (12): 2338-2350.
0046-5070
1365-2427
https://hdl.handle.net/2027.42/171015
doi:10.1111/fwb.13836
Freshwater Biology
Ren, Z., Niu, D., Ma, P., Wang, Y., Fu, H., & Elser, J. J. ( 2019 ). Cascading influences of grassland degradation on nutrient limitation in a high mountain lake and its inflow streams. Ecology, 100 ( 8 ), e02755. https://doi.org/10.1002/ecy.2755
Sanches, L. F., Guariento, R. D., Caliman, A., Bozelli, R. L., & Esteves, F. A. ( 2011 ). Effects of nutrients and light on periphytic biomass and nutrient stoichiometry in a tropical black‐water aquatic ecosystem. Hydrobiologia, 669 ( 1 ), 35 – 44. https://doi.org/10.1007/s10750‐011‐0661‐0
Schindler, D. W. ( 1978 ). Factors regulating phytoplankton production and standing crop in the world’s freshwaters. Limnology and Oceanography, 23 ( 3 ), 478 – 486. https://doi.org/10.4319/lo.1978.23.3.0478
Schindler, D. W., Carpenter, S. R., Chapra, S. C., Hecky, R. E., & Orihel, D. M. ( 2016 ). Reducing phosphorus to curb lake eutrophication is a success. Environmental Science & Technology, 50 ( 17 ), 8923 – 8929. https://doi.org/10.1021/acs.est.6b02204
Scott, J. T., Lang, D. A., King, R. S., & Doyle, R. D. ( 2009 ). Nitrogen fixation and phosphatase activity in periphyton growing on nutrient diffusing substrata: Evidence for differential nutrient limitation in stream periphyton. Journal of the North American Benthological Society, 28 ( 1 ), 57 – 68. https://doi.org/10.1899/07‐107.1
Sierszen, M. E., Hrabik, T. R., Stockwell, J. D., Cotter, A. M., Hoffman, J. C., & Yule, D. L. ( 2014 ). Depth gradients in food‐web processes linking habitats in large lakes: Lake Superior as an exemplar ecosystem. Freshwater Biology, 59 ( 10 ), 2122 – 2136. https://doi.org/10.1111/fwb.12415
Steinman, A., Abdimalik, M., Ogdahl, M. E., & Oudsema, M. ( 2016 ). Understanding planktonic vs. benthic algal response to manipulation of nutrients and light in a eutrophic lake. Lake and Reservoir Management, 32 ( 4 ), 402 – 409.
Steinman, A. D., Lamberti, G. A., & Leavitt, P. R. ( 2006 ). Biomass and pigments of benthic algae. In F. R. Hauer & G. A. Lamberti (Eds.), Methods in stream ecology ( 2 nd ed., pp. 357 – 379 ). Academic Press.
Sterner, R. W. ( 2011 ). C: N: P stoichiometry in Lake Superior: Freshwater sea as end member. Inland Waters, 1 ( 1 ), 29 – 46. https://doi.org/10.5268/IW‐1.1.365
Sterner, R. W., Smutka, T. M., McKay, R. M. L., Xiaoming, Q., Brown, E. T., & Sherrell, R. M. ( 2004 ). Phosphorus and trace metal limitation of algae and bacteria in Lake Superior. Limnology and Oceanography, 49 ( 2 ), 495 – 507. https://doi.org/10.4319/lo.2004.49.2.0495
Stoermer, E. F., Ladewski, B. G., & Schelske, C. L. ( 1978 ). Population responses of Lake Michigan phytoplankton to nitrogen and phosphorus enrichment. Hydrobiologia, 57 ( 3 ), 249 – 265. https://doi.org/10.1007/BF00014579
Tank, J. L., Bernot, M. J., & Rosi‐Marshall, E. J. ( 2006 ). Nitrogen limitation and uptake. In F. R. Hauer & G. A. Lamberti (Eds.), Methods in stream ecology ( 2 nd ed., pp. 213 – 238 ). Academic Press.
Timoshkin, O. A., Samsonov, D. P., Yamamuro, M., Moore, M. V., Belykh, O. I., Malnik, V. V., … Bukshuk, N. A. ( 2016 ). Rapid ecological change in the coastal zone of Lake Baikal (East Siberia): Is the site of the world’s greatest freshwater biodiversity in danger? Journal of Great Lakes Research, 42 ( 3 ), 487 – 497. https://doi.org/10.1016/j.jglr.2016.02.011
Triska, F. J., & Oremland, R. S. ( 1981 ). Denitrification associated with periphyton communities. Applied and Environmental Microbiology, 42 ( 4 ), 745 – 748. https://doi.org/10.1128/aem.42.4.745‐748.1981
Trochine, C., Guerrieri, M. E., Liboriussen, L., Lauridsen, T. L., & Jeppesen, E. ( 2014 ). Effects of nutrient loading, temperature regime and grazing pressure on nutrient limitation of periphyton in experimental ponds. Freshwater Biology, 59 ( 5 ), 905 – 917. https://doi.org/10.1111/fwb.12314
Vadeboncoeur, Y., Moore, M. V., Stewart, S. D., Chandra, S., Atkins, K. A., Baron, J. S., … Yamamuro, M. ( 2021 ). Blue waters, green bottoms: Benthic filamentous algal blooms are an emerging threat to clear lakes worldwide. BioScience, 71 ( 20 ), biab049. https://doi.org/10.1093/biosci/biab049
Vadeboncoeur, Y., Peterson, G., Vander Zanden, M. J., & Kalff, J. ( 2008 ). Benthic algal production across lake size gradients: Interactions among morphometry, nutrients, and light. Ecology, 89 ( 9 ), 2542 – 2552. https://doi.org/10.1890/07‐1058.1
Vadeboncoeur, Y., Vander Zanden, M. J., & Lodge, D. M. ( 2002 ). Putting the lake back together: Reintegrating benthic pathways into lake food web models. BioScience, 52 ( 1 ), 44 – 54.
Vander Zanden, M. J., & Vadeboncoeur, Y. ( 2002 ). Fishes as integrators of benthic and pelagic food webs in lakes. Ecology, 83 ( 8 ), 2152 – 2161. https://doi.org/10.2307/3072047
Vizza, C., Pechal, J. L., Benbow, M. E., Lang, J. M., Chaloner, D. T., Jones, S. E., & Lamberti, G. A. ( 2018 ). Nitrate amendment reduces biofilm biomass and shifts microbial communities in remote, oligotrophic ponds. Freshwater Science, 37 ( 2 ), 251 – 263. https://doi.org/10.1086/697897
von Schiller, D., Martí, E., Riera, J. L., & Sabater, F. ( 2007 ). Effects of nutrients and light on periphyton biomass and nitrogen uptake in Mediterranean streams with contrasting land uses. Freshwater Biology, 52 ( 5 ), 891 – 906. https://doi.org/10.1111/j.1365‐2427.2007.01742.x
Young, O. W. ( 1945 ). A limnological investigation of periphyton in Douglas Lake, Michigan. Transactions of the American Microscopical Society, 64 ( 1 ), 1 – 20. https://doi.org/10.2307/3223433
Cooper, M. J., Costello, G. M., Francoeur, S. N., & Lamberti, G. A. ( 2016 ). Nitrogen limitation of algal biofilms in coastal wetlands of Lakes Michigan and Huron. Freshwater Science, 35 ( 1 ), 25 – 40. https://doi.org/10.1086/684646
Baulch, H. M., Turner, M. A., Findlay, D. L., Vinebrooke, R. D., & Donahue, W. F. ( 2009 ). Benthic algal biomass—measurement and errors. Canadian Journal of Fisheries and Aquatic Sciences, 66 ( 11 ), 1989 – 2001.
Bechtold, H. A., Marcarelli, A. M., Baxter, C. V., & Inouye, R. S. ( 2012 ). Effects of N, P, and organic carbon on stream biofilm nutrient limitation and uptake in a semi‐arid watershed. Limnology and Oceanography, 57 ( 5 ), 1544 – 1554. https://doi.org/10.4319/lo.2012.57.5.1544
Beck, W. S., & Hall, E. K. ( 2018 ). Confounding factors in algal phosphorus limitation experiments. PLoS One, 13 ( 10 ), e0205684. https://doi.org/10.1371/journal.pone.0205684
Belykh, O. I., Tikhonova, I. V., Kuzmin, A. V., Sorokovikova, E. G., Fedorova, G. A., Khanaev, I. V., … Timoshkin, O. A. ( 2016 ). First detection of benthic cyanobacteria in Lake Baikal producing paralytic shellfish toxins. Toxicon, 121, 36 – 40. https://doi.org/10.1016/j.toxicon.2016.08.015
Berg, G. M., Balode, M., Purina, I., Bekere, S., Béchemin, C., & Maestrini, S. Y. ( 2003 ). Plankton community composition in relation to availability and uptake of oxidized and reduced nitrogen. Aquatic Microbial Ecology, 30 ( 3 ), 263 – 274. https://doi.org/10.3354/ame030263
Bernhardt, E. S., & Likens, G. E. ( 2004 ). Controls on periphyton biomass in heterotrophic streams. Freshwater Biology, 49 ( 1 ), 14 – 27. https://doi.org/10.1046/j.1365‐2426.2003.01161.x
Bonilla, S., Villeneuve, V., & Vincent, W. F. ( 2005 ). Benthic and planktonic algal communities in a high arctic lake: Pigment structure and contrasting responses to nutrient enrichment. Journal of Phycology, 41 ( 6 ), 1120 – 1130.
Camilleri, A. C., & Ozersky, T. ( 2019 ). Large variation in periphyton δ 13 C and δ 15 N values in the upper Great Lakes: Correlates and implications. Journal of Great Lakes Research, 45 ( 5 ), 986 – 990. https://doi.org/10.1016/j.jglr.2019.06.003
Camilleri, A. C., & Ozersky, T. ( 2021 ). Dataset for factors regulating lake periphyton biomass and nutrient limitation status across large trophic gradient. Retrieved from the Data Repository for the University of Minnesota, https://doi.org/10.13020/CWST‐SE85
Capps, K. A., Booth, M. T., Collins, S. M., Davison, M. A., Moslemi, J. M., El‐Sabaawi, R. W., … Flecker, A. S. ( 2011 ). Nutrient diffusing substrata: A field comparison of commonly used methods to assess nutrient limitation. Journal of the North American Benthological Society, 30 ( 2 ), 522 – 532. https://doi.org/10.1899/10‐146.1
Carlson, R. E. ( 1977 ). A trophic state index for lakes. Limnology and Oceanography, 22 ( 2 ), 361 – 369.
Carpenter, E. J., & Dunham, S. ( 1985 ). Nitrogenous nutrient uptake, primary production, and species composition of phytoplankton in the Carmans River estuary, Long Island, New York. Limnology and Oceanography, 30 ( 3 ), 513 – 526.
Carrick, H. J., & Lowe, R. L. ( 1988 ). Response of Lake Michigan benthic algae to in situ enrichment with Si, N, and P. Canadian Journal of Fisheries and Aquatic Sciences, 45 ( 2 ), 271 – 279. https://doi.org/10.1139/f88‐032
Carrick, H. J., & Lowe, R. L. ( 2007 ). Nutrient limitation of benthic algae in Lake Michigan: The role of silica. Journal of Phycology, 43 ( 2 ), 228 – 234. https://doi.org/10.1111/j.1529‐8817.2007.00326.x
Cattaneo, A. ( 1987 ). Periphyton in lakes of different trophy. Canadian Journal of Fisheries and Aquatic Sciences, 44 ( 2 ), 296 – 303. https://doi.org/10.1139/f87‐038
Cattaneo, A. ( 1990 ). The effect of fetch on periphyton spatial variation. Hydrobiologia, 206 ( 1 ), 1 – 10. https://doi.org/10.1007/BF00018964
Chun, C. L., Ochsner, U., Byappanahalli, M. N., Whitman, R. L., Tepp, W. H., Lin, G., … Sadowsky, M. J. ( 2013 ). Association of toxin‐producing Clostridium botulinum with the macroalga Cladophora in the Great Lakes. Environmental Science & Technology, 47 ( 6 ), 2587 – 2594.
Crawley, M. J. ( 2013 ). The R book ( 2 nd ed.). John Wiley & Sons Ltd.
DeNicola, D. M., & Kelly, M. ( 2014 ). Role of periphyton in ecological assessment of lakes. Freshwater Science, 33 ( 2 ), 619 – 638. https://doi.org/10.1086/676117
Dodds, W. K., & Gudder, D. A. ( 1992 ). The ecology of Cladophora. Journal of Phycology, 28 ( 4 ), 415 – 427. https://doi.org/10.1111/j.0022‐3646.1992.00415.x
Elser, J. J., Bracken, M. E. S., Cleland, E. E., Gruner, D. S., Harpole, W. S., Hillebrand, H., … Smith, J. E. ( 2007 ). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10 ( 12 ), 1135 – 1142. https://doi.org/10.1111/j.1461‐0248.2007.01113.x
op_rights IndexNoFollow
op_doi https://doi.org/10.1111/fwb.1383610.4319/lo.1978.23.3.047810.5268/IW‐1.1.36510.1093/biosci/biab04910.2307/322343310.1016/j.toxicon.2016.08.01510.1899/10‐146.110.1139/f87‐03810.1007/BF0001896410.1111/j.1461‐0248.2007.01113.x10.2307/146803410.4319/lo.1992.3
container_title Journal of Geophysical Research: Biogeosciences
container_volume 126
container_issue 8
_version_ 1774713610494279680
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/171015 2023-08-20T04:03:12+02:00 Factors regulating lake periphyton biomass and nutrient limitation status across a large trophic gradient Ozersky, Ted Camilleri, Andrew 2021-12 application/pdf https://hdl.handle.net/2027.42/171015 https://doi.org/10.1111/fwb.13836 unknown John Wiley & Sons Ltd. Ozersky, Ted; Camilleri, Andrew (2021). "Factors regulating lake periphyton biomass and nutrient limitation status across a large trophic gradient." Freshwater Biology (12): 2338-2350. 0046-5070 1365-2427 https://hdl.handle.net/2027.42/171015 doi:10.1111/fwb.13836 Freshwater Biology Ren, Z., Niu, D., Ma, P., Wang, Y., Fu, H., & Elser, J. J. ( 2019 ). Cascading influences of grassland degradation on nutrient limitation in a high mountain lake and its inflow streams. Ecology, 100 ( 8 ), e02755. https://doi.org/10.1002/ecy.2755 Sanches, L. F., Guariento, R. D., Caliman, A., Bozelli, R. L., & Esteves, F. A. ( 2011 ). Effects of nutrients and light on periphytic biomass and nutrient stoichiometry in a tropical black‐water aquatic ecosystem. Hydrobiologia, 669 ( 1 ), 35 – 44. https://doi.org/10.1007/s10750‐011‐0661‐0 Schindler, D. W. ( 1978 ). Factors regulating phytoplankton production and standing crop in the world’s freshwaters. Limnology and Oceanography, 23 ( 3 ), 478 – 486. https://doi.org/10.4319/lo.1978.23.3.0478 Schindler, D. W., Carpenter, S. R., Chapra, S. C., Hecky, R. E., & Orihel, D. M. ( 2016 ). Reducing phosphorus to curb lake eutrophication is a success. Environmental Science & Technology, 50 ( 17 ), 8923 – 8929. https://doi.org/10.1021/acs.est.6b02204 Scott, J. T., Lang, D. A., King, R. S., & Doyle, R. D. ( 2009 ). Nitrogen fixation and phosphatase activity in periphyton growing on nutrient diffusing substrata: Evidence for differential nutrient limitation in stream periphyton. Journal of the North American Benthological Society, 28 ( 1 ), 57 – 68. https://doi.org/10.1899/07‐107.1 Sierszen, M. E., Hrabik, T. R., Stockwell, J. D., Cotter, A. M., Hoffman, J. C., & Yule, D. L. ( 2014 ). Depth gradients in food‐web processes linking habitats in large lakes: Lake Superior as an exemplar ecosystem. Freshwater Biology, 59 ( 10 ), 2122 – 2136. https://doi.org/10.1111/fwb.12415 Steinman, A., Abdimalik, M., Ogdahl, M. E., & Oudsema, M. ( 2016 ). Understanding planktonic vs. benthic algal response to manipulation of nutrients and light in a eutrophic lake. Lake and Reservoir Management, 32 ( 4 ), 402 – 409. Steinman, A. D., Lamberti, G. A., & Leavitt, P. R. ( 2006 ). Biomass and pigments of benthic algae. In F. R. Hauer & G. A. Lamberti (Eds.), Methods in stream ecology ( 2 nd ed., pp. 357 – 379 ). Academic Press. Sterner, R. W. ( 2011 ). C: N: P stoichiometry in Lake Superior: Freshwater sea as end member. Inland Waters, 1 ( 1 ), 29 – 46. https://doi.org/10.5268/IW‐1.1.365 Sterner, R. W., Smutka, T. M., McKay, R. M. L., Xiaoming, Q., Brown, E. T., & Sherrell, R. M. ( 2004 ). Phosphorus and trace metal limitation of algae and bacteria in Lake Superior. Limnology and Oceanography, 49 ( 2 ), 495 – 507. https://doi.org/10.4319/lo.2004.49.2.0495 Stoermer, E. F., Ladewski, B. G., & Schelske, C. L. ( 1978 ). Population responses of Lake Michigan phytoplankton to nitrogen and phosphorus enrichment. Hydrobiologia, 57 ( 3 ), 249 – 265. https://doi.org/10.1007/BF00014579 Tank, J. L., Bernot, M. J., & Rosi‐Marshall, E. J. ( 2006 ). Nitrogen limitation and uptake. In F. R. Hauer & G. A. Lamberti (Eds.), Methods in stream ecology ( 2 nd ed., pp. 213 – 238 ). Academic Press. Timoshkin, O. A., Samsonov, D. P., Yamamuro, M., Moore, M. V., Belykh, O. I., Malnik, V. V., … Bukshuk, N. A. ( 2016 ). Rapid ecological change in the coastal zone of Lake Baikal (East Siberia): Is the site of the world’s greatest freshwater biodiversity in danger? Journal of Great Lakes Research, 42 ( 3 ), 487 – 497. https://doi.org/10.1016/j.jglr.2016.02.011 Triska, F. J., & Oremland, R. S. ( 1981 ). Denitrification associated with periphyton communities. Applied and Environmental Microbiology, 42 ( 4 ), 745 – 748. https://doi.org/10.1128/aem.42.4.745‐748.1981 Trochine, C., Guerrieri, M. E., Liboriussen, L., Lauridsen, T. L., & Jeppesen, E. ( 2014 ). Effects of nutrient loading, temperature regime and grazing pressure on nutrient limitation of periphyton in experimental ponds. Freshwater Biology, 59 ( 5 ), 905 – 917. https://doi.org/10.1111/fwb.12314 Vadeboncoeur, Y., Moore, M. V., Stewart, S. D., Chandra, S., Atkins, K. A., Baron, J. S., … Yamamuro, M. ( 2021 ). Blue waters, green bottoms: Benthic filamentous algal blooms are an emerging threat to clear lakes worldwide. BioScience, 71 ( 20 ), biab049. https://doi.org/10.1093/biosci/biab049 Vadeboncoeur, Y., Peterson, G., Vander Zanden, M. J., & Kalff, J. ( 2008 ). Benthic algal production across lake size gradients: Interactions among morphometry, nutrients, and light. Ecology, 89 ( 9 ), 2542 – 2552. https://doi.org/10.1890/07‐1058.1 Vadeboncoeur, Y., Vander Zanden, M. J., & Lodge, D. M. ( 2002 ). Putting the lake back together: Reintegrating benthic pathways into lake food web models. BioScience, 52 ( 1 ), 44 – 54. Vander Zanden, M. J., & Vadeboncoeur, Y. ( 2002 ). Fishes as integrators of benthic and pelagic food webs in lakes. Ecology, 83 ( 8 ), 2152 – 2161. https://doi.org/10.2307/3072047 Vizza, C., Pechal, J. L., Benbow, M. E., Lang, J. M., Chaloner, D. T., Jones, S. E., & Lamberti, G. A. ( 2018 ). Nitrate amendment reduces biofilm biomass and shifts microbial communities in remote, oligotrophic ponds. Freshwater Science, 37 ( 2 ), 251 – 263. https://doi.org/10.1086/697897 von Schiller, D., Martí, E., Riera, J. L., & Sabater, F. ( 2007 ). Effects of nutrients and light on periphyton biomass and nitrogen uptake in Mediterranean streams with contrasting land uses. Freshwater Biology, 52 ( 5 ), 891 – 906. https://doi.org/10.1111/j.1365‐2427.2007.01742.x Young, O. W. ( 1945 ). A limnological investigation of periphyton in Douglas Lake, Michigan. Transactions of the American Microscopical Society, 64 ( 1 ), 1 – 20. https://doi.org/10.2307/3223433 Cooper, M. J., Costello, G. M., Francoeur, S. N., & Lamberti, G. A. ( 2016 ). Nitrogen limitation of algal biofilms in coastal wetlands of Lakes Michigan and Huron. Freshwater Science, 35 ( 1 ), 25 – 40. https://doi.org/10.1086/684646 Baulch, H. M., Turner, M. A., Findlay, D. L., Vinebrooke, R. D., & Donahue, W. F. ( 2009 ). Benthic algal biomass—measurement and errors. Canadian Journal of Fisheries and Aquatic Sciences, 66 ( 11 ), 1989 – 2001. Bechtold, H. A., Marcarelli, A. M., Baxter, C. V., & Inouye, R. S. ( 2012 ). Effects of N, P, and organic carbon on stream biofilm nutrient limitation and uptake in a semi‐arid watershed. Limnology and Oceanography, 57 ( 5 ), 1544 – 1554. https://doi.org/10.4319/lo.2012.57.5.1544 Beck, W. S., & Hall, E. K. ( 2018 ). Confounding factors in algal phosphorus limitation experiments. PLoS One, 13 ( 10 ), e0205684. https://doi.org/10.1371/journal.pone.0205684 Belykh, O. I., Tikhonova, I. V., Kuzmin, A. V., Sorokovikova, E. G., Fedorova, G. A., Khanaev, I. V., … Timoshkin, O. A. ( 2016 ). First detection of benthic cyanobacteria in Lake Baikal producing paralytic shellfish toxins. Toxicon, 121, 36 – 40. https://doi.org/10.1016/j.toxicon.2016.08.015 Berg, G. M., Balode, M., Purina, I., Bekere, S., Béchemin, C., & Maestrini, S. Y. ( 2003 ). Plankton community composition in relation to availability and uptake of oxidized and reduced nitrogen. Aquatic Microbial Ecology, 30 ( 3 ), 263 – 274. https://doi.org/10.3354/ame030263 Bernhardt, E. S., & Likens, G. E. ( 2004 ). Controls on periphyton biomass in heterotrophic streams. Freshwater Biology, 49 ( 1 ), 14 – 27. https://doi.org/10.1046/j.1365‐2426.2003.01161.x Bonilla, S., Villeneuve, V., & Vincent, W. F. ( 2005 ). Benthic and planktonic algal communities in a high arctic lake: Pigment structure and contrasting responses to nutrient enrichment. Journal of Phycology, 41 ( 6 ), 1120 – 1130. Camilleri, A. C., & Ozersky, T. ( 2019 ). Large variation in periphyton δ 13 C and δ 15 N values in the upper Great Lakes: Correlates and implications. Journal of Great Lakes Research, 45 ( 5 ), 986 – 990. https://doi.org/10.1016/j.jglr.2019.06.003 Camilleri, A. C., & Ozersky, T. ( 2021 ). Dataset for factors regulating lake periphyton biomass and nutrient limitation status across large trophic gradient. Retrieved from the Data Repository for the University of Minnesota, https://doi.org/10.13020/CWST‐SE85 Capps, K. A., Booth, M. T., Collins, S. M., Davison, M. A., Moslemi, J. M., El‐Sabaawi, R. W., … Flecker, A. S. ( 2011 ). Nutrient diffusing substrata: A field comparison of commonly used methods to assess nutrient limitation. Journal of the North American Benthological Society, 30 ( 2 ), 522 – 532. https://doi.org/10.1899/10‐146.1 Carlson, R. E. ( 1977 ). A trophic state index for lakes. Limnology and Oceanography, 22 ( 2 ), 361 – 369. Carpenter, E. J., & Dunham, S. ( 1985 ). Nitrogenous nutrient uptake, primary production, and species composition of phytoplankton in the Carmans River estuary, Long Island, New York. Limnology and Oceanography, 30 ( 3 ), 513 – 526. Carrick, H. J., & Lowe, R. L. ( 1988 ). Response of Lake Michigan benthic algae to in situ enrichment with Si, N, and P. Canadian Journal of Fisheries and Aquatic Sciences, 45 ( 2 ), 271 – 279. https://doi.org/10.1139/f88‐032 Carrick, H. J., & Lowe, R. L. ( 2007 ). Nutrient limitation of benthic algae in Lake Michigan: The role of silica. Journal of Phycology, 43 ( 2 ), 228 – 234. https://doi.org/10.1111/j.1529‐8817.2007.00326.x Cattaneo, A. ( 1987 ). Periphyton in lakes of different trophy. Canadian Journal of Fisheries and Aquatic Sciences, 44 ( 2 ), 296 – 303. https://doi.org/10.1139/f87‐038 Cattaneo, A. ( 1990 ). The effect of fetch on periphyton spatial variation. Hydrobiologia, 206 ( 1 ), 1 – 10. https://doi.org/10.1007/BF00018964 Chun, C. L., Ochsner, U., Byappanahalli, M. N., Whitman, R. L., Tepp, W. H., Lin, G., … Sadowsky, M. J. ( 2013 ). Association of toxin‐producing Clostridium botulinum with the macroalga Cladophora in the Great Lakes. Environmental Science & Technology, 47 ( 6 ), 2587 – 2594. Crawley, M. J. ( 2013 ). The R book ( 2 nd ed.). John Wiley & Sons Ltd. DeNicola, D. M., & Kelly, M. ( 2014 ). Role of periphyton in ecological assessment of lakes. Freshwater Science, 33 ( 2 ), 619 – 638. https://doi.org/10.1086/676117 Dodds, W. K., & Gudder, D. A. ( 1992 ). The ecology of Cladophora. Journal of Phycology, 28 ( 4 ), 415 – 427. https://doi.org/10.1111/j.0022‐3646.1992.00415.x Elser, J. J., Bracken, M. E. S., Cleland, E. E., Gruner, D. S., Harpole, W. S., Hillebrand, H., … Smith, J. E. ( 2007 ). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10 ( 12 ), 1135 – 1142. https://doi.org/10.1111/j.1461‐0248.2007.01113.x IndexNoFollow eutrophication benthic algae Laurentian Great Lakes nitrogen phosphorus Ecology and Evolutionary Biology Science Article 2021 ftumdeepblue https://doi.org/10.1111/fwb.1383610.4319/lo.1978.23.3.047810.5268/IW‐1.1.36510.1093/biosci/biab04910.2307/322343310.1016/j.toxicon.2016.08.01510.1899/10‐146.110.1139/f87‐03810.1007/BF0001896410.1111/j.1461‐0248.2007.01113.x10.2307/146803410.4319/lo.1992.3 2023-07-31T20:34:04Z Because of the historical focus of limnology on pelagic processes, the factors controlling lake periphyton growth and nutrient limitation are understudied compared to the phytoplankton.We deployed nutrient‐diffusing substrata at 28 sites spanning a wide trophic status gradient in Lakes Superior and Michigan to assess periphyton biomass accrual on control substrata and the response of periphyton to single and combined phosphorus (P) and nitrogen (N) additions.Periphyton growth was unimodally related to a composite metric of site trophic status, with highest biomass at mesotrophic sites and lower growth at oligotrophic and highly eutrophic sites. Contrary to expectations, P limitation was rare. Instead, several lines of evidence pointed to primary N or N + P co‐limitation of periphyton. Limitation extent was negatively related to site trophic status, with stronger nutrient limitation at oligotrophic sites.Our results support the hypothesis that phytoplankton and periphyton biomass respond differently to nutrient enrichment and suggest that different nutrients may limit pelagic and benthic primary production, even in the same system.Our findings also support the use of periphyton as an early warning indicator of nutrient pollution and help explain why large, oligotrophic lakes may be especially susceptible to localised benthic algal blooms. Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/171015/1/fwb13836.pdf http://deepblue.lib.umich.edu/bitstream/2027.42/171015/2/fwb13836_am.pdf Article in Journal/Newspaper Arctic University of Michigan: Deep Blue Journal of Geophysical Research: Biogeosciences 126 8