Widespread shifts in bird migration phenology are decoupled from parallel shifts in morphology

Advancements in phenology and changes in morphology, including body size reductions, are among the most commonly described responses to globally warming temperatures. Although these dynamics are routinely explored independently, the relationships among them and how their interactions facilitate or c...

Full description

Bibliographic Details
Published in:Journal of Animal Ecology
Main Authors: Zimova, Marketa, Willard, David E., Winger, Benjamin M., Weeks, Brian C.
Format: Article in Journal/Newspaper
Language:unknown
Published: Wiley Periodicals, Inc. 2021
Subjects:
Online Access:https://hdl.handle.net/2027.42/170852
https://doi.org/10.1111/1365-2656.13543
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/170852
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic migration speed
adaptation
biotic responses
body size
climate change
migratory birds
museum collections
wing length
Ecology and Evolutionary Biology
Science
spellingShingle migration speed
adaptation
biotic responses
body size
climate change
migratory birds
museum collections
wing length
Ecology and Evolutionary Biology
Science
Zimova, Marketa
Willard, David E.
Winger, Benjamin M.
Weeks, Brian C.
Widespread shifts in bird migration phenology are decoupled from parallel shifts in morphology
topic_facet migration speed
adaptation
biotic responses
body size
climate change
migratory birds
museum collections
wing length
Ecology and Evolutionary Biology
Science
description Advancements in phenology and changes in morphology, including body size reductions, are among the most commonly described responses to globally warming temperatures. Although these dynamics are routinely explored independently, the relationships among them and how their interactions facilitate or constrain adaptation to climate change are poorly understood.In migratory species, advancing phenology may impose selection on morphological traits to increase migration speed. Advancing spring phenology might also expose species to cooler temperatures during the breeding season, potentially mitigating the effect of a warming global environment on body size.We use a dataset of birds that died after colliding with buildings in Chicago, IL to test whether changes in migration phenology are related to documented declines in body size and increases in wing length in 52 North American migratory bird species between 1978 and 2016. For each species, we estimate temporal trends in morphology and changes in the timing of migration. We then test for associations between species‐specific rates of phenological and morphological changes while assessing the potential effects of migratory distance and breeding latitude.We show that spring migration through Chicago has advanced while the timing of fall migration has broadened as a result of early fall migrants advancing their migrations and late migrants delaying their migrations. Within species, we found that longer wing length was linked to earlier spring migration within years. However, we found no evidence that rates of phenological change across years, or migratory distance and breeding latitude, are predictive of rates of concurrent changes in morphological traits.These findings suggest that biotic responses to climate change are highly multidimensional and the extent to which those responses interact and influence adaptation to climate change requires careful examination.This study represents a unique empirical assessment of a presumed connection between shifting phenology and ...
format Article in Journal/Newspaper
author Zimova, Marketa
Willard, David E.
Winger, Benjamin M.
Weeks, Brian C.
author_facet Zimova, Marketa
Willard, David E.
Winger, Benjamin M.
Weeks, Brian C.
author_sort Zimova, Marketa
title Widespread shifts in bird migration phenology are decoupled from parallel shifts in morphology
title_short Widespread shifts in bird migration phenology are decoupled from parallel shifts in morphology
title_full Widespread shifts in bird migration phenology are decoupled from parallel shifts in morphology
title_fullStr Widespread shifts in bird migration phenology are decoupled from parallel shifts in morphology
title_full_unstemmed Widespread shifts in bird migration phenology are decoupled from parallel shifts in morphology
title_sort widespread shifts in bird migration phenology are decoupled from parallel shifts in morphology
publisher Wiley Periodicals, Inc.
publishDate 2021
url https://hdl.handle.net/2027.42/170852
https://doi.org/10.1111/1365-2656.13543
genre Arctic
genre_facet Arctic
op_relation Zimova, Marketa; Willard, David E.; Winger, Benjamin M.; Weeks, Brian C. (2021). "Widespread shifts in bird migration phenology are decoupled from parallel shifts in morphology." Journal of Animal Ecology (10): 2348-2361.
0021-8790
1365-2656
https://hdl.handle.net/2027.42/170852
doi:10.1111/1365-2656.13543
Journal of Animal Ecology
Rodríguez, S., Diez‐Méndez, D., & Barba, E. ( 2016 ). Negative effects of high temperatures during development on immediate post‐fledging survival in great tits parus major. Acta Ornithologica, 51 ( 2 ), 235 – 244. https://doi.org/10.3161/00016454ao2016.51.2.009
Senar, J. C., & Pascual, J. ( 1997 ). Keel and tarsus length may provide a good predictor of avian body size. Ardea, 85, 269 – 274.
Sheridan, J. A., & Bickford, D. ( 2011 ). Shrinking body size as an ecological response to climate change. Nature Climate Change, 1 ( 8 ), 401 – 406. https://doi.org/10.1038/nclimate1259
Socolar, J. B., Epanchin, P. N., Beissinger, S. R., & Tingley, M. W. ( 2017 ). Phenological shifts conserve thermal niches in North American birds and reshape expectations for climate‐driven range shifts. Proceedings of the National Academy of Sciences of the United States of America, 114 ( 49 ), 12976 – 12981. https://doi.org/10.1073/pnas.1705897114
Speakman, J. R., & Król, E. ( 2010 ). Maximal heat dissipation capacity and hyperthermia risk: Neglected key factors in the ecology of endotherms. Journal of Animal Ecology, 79, 726 – 746. https://doi.org/10.1111/j.1365‐2656.2010.01689.x
Spottiswoode, C. N., Tøttrup, A. P., Coppack, T., Tottrup, A. P., & Coppack, T. ( 2006 ). Sexual selection predicts advancement of avian spring migration in response to climate change. Proceedings of the Royal Society B: Biological Sciences, 273 ( 1605 ), 3023 – 3029. https://doi.org/10.1098/rspb.2006.3688
Stutchbury, B. J. M., Gow, E. A., Done, T., MacPherson, M., Fox, J. W., & Afanasyev, V. ( 2011 ). Effects of post‐breeding moult and energetic condition on timing of songbird migration into the tropics. Proceedings of the Royal Society B: Biological Sciences, 278 ( 1702 ), 131 – 137. https://doi.org/10.1098/rspb.2010.1220
Sukumaran, J., & Holder, M. T. ( 2010 ). DendroPy: A Python library for phylogenetic computing. Bioinformatics, 26 ( 12 ), 1569 – 1571. https://doi.org/10.1093/bioinformatics/btq228
Sullivan, B. L., Wood, C. L., Iliff, M. J., Bonney, R. E., Fink, D., & Kelling, S. ( 2009 ). eBird: A citizen‐based bird observation network in the biological sciences. Biological Conservation, 142 ( 10 ), 2282 – 2292. https://doi.org/10.1016/j.biocon.2009.05.006
Thackeray, S. J., Henrys, P. A., Hemming, D., Bell, J. R., Botham, M. S., Burthe, S., Helaouet, P., Johns, D. G., Jones, I. D., Leech, D. I., Mackay, E. B., Massimino, D., Atkinson, S., Bacon, P. J., Brereton, T. M., Carvalho, L., Clutton‐Brock, T. H., Duck, C., Edwards, M., … Wanless, S. ( 2016 ). Phenological sensitivity to climate across taxa and trophic levels. Nature, 535, 241. https://doi.org/10.1038/nature18608
Tomotani, B. M., de la Hera, I., Lange, C. Y. M. J. G. M. J. G., van Lith, B., Meddle, S. L., Both, C., & Visser, M. E. ( 2019 ). Timing manipulations reveal the lack of a causal link across timing of annual‐cycle stages in a long‐distance migrant. Journal of Experimental Biology, 222 ( 17 ), jeb201467. https://doi.org/10.1242/jeb.201467
Townsend, A. K., Sillett, T. S., Lany, N. K., Kaiser, S. A., Rodenhouse, N. L., Webster, M. S., & Holmes, R. T. ( 2013 ). Warm springs, early lay dates, and double brooding in a North American migratory songbird, the black‐throated blue warbler. PLoS ONE, 8 ( 4 ), 59467. https://doi.org/10.1371/journal.pone.0059467
Usui, T., Butchart, S. H. M., & Phillimore, A. B. ( 2017 ). Temporal shifts and temperature sensitivity of avian spring migratory phenology: A phylogenetic meta‐analysis. Journal of Animal Ecology, 86 ( 2 ), 250 – 261. https://doi.org/10.1111/1365‐2656.12612
Valtonen, A., Latja, R., Leinonen, R., & Pöysä, H. ( 2017 ). Arrival and onset of breeding of three passerine birds in eastern Finland tracks climatic variation and phenology of insects. Journal of Avian Biology, 48 ( 6 ), 785 – 795. https://doi.org/10.1111/jav.01128
Van Buskirk, J., Mulvihill, R. S., & Leberman, R. C. ( 2009 ). Variable shifts in spring and autumn migration phenology in North American songbirds associated with climate change. Global Change Biology, 15 ( 3 ), 760 – 771. https://doi.org/10.1111/j.1365‐2486.2008.01751.x
Van Buskirk, J., Mulvihill, R. S., & Leberman, R. C. ( 2010 ). Declining body sizes in North American birds associated with climate change. Oikos, 119 ( 6 ), 1047 – 1055. https://doi.org/10.1111/j.1600‐0706.2009.18349.x
Van Gils, J. A., Lisovski, S., Lok, T., Meissner, W., Ożarowska, A., De Fouw, J., Rakhimberdiev, E., Soloviev, M. Y., Piersma, T., & Klaassen, M. ( 2016 ). Body shrinkage due to Arctic warming reduces red knot fitness in tropical wintering range. Science, 352 ( 6287 ), 819 – 821. https://doi.org/10.1126/science.aad6351
van Wijk, R. E., Schaub, M., & Bauer, S. ( 2017 ). Dependencies in the timing of activities weaken over the annual cycle in a long‐distance migratory bird. Behavioral Ecology and Sociobiology, 71 ( 4 ), 73. https://doi.org/10.1007/s00265‐017‐2305‐5
Végvári, Z., Bókony, V., Barta, Z., & Kovács, G. ( 2010 ). Life history predicts advancement of avian spring migration in response to climate change. Global Change Biology, 16 ( 1 ), 1 – 11. https://doi.org/10.1111/j.1365‐2486.2009.01876.x
Visser, M. E., Gienapp, P., Husby, A., Morrisey, M., de la Hera, I., Pulido, F., & Both, C. ( 2015 ). Effects of spring temperatures on the strength of selection on timing of reproduction in a long‐distance migratory bird. Plos Biology, 13 ( 4 ), 1 – 17. https://doi.org/10.1371/journal.pbio.1002120
Wada, H., Kriengwatana, B., Allen, N., Schmidt, K. L., Soma, K. K., & MacDougall‐Shackleton, S. A. ( 2015 ). Transient and permanent effects of suboptimal incubation temperatures on growth, metabolic rate, immune function and adrenocortical responses in zebra finches. Journal of Experimental Biology, 218 ( 18 ), 2847 – 2855. https://doi.org/10.1242/jeb.114108
Walther, G. R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., Fromentin, J.‐M., Hoegh‐Guldberg, O., & Bairlein, F. ( 2002 ). Ecological responses to recent climate change. Nature, 416 ( 6879 ), 389 – 395. https://doi.org/10.1038/416389a
Weeks, B. C., Willard, D. E., Zimova, M., Ellis, A. A., Witynski, M. L., Hennen, M., & Winger, B. M. ( 2020a ). Shared morphological consequences of global warming in North American migratory birds. Ecology Letters, 23 ( 2 ), 316 – 325. https://doi.org/10.1111/ele.13434
Weeks, B. C., Willard, D. E., Zimova, M., Ellis, A. A., Witynski, M. L., Hennen, M., & Winger, B. M. ( 2020b ). Data from: Shared morphological consequences of global warming in North American migratory birds. Dryad Digital Repository, https://datadryad.org/stash/dataset/10.5061/dryad.8pk0p2nhw
Winger, B. M., Weeks, B. C., Farnsworth, A., Jones, A. W., Hennen, M., & Willard, D. E. ( 2019 ). Nocturnal flight‐calling behaviour predicts vulnerability to artificial light in migratory birds. Proceedings of the Royal Society B: Biological Sciences, 286 ( 1900 ), 20190364. https://doi.org/10.1098/rspb.2019.0364
Woodworth, B. K., Newman, A. E. M., Turbek, S. P., Dossman, B. C., Hobson, K. A., Wassenaar, L. I., Mitchell, G. W., Wheelwright, N. T., & Norris, D. R. ( 2016 ). Differential migration and the link between winter latitude, timing of migration, and breeding in a songbird. Oecologia, 181 ( 2 ), 413 – 422. https://doi.org/10.1007/s00442‐015‐3527‐8
Yom‐Tov, Y., Yom‐Tov, S., Wright, J., Thorne, C. J. R. R., & Du Feu, R. ( 2006 ). Recent changes in body weight and wing length among some British passerine birds. Oikos, 112 ( 1 ), 91 – 101. https://doi.org/10.1111/j.0030‐1299.2006.14183.x
Yong, W., & Moore, F. R. ( 1994 ). Flight morphology, energetic condition, and the stopover biology of migrating thrushes. The Auk, 111 ( 3 ), 683 – 692. https://doi.org/10.1093/auk/111.3.683
Butler, C. J. ( 2003 ). The disproportionate effect of global warming on the arrival dates of short‐distance migratory birds in North America. Ibis, 145 ( 3 ), 484 – 495. https://doi.org/10.1046/j.1474‐919X.2003.00193.x
Chambers, L. E., Beaumont, L. J., & Hudson, I. L. ( 2014 ). Continental scale analysis of bird migration timing: Influences of climate and life history traits – A generalized mixture model clustering and discriminant approach. International Journal of Biometeorology, 58 ( 6 ), 1147 – 1162. https://doi.org/10.1007/s00484‐013‐0707‐2
Chmura, H. E., Kharouba, H. M., Ashander, J., Ehlman, S. M., Rivest, E. B., & Yang, L. H. ( 2019 ). The mechanisms of phenology: The patterns and processes of phenological shifts. Ecological Monographs, 89 ( 1 ), e01337. https://doi.org/10.1002/ecm.1337
Ahola, M., Laaksonen, T., Sippola, K., Eeva, T., Rainio, K., & Lehikoinen, E. ( 2004 ). Variation in climate warming along the migration route uncouples arrival and breeding dates. Global Change Biology, 10 ( 9 ), 1610 – 1617. https://doi.org/10.1111/j.1365‐2486.2004.00823.x
Åkesson, S., Ilieva, M., Karagicheva, J., Rakhimberdiev, E., Tomotani, B., & Helm, B. ( 2017 ). Timing avian long‐distance migration: From internal clock mechanisms to global flights. Philosophical Transactions of the Royal Society B: Biological Sciences, 372, 20160252. https://doi.org/10.1098/rstb.2016.0252
Alerstam, T. ( 2011 ). Optimal bird migration revisited. Journal of Ornithology, 152, 5 – 23. https://doi.org/10.1007/s10336‐011‐0694‐1
Andreasson, F., Nord, A., & Nilsson, J. Å. ( 2016 ). Brood size constrains the development of endothermy in blue tits. Journal of Experimental Biology, 219 ( 14 ), 2212 – 2219. https://doi.org/10.1242/jeb.135350
Andrew, S. C., Hurley, L. L., Mariette, M. M., & Griffith, S. C. ( 2017 ). Higher temperatures during development reduce body size in the zebra finch in the laboratory and in the wild. Journal of Evolutionary Biology, 30 ( 12 ), 2156 – 2164. https://doi.org/10.1111/jeb.13181
Audzijonyte, A., Richards, S. A., Stuart‐Smith, R. D., Pecl, G., Edgar, G. J., Barrett, N. S., Payne, N., & Blanchard, J. L. ( 2020 ). Fish body sizes change with temperature but not all species shrink with warming. Nature Ecology & Evolution, 4, 809 – 814. https://doi.org/10.1038/s41559‐020‐1171‐0
Barton, G. G., & Sandercock, B. K. ( 2018 ). Long‐term changes in the seasonal timing of landbird migration on the Pacific Flyway. The Condor, 120 ( 1 ), 30 – 46. https://doi.org/10.1650/condor‐17‐88.1
Bates, D., Mächler, M., Bolker, B., & Walker, S. ( 2015 ). Fitting linear mixed‐effects models using lme4. Journal of Statistical Software, 67, 48. https://doi.org/10.18637/jss.v067.i01
Baudron, A. R., Needle, C. L., Rijnsdorp, A. D., & Tara Marshall, C. ( 2014 ). Warming temperatures and smaller body sizes: Synchronous changes in growth of North Sea fishes. Global Change Biology, 20 ( 4 ), 1023 – 1031. https://doi.org/10.1111/gcb.12514
Bennett, N. L., Severns, P. M., Parmesan, C., & Singer, M. C. ( 2015 ). Geographic mosaics of phenology, host preference, adult size and microhabitat choice predict butterfly resilience to climate warming. Oikos, 124 ( 1 ), 41 – 53. https://doi.org/10.1111/oik.01490
Bergmann, C. ( 1847 ). Uber die verhaltnisse der warmeokonomie der thiere zu ihrer grosse. Gottinger Studien, 1, 595 – 708.
BirdLife International. ( 2015 ). IUCN red list for birds. Retrieved from http://www.birdlife.org
Bitterlin, L. R., & Van Buskirk, J. ( 2014 ). Ecological and life history correlates of changes in avian migration timing in response to climate change. Climate Research, 61 ( 2 ), 109 – 121. https://doi.org/10.3354/cr01238
op_rights IndexNoFollow
op_doi https://doi.org/10.1111/1365-2656.1354310.1038/nature1860810.1046/j.1474‐919X.2003.00193.x10.1007/s10336‐011‐0694‐110.1093/auk/124.4.138810.2307/409011310.1890/09‐2202.110.2307/136622410.1016/j.conb.2003.10.01010.18637/jss.v033.i0210.1098/rspb.2000.129610
container_title Journal of Animal Ecology
container_volume 90
container_issue 10
container_start_page 2348
op_container_end_page 2361
_version_ 1810294165145124864
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/170852 2024-09-15T17:52:06+00:00 Widespread shifts in bird migration phenology are decoupled from parallel shifts in morphology Zimova, Marketa Willard, David E. Winger, Benjamin M. Weeks, Brian C. 2021-10 application/pdf https://hdl.handle.net/2027.42/170852 https://doi.org/10.1111/1365-2656.13543 unknown Wiley Periodicals, Inc. Cambridge University Press Zimova, Marketa; Willard, David E.; Winger, Benjamin M.; Weeks, Brian C. (2021). "Widespread shifts in bird migration phenology are decoupled from parallel shifts in morphology." Journal of Animal Ecology (10): 2348-2361. 0021-8790 1365-2656 https://hdl.handle.net/2027.42/170852 doi:10.1111/1365-2656.13543 Journal of Animal Ecology Rodríguez, S., Diez‐Méndez, D., & Barba, E. ( 2016 ). Negative effects of high temperatures during development on immediate post‐fledging survival in great tits parus major. Acta Ornithologica, 51 ( 2 ), 235 – 244. https://doi.org/10.3161/00016454ao2016.51.2.009 Senar, J. C., & Pascual, J. ( 1997 ). Keel and tarsus length may provide a good predictor of avian body size. Ardea, 85, 269 – 274. Sheridan, J. A., & Bickford, D. ( 2011 ). Shrinking body size as an ecological response to climate change. Nature Climate Change, 1 ( 8 ), 401 – 406. https://doi.org/10.1038/nclimate1259 Socolar, J. B., Epanchin, P. N., Beissinger, S. R., & Tingley, M. W. ( 2017 ). Phenological shifts conserve thermal niches in North American birds and reshape expectations for climate‐driven range shifts. Proceedings of the National Academy of Sciences of the United States of America, 114 ( 49 ), 12976 – 12981. https://doi.org/10.1073/pnas.1705897114 Speakman, J. R., & Król, E. ( 2010 ). Maximal heat dissipation capacity and hyperthermia risk: Neglected key factors in the ecology of endotherms. Journal of Animal Ecology, 79, 726 – 746. https://doi.org/10.1111/j.1365‐2656.2010.01689.x Spottiswoode, C. N., Tøttrup, A. P., Coppack, T., Tottrup, A. P., & Coppack, T. ( 2006 ). Sexual selection predicts advancement of avian spring migration in response to climate change. Proceedings of the Royal Society B: Biological Sciences, 273 ( 1605 ), 3023 – 3029. https://doi.org/10.1098/rspb.2006.3688 Stutchbury, B. J. M., Gow, E. A., Done, T., MacPherson, M., Fox, J. W., & Afanasyev, V. ( 2011 ). Effects of post‐breeding moult and energetic condition on timing of songbird migration into the tropics. Proceedings of the Royal Society B: Biological Sciences, 278 ( 1702 ), 131 – 137. https://doi.org/10.1098/rspb.2010.1220 Sukumaran, J., & Holder, M. T. ( 2010 ). DendroPy: A Python library for phylogenetic computing. Bioinformatics, 26 ( 12 ), 1569 – 1571. https://doi.org/10.1093/bioinformatics/btq228 Sullivan, B. L., Wood, C. L., Iliff, M. J., Bonney, R. E., Fink, D., & Kelling, S. ( 2009 ). eBird: A citizen‐based bird observation network in the biological sciences. Biological Conservation, 142 ( 10 ), 2282 – 2292. https://doi.org/10.1016/j.biocon.2009.05.006 Thackeray, S. J., Henrys, P. A., Hemming, D., Bell, J. R., Botham, M. S., Burthe, S., Helaouet, P., Johns, D. G., Jones, I. D., Leech, D. I., Mackay, E. B., Massimino, D., Atkinson, S., Bacon, P. J., Brereton, T. M., Carvalho, L., Clutton‐Brock, T. H., Duck, C., Edwards, M., … Wanless, S. ( 2016 ). Phenological sensitivity to climate across taxa and trophic levels. Nature, 535, 241. https://doi.org/10.1038/nature18608 Tomotani, B. M., de la Hera, I., Lange, C. Y. M. J. G. M. J. G., van Lith, B., Meddle, S. L., Both, C., & Visser, M. E. ( 2019 ). Timing manipulations reveal the lack of a causal link across timing of annual‐cycle stages in a long‐distance migrant. Journal of Experimental Biology, 222 ( 17 ), jeb201467. https://doi.org/10.1242/jeb.201467 Townsend, A. K., Sillett, T. S., Lany, N. K., Kaiser, S. A., Rodenhouse, N. L., Webster, M. S., & Holmes, R. T. ( 2013 ). Warm springs, early lay dates, and double brooding in a North American migratory songbird, the black‐throated blue warbler. PLoS ONE, 8 ( 4 ), 59467. https://doi.org/10.1371/journal.pone.0059467 Usui, T., Butchart, S. H. M., & Phillimore, A. B. ( 2017 ). Temporal shifts and temperature sensitivity of avian spring migratory phenology: A phylogenetic meta‐analysis. Journal of Animal Ecology, 86 ( 2 ), 250 – 261. https://doi.org/10.1111/1365‐2656.12612 Valtonen, A., Latja, R., Leinonen, R., & Pöysä, H. ( 2017 ). Arrival and onset of breeding of three passerine birds in eastern Finland tracks climatic variation and phenology of insects. Journal of Avian Biology, 48 ( 6 ), 785 – 795. https://doi.org/10.1111/jav.01128 Van Buskirk, J., Mulvihill, R. S., & Leberman, R. C. ( 2009 ). Variable shifts in spring and autumn migration phenology in North American songbirds associated with climate change. Global Change Biology, 15 ( 3 ), 760 – 771. https://doi.org/10.1111/j.1365‐2486.2008.01751.x Van Buskirk, J., Mulvihill, R. S., & Leberman, R. C. ( 2010 ). Declining body sizes in North American birds associated with climate change. Oikos, 119 ( 6 ), 1047 – 1055. https://doi.org/10.1111/j.1600‐0706.2009.18349.x Van Gils, J. A., Lisovski, S., Lok, T., Meissner, W., Ożarowska, A., De Fouw, J., Rakhimberdiev, E., Soloviev, M. Y., Piersma, T., & Klaassen, M. ( 2016 ). Body shrinkage due to Arctic warming reduces red knot fitness in tropical wintering range. Science, 352 ( 6287 ), 819 – 821. https://doi.org/10.1126/science.aad6351 van Wijk, R. E., Schaub, M., & Bauer, S. ( 2017 ). Dependencies in the timing of activities weaken over the annual cycle in a long‐distance migratory bird. Behavioral Ecology and Sociobiology, 71 ( 4 ), 73. https://doi.org/10.1007/s00265‐017‐2305‐5 Végvári, Z., Bókony, V., Barta, Z., & Kovács, G. ( 2010 ). Life history predicts advancement of avian spring migration in response to climate change. Global Change Biology, 16 ( 1 ), 1 – 11. https://doi.org/10.1111/j.1365‐2486.2009.01876.x Visser, M. E., Gienapp, P., Husby, A., Morrisey, M., de la Hera, I., Pulido, F., & Both, C. ( 2015 ). Effects of spring temperatures on the strength of selection on timing of reproduction in a long‐distance migratory bird. Plos Biology, 13 ( 4 ), 1 – 17. https://doi.org/10.1371/journal.pbio.1002120 Wada, H., Kriengwatana, B., Allen, N., Schmidt, K. L., Soma, K. K., & MacDougall‐Shackleton, S. A. ( 2015 ). Transient and permanent effects of suboptimal incubation temperatures on growth, metabolic rate, immune function and adrenocortical responses in zebra finches. Journal of Experimental Biology, 218 ( 18 ), 2847 – 2855. https://doi.org/10.1242/jeb.114108 Walther, G. R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., Fromentin, J.‐M., Hoegh‐Guldberg, O., & Bairlein, F. ( 2002 ). Ecological responses to recent climate change. Nature, 416 ( 6879 ), 389 – 395. https://doi.org/10.1038/416389a Weeks, B. C., Willard, D. E., Zimova, M., Ellis, A. A., Witynski, M. L., Hennen, M., & Winger, B. M. ( 2020a ). Shared morphological consequences of global warming in North American migratory birds. Ecology Letters, 23 ( 2 ), 316 – 325. https://doi.org/10.1111/ele.13434 Weeks, B. C., Willard, D. E., Zimova, M., Ellis, A. A., Witynski, M. L., Hennen, M., & Winger, B. M. ( 2020b ). Data from: Shared morphological consequences of global warming in North American migratory birds. Dryad Digital Repository, https://datadryad.org/stash/dataset/10.5061/dryad.8pk0p2nhw Winger, B. M., Weeks, B. C., Farnsworth, A., Jones, A. W., Hennen, M., & Willard, D. E. ( 2019 ). Nocturnal flight‐calling behaviour predicts vulnerability to artificial light in migratory birds. Proceedings of the Royal Society B: Biological Sciences, 286 ( 1900 ), 20190364. https://doi.org/10.1098/rspb.2019.0364 Woodworth, B. K., Newman, A. E. M., Turbek, S. P., Dossman, B. C., Hobson, K. A., Wassenaar, L. I., Mitchell, G. W., Wheelwright, N. T., & Norris, D. R. ( 2016 ). Differential migration and the link between winter latitude, timing of migration, and breeding in a songbird. Oecologia, 181 ( 2 ), 413 – 422. https://doi.org/10.1007/s00442‐015‐3527‐8 Yom‐Tov, Y., Yom‐Tov, S., Wright, J., Thorne, C. J. R. R., & Du Feu, R. ( 2006 ). Recent changes in body weight and wing length among some British passerine birds. Oikos, 112 ( 1 ), 91 – 101. https://doi.org/10.1111/j.0030‐1299.2006.14183.x Yong, W., & Moore, F. R. ( 1994 ). Flight morphology, energetic condition, and the stopover biology of migrating thrushes. The Auk, 111 ( 3 ), 683 – 692. https://doi.org/10.1093/auk/111.3.683 Butler, C. J. ( 2003 ). The disproportionate effect of global warming on the arrival dates of short‐distance migratory birds in North America. Ibis, 145 ( 3 ), 484 – 495. https://doi.org/10.1046/j.1474‐919X.2003.00193.x Chambers, L. E., Beaumont, L. J., & Hudson, I. L. ( 2014 ). Continental scale analysis of bird migration timing: Influences of climate and life history traits – A generalized mixture model clustering and discriminant approach. International Journal of Biometeorology, 58 ( 6 ), 1147 – 1162. https://doi.org/10.1007/s00484‐013‐0707‐2 Chmura, H. E., Kharouba, H. M., Ashander, J., Ehlman, S. M., Rivest, E. B., & Yang, L. H. ( 2019 ). The mechanisms of phenology: The patterns and processes of phenological shifts. Ecological Monographs, 89 ( 1 ), e01337. https://doi.org/10.1002/ecm.1337 Ahola, M., Laaksonen, T., Sippola, K., Eeva, T., Rainio, K., & Lehikoinen, E. ( 2004 ). Variation in climate warming along the migration route uncouples arrival and breeding dates. Global Change Biology, 10 ( 9 ), 1610 – 1617. https://doi.org/10.1111/j.1365‐2486.2004.00823.x Åkesson, S., Ilieva, M., Karagicheva, J., Rakhimberdiev, E., Tomotani, B., & Helm, B. ( 2017 ). Timing avian long‐distance migration: From internal clock mechanisms to global flights. Philosophical Transactions of the Royal Society B: Biological Sciences, 372, 20160252. https://doi.org/10.1098/rstb.2016.0252 Alerstam, T. ( 2011 ). Optimal bird migration revisited. Journal of Ornithology, 152, 5 – 23. https://doi.org/10.1007/s10336‐011‐0694‐1 Andreasson, F., Nord, A., & Nilsson, J. Å. ( 2016 ). Brood size constrains the development of endothermy in blue tits. Journal of Experimental Biology, 219 ( 14 ), 2212 – 2219. https://doi.org/10.1242/jeb.135350 Andrew, S. C., Hurley, L. L., Mariette, M. M., & Griffith, S. C. ( 2017 ). Higher temperatures during development reduce body size in the zebra finch in the laboratory and in the wild. Journal of Evolutionary Biology, 30 ( 12 ), 2156 – 2164. https://doi.org/10.1111/jeb.13181 Audzijonyte, A., Richards, S. A., Stuart‐Smith, R. D., Pecl, G., Edgar, G. J., Barrett, N. S., Payne, N., & Blanchard, J. L. ( 2020 ). Fish body sizes change with temperature but not all species shrink with warming. Nature Ecology & Evolution, 4, 809 – 814. https://doi.org/10.1038/s41559‐020‐1171‐0 Barton, G. G., & Sandercock, B. K. ( 2018 ). Long‐term changes in the seasonal timing of landbird migration on the Pacific Flyway. The Condor, 120 ( 1 ), 30 – 46. https://doi.org/10.1650/condor‐17‐88.1 Bates, D., Mächler, M., Bolker, B., & Walker, S. ( 2015 ). Fitting linear mixed‐effects models using lme4. Journal of Statistical Software, 67, 48. https://doi.org/10.18637/jss.v067.i01 Baudron, A. R., Needle, C. L., Rijnsdorp, A. D., & Tara Marshall, C. ( 2014 ). Warming temperatures and smaller body sizes: Synchronous changes in growth of North Sea fishes. Global Change Biology, 20 ( 4 ), 1023 – 1031. https://doi.org/10.1111/gcb.12514 Bennett, N. L., Severns, P. M., Parmesan, C., & Singer, M. C. ( 2015 ). Geographic mosaics of phenology, host preference, adult size and microhabitat choice predict butterfly resilience to climate warming. Oikos, 124 ( 1 ), 41 – 53. https://doi.org/10.1111/oik.01490 Bergmann, C. ( 1847 ). Uber die verhaltnisse der warmeokonomie der thiere zu ihrer grosse. Gottinger Studien, 1, 595 – 708. BirdLife International. ( 2015 ). IUCN red list for birds. Retrieved from http://www.birdlife.org Bitterlin, L. R., & Van Buskirk, J. ( 2014 ). Ecological and life history correlates of changes in avian migration timing in response to climate change. Climate Research, 61 ( 2 ), 109 – 121. https://doi.org/10.3354/cr01238 IndexNoFollow migration speed adaptation biotic responses body size climate change migratory birds museum collections wing length Ecology and Evolutionary Biology Science Article 2021 ftumdeepblue https://doi.org/10.1111/1365-2656.1354310.1038/nature1860810.1046/j.1474‐919X.2003.00193.x10.1007/s10336‐011‐0694‐110.1093/auk/124.4.138810.2307/409011310.1890/09‐2202.110.2307/136622410.1016/j.conb.2003.10.01010.18637/jss.v033.i0210.1098/rspb.2000.129610 2024-07-30T04:06:06Z Advancements in phenology and changes in morphology, including body size reductions, are among the most commonly described responses to globally warming temperatures. Although these dynamics are routinely explored independently, the relationships among them and how their interactions facilitate or constrain adaptation to climate change are poorly understood.In migratory species, advancing phenology may impose selection on morphological traits to increase migration speed. Advancing spring phenology might also expose species to cooler temperatures during the breeding season, potentially mitigating the effect of a warming global environment on body size.We use a dataset of birds that died after colliding with buildings in Chicago, IL to test whether changes in migration phenology are related to documented declines in body size and increases in wing length in 52 North American migratory bird species between 1978 and 2016. For each species, we estimate temporal trends in morphology and changes in the timing of migration. We then test for associations between species‐specific rates of phenological and morphological changes while assessing the potential effects of migratory distance and breeding latitude.We show that spring migration through Chicago has advanced while the timing of fall migration has broadened as a result of early fall migrants advancing their migrations and late migrants delaying their migrations. Within species, we found that longer wing length was linked to earlier spring migration within years. However, we found no evidence that rates of phenological change across years, or migratory distance and breeding latitude, are predictive of rates of concurrent changes in morphological traits.These findings suggest that biotic responses to climate change are highly multidimensional and the extent to which those responses interact and influence adaptation to climate change requires careful examination.This study represents a unique empirical assessment of a presumed connection between shifting phenology and ... Article in Journal/Newspaper Arctic University of Michigan: Deep Blue Journal of Animal Ecology 90 10 2348 2361