Reorganized Atmospheric Circulation During the Little Ice Age Leads to Rapid Southern California Deoxygenation

The magnitude of natural oceanic dissolved oxygen (DO) variability remains poorly understood due to the short duration of the observational record. Here we present a high‐resolution (4–9 years) reconstruction of the Southern California oxygen minimum zone (OMZ) through the Common Era using redox‐sen...

Full description

Bibliographic Details
Published in:Geophysical Research Letters
Main Authors: Wang, Yi, Hendy, Ingrid L.
Format: Article in Journal/Newspaper
Language:unknown
Published: Springer Berlin Heidelberg 2021
Subjects:
Online Access:https://hdl.handle.net/2027.42/169345
https://doi.org/10.1029/2021GL094469
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/169345
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic oxygen minimum zone
atmospheric circulation
North Pacific Intermediate Water
ventilation
Southern California
Geological Sciences
Science
spellingShingle oxygen minimum zone
atmospheric circulation
North Pacific Intermediate Water
ventilation
Southern California
Geological Sciences
Science
Wang, Yi
Hendy, Ingrid L.
Reorganized Atmospheric Circulation During the Little Ice Age Leads to Rapid Southern California Deoxygenation
topic_facet oxygen minimum zone
atmospheric circulation
North Pacific Intermediate Water
ventilation
Southern California
Geological Sciences
Science
description The magnitude of natural oceanic dissolved oxygen (DO) variability remains poorly understood due to the short duration of the observational record. Here we present a high‐resolution (4–9 years) reconstruction of the Southern California oxygen minimum zone (OMZ) through the Common Era using redox‐sensitive metals. Rapid OMZ intensification on multidecadal timescales reveals greater DO variability than observed in instrumental records. An anomalous interval of intensified OMZ between 1600–1750 CE contradicts the expectation of better‐ventilated mid‐depth North Pacific during cool climates. Although the influence of low‐DO Equatorial Pacific Intermediate Water on the Southern California Margin was likely weaker during this interval, we attribute the observed rapid deoxygenation to reduced North Pacific Intermediate Water (NPIW) ventilation. NPIW ventilation thus appears very sensitive to atmospheric circulation reorganization (e.g., a weakened Siberian High and Aleutian Low). In addition to temperature‐induced gas solubility, atmospheric forcing under future anthropogenic influences could amplify OMZ variability.Plain Language SummaryOxygen content of the ocean is declining as seawater warms due to anthropogenic climate change impacting gas solubility. However, how much dissolved oxygen in seawater can decrease naturally is unknown, as we have only been measuring oxygen in ocean waters for ∼60 years. We reconstructed oxygen concentrations of bottom waters in Santa Barbara Basin (SBB), CA for the past 2,000 years using marine sediments on sub‐decadal time scales. We found that seawater oxygen varied more in the past than has been recently observed, and that seawater oxygen was surprisingly low during 1600–1750 CE—one of the coldest intervals during the last 1,000 years. At this time the atmospheric circulation over the Sea of Okhotsk suppressed sea ice formation, reducing the surface ocean mixing that supplies oxygen to the subsurface waters. This low‐oxygen subsurface water moved around the northeastern Pacific ...
format Article in Journal/Newspaper
author Wang, Yi
Hendy, Ingrid L.
author_facet Wang, Yi
Hendy, Ingrid L.
author_sort Wang, Yi
title Reorganized Atmospheric Circulation During the Little Ice Age Leads to Rapid Southern California Deoxygenation
title_short Reorganized Atmospheric Circulation During the Little Ice Age Leads to Rapid Southern California Deoxygenation
title_full Reorganized Atmospheric Circulation During the Little Ice Age Leads to Rapid Southern California Deoxygenation
title_fullStr Reorganized Atmospheric Circulation During the Little Ice Age Leads to Rapid Southern California Deoxygenation
title_full_unstemmed Reorganized Atmospheric Circulation During the Little Ice Age Leads to Rapid Southern California Deoxygenation
title_sort reorganized atmospheric circulation during the little ice age leads to rapid southern california deoxygenation
publisher Springer Berlin Heidelberg
publishDate 2021
url https://hdl.handle.net/2027.42/169345
https://doi.org/10.1029/2021GL094469
geographic Okhotsk
Pacific
geographic_facet Okhotsk
Pacific
genre aleutian low
Sea ice
genre_facet aleutian low
Sea ice
op_relation Wang, Yi; Hendy, Ingrid L. (2021). "Reorganized Atmospheric Circulation During the Little Ice Age Leads to Rapid Southern California Deoxygenation." Geophysical Research Letters 48(15): n/a-n/a.
0094-8276
1944-8007
https://hdl.handle.net/2027.42/169345
doi:10.1029/2021GL094469
Geophysical Research Letters
Warrick, J. A., & Farnsworth, K. L. ( 2009 ). Sources of sediment to the coastal waters of the Southern California Bight. The Geological Society of America Special Paper, 454, 39 – 52. https://doi.org/10.1130/2009.2454(2.2)
Eagle, M., Paytan, A., Arrigo, K. R., van Dijken, G., & Murray, R. W. ( 2003 ). A comparison between excess barium and barite as indicators of carbon export. Paleoceanography, 18 ( 1 ). https://doi.org/10.1029/2003pa000922
Ganeshram, R. S., François, R., Commeau, J., & Brown‐Leger, S. L. ( 2003 ). An experimental investigation of barite formation in seawater. Geochimica et Cosmochimica Acta, 67 ( 14 ), 2599 – 2605. https://doi.org/10.1016/s0016-7037(03)00164-9
Gingele, F. X., Zabel, M., Kasten, S., Bonn, W. J., & Nürnberg, C. C. ( 1999 ). Biogenic barium as a proxy for paleoproductivity: Methods and limitations of application. In G. Fischer & G. Wefer (Eds.), Use of Proxies in Paleoceanography: Examples from the South Atlantic (pp. 345 – 364 ). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-58646-0_13
Hamill, T. M., Whitaker, J. S., & Snyder, C. ( 2001 ). Distance‐dependent filtering of background error covariance estimates in an ensemble Kalman filter. Monthly Weather Review, 129 ( 11 ), 2776 – 2790. https://doi.org/10.1175/1520-0493(2001)129<2776:ddfobe>2.0.co;2
Harrison, B. K., Zhang, H., Berelson, W., & Orphan, V. J. ( 2009 ). Variations in archaeal and bacterial diversity associated with the sulfate‐methane transition zone in continental margin sediments (Santa Barbara Basin, California). Applied and Environmental Microbiology, 75 ( 6 ), 1487 – 1499. https://doi.org/10.1128/aem.01812-08
Kimura, N. ( 2004 ). Increase and decrease of sea ice area in the Sea of Okhotsk: Ice production in coastal polynyas and dynamic thickening in convergence zones. Journal of Geophysical Research, 109 ( C9 ). https://doi.org/10.1029/2003jc001901
Kuwabara, J. S., Geen, A. V., Mccorkle, D. C., & Bernhard, J. M. ( 1999 ). Dissolved sulfide distributions in the water column and sediment pore waters of the Santa Barbara Basin. Geochimica et Cosmochimica Acta, 63 ( 15 ), 2199 – 2209. https://doi.org/10.1016/s0016-7037(99)00084-8
McManus, J., Berelson, W. M., Klinkhammer, G. P., Kilgore, T. E., & Hammond, D. E. ( 1994 ). Remobilization of barium in continental margin sediments. Geochimica et Cosmochimica Acta, 58 ( 22 ), 4899 – 4907. https://doi.org/10.1016/0016-7037(94)90220-8
Miyao, T., & Ishikawa, K. ( 2003 ). Formation, distribution and volume transport of the North Pacific Intermediate Water studied by repeat hydrographic observations. Journal of Oceanography, 59 ( 6 ), 905 – 919. https://doi.org/10.1023/b:joce.0000009580.24051.90
PAGES 2k Consortium. ( 2017 ). A global multiproxy database for temperature reconstructions of the Common Era. Scientific Data, 4, 170088. https://doi.org/10.1038/sdata.2017.88
Paytan, A., & Griffith, E. M. ( 2007 ). Marine barite: Recorder of variations in ocean export productivity. Deep Sea Research Part II: Topical Studies in Oceanography, 54 ( 5–7 ), 687 – 705. https://doi.org/10.1016/j.dsr2.2007.01.007
Raven, M. R., Sessions, A. L., Fischer, W. W., & Adkins, J. F. ( 2016 ). Sedimentary pyrite δ 34 S differs from porewater sulfide in Santa Barbara Basin: Proposed role of organic sulfur. Geochimica et Cosmochimica Acta, 186, 120 – 134. https://doi.org/10.1016/j.gca.2016.04.037
Reid, J. L. ( 1965 ). Intermediate waters of the Pacific Ocean. Johns Hopkins Oceanography Studies, 5, 1 – 96.
Reimers, C. E., Ruttenberg, K. C., Canfield, D. E., Christiansen, M. B., & Martin, J. B. ( 1996 ). Porewater pH and authigenic phases formed in the uppermost sediments of the Santa Barbara Basin. Geochimica et Cosmochimica Acta, 60 ( 21 ), 4037 – 4057. https://doi.org/10.1016/s0016-7037(96)00231-1
Riedinger, N., Kasten, S., Gröger, J., Franke, C., & Pfeifer, K. ( 2006 ). Active and buried authigenic barite fronts in sediments from the Eastern Cape Basin. Earth and Planetary Science Letters, 241 ( 3–4 ), 876 – 887. https://doi.org/10.1016/j.epsl.2005.10.032
Shcherbina, A. Y., Talley, L. D., & Rudnick, D. L. ( 2004a ). Dense water formation on the northwestern shelf of the Okhotsk Sea: 1. Direct observations of brine rejection. Journal of Geophysical Research: Oceans, 109 ( C9 ). https://doi.org/10.1029/2003jc002196
Shcherbina, A. Y., Talley, L. D., & Rudnick, D. L. ( 2004b ). Dense water formation on the northwestern shelf of the Okhotsk Sea: 2. Quantifying the transports. Journal of Geophysical Research: Oceans, 109 ( C9 ). https://doi.org/10.1029/2003jc002197
Steiger, N. J., Hakim, G. J., Steig, E. J., Battisti, D. S., & Roe, G. H. ( 2014 ). Assimilation of time‐averaged pseudoproxies for climate reconstruction. Journal of Climate, 27 ( 1 ), 426 – 441. https://doi.org/10.1175/jcli-d-12-00693.1
Watanabe, T., & Wakatsuchi, M. ( 1998 ). Formation of 26.8–26.9 σ θ water in the Kuril Basin of the Sea of Okhotsk as a possible origin of North Pacific Intermediate Water. Journal of Geophysical Research: Oceans, 103 ( C2 ), 2849 – 2865. https://doi.org/10.1029/97jc02914
You, Y. ( 2003 ). The pathway and circulation of North Pacific Intermediate Water. Geophysical Research Letters, 30 ( 24 ). https://doi.org/10.1029/2003gl018561
You, Y., Suginohara, N., Fukasawa, M., Yasuda, I., Kaneko, I., Yoritaka, H., & Kawamiya, M. ( 2000 ). Roles of the Okhotsk Sea and Gulf of Alaska in forming the North Pacific Intermediate Water. Journal of Geophysical Research, 105 ( C2 ), 3253 – 3280. https://doi.org/10.1029/1999jc900304
You, Y., Suginohara, N., Fukasawa, M., Yoritaka, H., Mizuno, K., Kashino, Y., & Hartoyo, D. ( 2003 ). Transport of North Pacific Intermediate Water across Japanese WOCE sections. Journal of Geophysical Research, 108 ( C6 ). https://doi.org/10.1029/2002jc001662
Altabet, M. A., Pilskaln, C., Thunell, R., Pride, C., Sigman, D., Chavez, F., & Francois, R. ( 1999 ). The nitrogen isotope biogeochemistry of sinking particles from the margin of the Eastern North Pacific. Deep Sea Research Part I: Oceanographic Research Papers, 46, 655 – 679. https://doi.org/10.1016/s0967-0637(98)00084-3
Anderson, L., Abbott, M., Finney, B., & Burns, S. ( 2005 ). Regional atmospheric circulation change in the North Pacific during the Holocene inferred from lacustrine carbonate oxygen isotopes, Yukon Territory, Canada. Quaternary Research. https://doi.org/10.1016/j.yqres.2005.03.008
Bailey, H. L., Kaufman, D. S., Sloane, H. J., Hubbard, A. L., Henderson, A. C. G., Leng, M. J., et al. ( 2018 ). Holocene atmospheric circulation in the central North Pacific: A new terrestrial diatom and δ 18 O dataset from the Aleutian Islands. Quaternary Science Reviews, 194, 27 – 38. https://doi.org/10.1016/j.quascirev.2018.06.027
Barron, J. A., Bukry, D., & Hendy, I. L. ( 2015 ). High‐resolution paleoclimatology of the Santa Barbara Basin during the Medieval Climate Anomaly and early Little Ice Age based on diatom and silicoflagellate assemblages in Kasten core SPR0901‐02KC. Quaternary International, 387, 13 – 22. https://doi.org/10.1016/j.quaint.2014.04.020
Behl, R. J., & Kennett, J. P. ( 1996 ). Brief interstadial events in the Santa Barbara basin, NE Pacific, during the past 60 kyr. Nature, 379 ( 6562 ), 243 – 246. https://doi.org/10.1038/379243a0
Bograd, S. J. ( 2002 ). Bottom water renewal in the Santa Barbara Basin. Journal of Geophysical Research, 107 ( C12 ). https://doi.org/10.1029/2001jc001291
Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., et al. ( 2013 ). Multiple stressors of ocean ecosystems in the 21st century: Projections with CMIP5 models. Biogeosciences, 10 ( 10 ), 6225 – 6245. https://doi.org/10.5194/bg-10-6225-2013
Bostock, H. C., Opdyke, B. N., & Williams, M. J. M. ( 2010 ). Characterising the intermediate depth waters of the Pacific Ocean using δ 13 C and other geochemical tracers. Deep Sea Research Part I: Oceanographic Research Papers, 57 ( 7 ), 847 – 859. https://doi.org/10.1016/j.dsr.2010.04.005
Bostock, H. C., Sutton, P. J., Williams, M. J., & Opdyke, B. N. ( 2013 ). Reviewing the circulation and mixing of Antarctic Intermediate Water in the South Pacific using evidence from geochemical tracers and Argo float trajectories. Deep Sea Research Part I: Oceanographic Research Papers, 73, 84 – 98. https://doi.org/10.1016/j.dsr.2012.11.007
Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P., Conley, D. J., et al. ( 2018 ). Declining oxygen in the global ocean and coastal waters. Science, 359 ( 6371 ). https://doi.org/10.1126/science.aam7240
Calvert, S. E., & Pedersen, T. F. ( 2007 ). Chapter fourteen elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: Interpretation and application. Developments in Marine Geology, 1, 567 – 644. https://doi.org/10.1016/s1572-5480(07)01019-6
Cannariato, K. G., & Kennett, J. P. ( 1999 ). Climatically related millennial‐scale fluctuations in strength of California margin oxygen‐minimum zone during the past 60 k.y. Geology, 27 ( 11 ), 975 – 978. https://doi.org/10.1130/0091-7613(1999)027<0975:CRMSFI>2.3.CO;2
Carstensen, J., Andersen, J. H., Gustafsson, B. G., & Conley, D. J. ( 2014 ). Deoxygenation of the Baltic Sea during the last century. Proceedings of the National Academy of Sciences, 111 ( 15 ), 5628 – 5633. https://doi.org/10.1073/pnas.1323156111
Checkley, D. M., & Barth, J. A. ( 2009 ). Patterns and processes in the California Current System. Progress in Oceanography, 83 ( 1–4 ), 49 – 64. https://doi.org/10.1016/j.pocean.2009.07.028
Crusius, J., Calvert, S., Pedersen, T., & Sage, D. ( 1996 ). Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition. Earth and Planetary Science Letters, 145, 65 – 78. https://doi.org/10.1016/s0012-821x(96)00204-x
Crusius, J., Pedersen, T. F., Kienast, S., Keigwin, L., & Labeyrie, L. ( 2004 ). Influence of northwest Pacific productivity on North Pacific Intermediate Water oxygen concentrations during the Bølling‐Ållerød interval (14.7–12.9 ka). Geology, 32 ( 7 ), 633. https://doi.org/10.1130/g20508.1
Davis, C. V., Ontiveros‐Cuadras, J. F., Benitez‐Nelson, C., Schmittner, A., Tappa, E. J., Osborne, E., & Thunell, R. C. ( 2019 ). Ongoing increase in Eastern Tropical North Pacific denitrification as interpreted through the Santa Barbara Basin sedimentary δ 15 N record. Paleoceanography and Paleoclimatology, 34 ( 9 ), 1554 – 1567. https://doi.org/10.1029/2019pa003578
Deutsch, C., Berelson, W., Thunell, R., Weber, T., Tems, C., McManus, J., et al. ( 2014 ). Centennial changes in North Pacific anoxia linked to tropical trade winds. Science, 345 ( 6197 ), 665 – 668. https://doi.org/10.1126/science.1252332
Du, X., Hendy, I., & Schimmelmann, A. ( 2018 ). A 9000‐year flood history for Southern California: A revised stratigraphy of varved sediments in Santa Barbara Basin. Marine Geology, 397, 29 – 42. https://doi.org/10.1016/j.margeo.2017.11.014
Erickson, B. E., & Helz, G. R. ( 2000 ). Molybdenum(VI) speciation in sulfidic waters: Stability and lability of thiomolybdates. Geochimica et Cosmochimica Acta, 64 ( 7 ), 1149 – 1158. https://doi.org/10.1016/s0016-7037(99)00423-8
Evans, Z. C., Boles, E., Kwiecinski, J. V., Mullen, S., Wolf, M., Devol, A. H., et al. ( 2020 ). The role of water masses in shaping the distribution of redox active compounds in the Eastern Tropical North Pacific oxygen deficient zone and influencing low oxygen concentrations in the eastern Pacific Ocean. Limnology and Oceanography. https://doi.org/10.1002/lno.11412
op_rights IndexNoFollow
op_doi https://doi.org/10.1029/2021GL09446910.1029/2003jc00190110.1038/sdata.2017.8810.1029/2003gl01856110.1016/j.quascirev.2018.06.02710.1029/2001jc00129110.5194/bg-10-6225-201310.1126/science.aam724010.1126/science.125233210.1002/lno.1141210.1002/2016jd0247511
container_title Geophysical Research Letters
container_volume 48
container_issue 15
_version_ 1774712946744623104
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/169345 2023-08-20T03:59:26+02:00 Reorganized Atmospheric Circulation During the Little Ice Age Leads to Rapid Southern California Deoxygenation Wang, Yi Hendy, Ingrid L. 2021-08-16 application/pdf https://hdl.handle.net/2027.42/169345 https://doi.org/10.1029/2021GL094469 unknown Springer Berlin Heidelberg Wiley Periodicals, Inc. Wang, Yi; Hendy, Ingrid L. (2021). "Reorganized Atmospheric Circulation During the Little Ice Age Leads to Rapid Southern California Deoxygenation." Geophysical Research Letters 48(15): n/a-n/a. 0094-8276 1944-8007 https://hdl.handle.net/2027.42/169345 doi:10.1029/2021GL094469 Geophysical Research Letters Warrick, J. A., & Farnsworth, K. L. ( 2009 ). Sources of sediment to the coastal waters of the Southern California Bight. The Geological Society of America Special Paper, 454, 39 – 52. https://doi.org/10.1130/2009.2454(2.2) Eagle, M., Paytan, A., Arrigo, K. R., van Dijken, G., & Murray, R. W. ( 2003 ). A comparison between excess barium and barite as indicators of carbon export. Paleoceanography, 18 ( 1 ). https://doi.org/10.1029/2003pa000922 Ganeshram, R. S., François, R., Commeau, J., & Brown‐Leger, S. L. ( 2003 ). An experimental investigation of barite formation in seawater. Geochimica et Cosmochimica Acta, 67 ( 14 ), 2599 – 2605. https://doi.org/10.1016/s0016-7037(03)00164-9 Gingele, F. X., Zabel, M., Kasten, S., Bonn, W. J., & Nürnberg, C. C. ( 1999 ). Biogenic barium as a proxy for paleoproductivity: Methods and limitations of application. In G. Fischer & G. Wefer (Eds.), Use of Proxies in Paleoceanography: Examples from the South Atlantic (pp. 345 – 364 ). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-58646-0_13 Hamill, T. M., Whitaker, J. S., & Snyder, C. ( 2001 ). Distance‐dependent filtering of background error covariance estimates in an ensemble Kalman filter. Monthly Weather Review, 129 ( 11 ), 2776 – 2790. https://doi.org/10.1175/1520-0493(2001)129<2776:ddfobe>2.0.co;2 Harrison, B. K., Zhang, H., Berelson, W., & Orphan, V. J. ( 2009 ). Variations in archaeal and bacterial diversity associated with the sulfate‐methane transition zone in continental margin sediments (Santa Barbara Basin, California). Applied and Environmental Microbiology, 75 ( 6 ), 1487 – 1499. https://doi.org/10.1128/aem.01812-08 Kimura, N. ( 2004 ). Increase and decrease of sea ice area in the Sea of Okhotsk: Ice production in coastal polynyas and dynamic thickening in convergence zones. Journal of Geophysical Research, 109 ( C9 ). https://doi.org/10.1029/2003jc001901 Kuwabara, J. S., Geen, A. V., Mccorkle, D. C., & Bernhard, J. M. ( 1999 ). Dissolved sulfide distributions in the water column and sediment pore waters of the Santa Barbara Basin. Geochimica et Cosmochimica Acta, 63 ( 15 ), 2199 – 2209. https://doi.org/10.1016/s0016-7037(99)00084-8 McManus, J., Berelson, W. M., Klinkhammer, G. P., Kilgore, T. E., & Hammond, D. E. ( 1994 ). Remobilization of barium in continental margin sediments. Geochimica et Cosmochimica Acta, 58 ( 22 ), 4899 – 4907. https://doi.org/10.1016/0016-7037(94)90220-8 Miyao, T., & Ishikawa, K. ( 2003 ). Formation, distribution and volume transport of the North Pacific Intermediate Water studied by repeat hydrographic observations. Journal of Oceanography, 59 ( 6 ), 905 – 919. https://doi.org/10.1023/b:joce.0000009580.24051.90 PAGES 2k Consortium. ( 2017 ). A global multiproxy database for temperature reconstructions of the Common Era. Scientific Data, 4, 170088. https://doi.org/10.1038/sdata.2017.88 Paytan, A., & Griffith, E. M. ( 2007 ). Marine barite: Recorder of variations in ocean export productivity. Deep Sea Research Part II: Topical Studies in Oceanography, 54 ( 5–7 ), 687 – 705. https://doi.org/10.1016/j.dsr2.2007.01.007 Raven, M. R., Sessions, A. L., Fischer, W. W., & Adkins, J. F. ( 2016 ). Sedimentary pyrite δ 34 S differs from porewater sulfide in Santa Barbara Basin: Proposed role of organic sulfur. Geochimica et Cosmochimica Acta, 186, 120 – 134. https://doi.org/10.1016/j.gca.2016.04.037 Reid, J. L. ( 1965 ). Intermediate waters of the Pacific Ocean. Johns Hopkins Oceanography Studies, 5, 1 – 96. Reimers, C. E., Ruttenberg, K. C., Canfield, D. E., Christiansen, M. B., & Martin, J. B. ( 1996 ). Porewater pH and authigenic phases formed in the uppermost sediments of the Santa Barbara Basin. Geochimica et Cosmochimica Acta, 60 ( 21 ), 4037 – 4057. https://doi.org/10.1016/s0016-7037(96)00231-1 Riedinger, N., Kasten, S., Gröger, J., Franke, C., & Pfeifer, K. ( 2006 ). Active and buried authigenic barite fronts in sediments from the Eastern Cape Basin. Earth and Planetary Science Letters, 241 ( 3–4 ), 876 – 887. https://doi.org/10.1016/j.epsl.2005.10.032 Shcherbina, A. Y., Talley, L. D., & Rudnick, D. L. ( 2004a ). Dense water formation on the northwestern shelf of the Okhotsk Sea: 1. Direct observations of brine rejection. Journal of Geophysical Research: Oceans, 109 ( C9 ). https://doi.org/10.1029/2003jc002196 Shcherbina, A. Y., Talley, L. D., & Rudnick, D. L. ( 2004b ). Dense water formation on the northwestern shelf of the Okhotsk Sea: 2. Quantifying the transports. Journal of Geophysical Research: Oceans, 109 ( C9 ). https://doi.org/10.1029/2003jc002197 Steiger, N. J., Hakim, G. J., Steig, E. J., Battisti, D. S., & Roe, G. H. ( 2014 ). Assimilation of time‐averaged pseudoproxies for climate reconstruction. Journal of Climate, 27 ( 1 ), 426 – 441. https://doi.org/10.1175/jcli-d-12-00693.1 Watanabe, T., & Wakatsuchi, M. ( 1998 ). Formation of 26.8–26.9 σ θ water in the Kuril Basin of the Sea of Okhotsk as a possible origin of North Pacific Intermediate Water. Journal of Geophysical Research: Oceans, 103 ( C2 ), 2849 – 2865. https://doi.org/10.1029/97jc02914 You, Y. ( 2003 ). The pathway and circulation of North Pacific Intermediate Water. Geophysical Research Letters, 30 ( 24 ). https://doi.org/10.1029/2003gl018561 You, Y., Suginohara, N., Fukasawa, M., Yasuda, I., Kaneko, I., Yoritaka, H., & Kawamiya, M. ( 2000 ). Roles of the Okhotsk Sea and Gulf of Alaska in forming the North Pacific Intermediate Water. Journal of Geophysical Research, 105 ( C2 ), 3253 – 3280. https://doi.org/10.1029/1999jc900304 You, Y., Suginohara, N., Fukasawa, M., Yoritaka, H., Mizuno, K., Kashino, Y., & Hartoyo, D. ( 2003 ). Transport of North Pacific Intermediate Water across Japanese WOCE sections. Journal of Geophysical Research, 108 ( C6 ). https://doi.org/10.1029/2002jc001662 Altabet, M. A., Pilskaln, C., Thunell, R., Pride, C., Sigman, D., Chavez, F., & Francois, R. ( 1999 ). The nitrogen isotope biogeochemistry of sinking particles from the margin of the Eastern North Pacific. Deep Sea Research Part I: Oceanographic Research Papers, 46, 655 – 679. https://doi.org/10.1016/s0967-0637(98)00084-3 Anderson, L., Abbott, M., Finney, B., & Burns, S. ( 2005 ). Regional atmospheric circulation change in the North Pacific during the Holocene inferred from lacustrine carbonate oxygen isotopes, Yukon Territory, Canada. Quaternary Research. https://doi.org/10.1016/j.yqres.2005.03.008 Bailey, H. L., Kaufman, D. S., Sloane, H. J., Hubbard, A. L., Henderson, A. C. G., Leng, M. J., et al. ( 2018 ). Holocene atmospheric circulation in the central North Pacific: A new terrestrial diatom and δ 18 O dataset from the Aleutian Islands. Quaternary Science Reviews, 194, 27 – 38. https://doi.org/10.1016/j.quascirev.2018.06.027 Barron, J. A., Bukry, D., & Hendy, I. L. ( 2015 ). High‐resolution paleoclimatology of the Santa Barbara Basin during the Medieval Climate Anomaly and early Little Ice Age based on diatom and silicoflagellate assemblages in Kasten core SPR0901‐02KC. Quaternary International, 387, 13 – 22. https://doi.org/10.1016/j.quaint.2014.04.020 Behl, R. J., & Kennett, J. P. ( 1996 ). Brief interstadial events in the Santa Barbara basin, NE Pacific, during the past 60 kyr. Nature, 379 ( 6562 ), 243 – 246. https://doi.org/10.1038/379243a0 Bograd, S. J. ( 2002 ). Bottom water renewal in the Santa Barbara Basin. Journal of Geophysical Research, 107 ( C12 ). https://doi.org/10.1029/2001jc001291 Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., et al. ( 2013 ). Multiple stressors of ocean ecosystems in the 21st century: Projections with CMIP5 models. Biogeosciences, 10 ( 10 ), 6225 – 6245. https://doi.org/10.5194/bg-10-6225-2013 Bostock, H. C., Opdyke, B. N., & Williams, M. J. M. ( 2010 ). Characterising the intermediate depth waters of the Pacific Ocean using δ 13 C and other geochemical tracers. Deep Sea Research Part I: Oceanographic Research Papers, 57 ( 7 ), 847 – 859. https://doi.org/10.1016/j.dsr.2010.04.005 Bostock, H. C., Sutton, P. J., Williams, M. J., & Opdyke, B. N. ( 2013 ). Reviewing the circulation and mixing of Antarctic Intermediate Water in the South Pacific using evidence from geochemical tracers and Argo float trajectories. Deep Sea Research Part I: Oceanographic Research Papers, 73, 84 – 98. https://doi.org/10.1016/j.dsr.2012.11.007 Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P., Conley, D. J., et al. ( 2018 ). Declining oxygen in the global ocean and coastal waters. Science, 359 ( 6371 ). https://doi.org/10.1126/science.aam7240 Calvert, S. E., & Pedersen, T. F. ( 2007 ). Chapter fourteen elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: Interpretation and application. Developments in Marine Geology, 1, 567 – 644. https://doi.org/10.1016/s1572-5480(07)01019-6 Cannariato, K. G., & Kennett, J. P. ( 1999 ). Climatically related millennial‐scale fluctuations in strength of California margin oxygen‐minimum zone during the past 60 k.y. Geology, 27 ( 11 ), 975 – 978. https://doi.org/10.1130/0091-7613(1999)027<0975:CRMSFI>2.3.CO;2 Carstensen, J., Andersen, J. H., Gustafsson, B. G., & Conley, D. J. ( 2014 ). Deoxygenation of the Baltic Sea during the last century. Proceedings of the National Academy of Sciences, 111 ( 15 ), 5628 – 5633. https://doi.org/10.1073/pnas.1323156111 Checkley, D. M., & Barth, J. A. ( 2009 ). Patterns and processes in the California Current System. Progress in Oceanography, 83 ( 1–4 ), 49 – 64. https://doi.org/10.1016/j.pocean.2009.07.028 Crusius, J., Calvert, S., Pedersen, T., & Sage, D. ( 1996 ). Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition. Earth and Planetary Science Letters, 145, 65 – 78. https://doi.org/10.1016/s0012-821x(96)00204-x Crusius, J., Pedersen, T. F., Kienast, S., Keigwin, L., & Labeyrie, L. ( 2004 ). Influence of northwest Pacific productivity on North Pacific Intermediate Water oxygen concentrations during the Bølling‐Ållerød interval (14.7–12.9 ka). Geology, 32 ( 7 ), 633. https://doi.org/10.1130/g20508.1 Davis, C. V., Ontiveros‐Cuadras, J. F., Benitez‐Nelson, C., Schmittner, A., Tappa, E. J., Osborne, E., & Thunell, R. C. ( 2019 ). Ongoing increase in Eastern Tropical North Pacific denitrification as interpreted through the Santa Barbara Basin sedimentary δ 15 N record. Paleoceanography and Paleoclimatology, 34 ( 9 ), 1554 – 1567. https://doi.org/10.1029/2019pa003578 Deutsch, C., Berelson, W., Thunell, R., Weber, T., Tems, C., McManus, J., et al. ( 2014 ). Centennial changes in North Pacific anoxia linked to tropical trade winds. Science, 345 ( 6197 ), 665 – 668. https://doi.org/10.1126/science.1252332 Du, X., Hendy, I., & Schimmelmann, A. ( 2018 ). A 9000‐year flood history for Southern California: A revised stratigraphy of varved sediments in Santa Barbara Basin. Marine Geology, 397, 29 – 42. https://doi.org/10.1016/j.margeo.2017.11.014 Erickson, B. E., & Helz, G. R. ( 2000 ). Molybdenum(VI) speciation in sulfidic waters: Stability and lability of thiomolybdates. Geochimica et Cosmochimica Acta, 64 ( 7 ), 1149 – 1158. https://doi.org/10.1016/s0016-7037(99)00423-8 Evans, Z. C., Boles, E., Kwiecinski, J. V., Mullen, S., Wolf, M., Devol, A. H., et al. ( 2020 ). The role of water masses in shaping the distribution of redox active compounds in the Eastern Tropical North Pacific oxygen deficient zone and influencing low oxygen concentrations in the eastern Pacific Ocean. Limnology and Oceanography. https://doi.org/10.1002/lno.11412 IndexNoFollow oxygen minimum zone atmospheric circulation North Pacific Intermediate Water ventilation Southern California Geological Sciences Science Article 2021 ftumdeepblue https://doi.org/10.1029/2021GL09446910.1029/2003jc00190110.1038/sdata.2017.8810.1029/2003gl01856110.1016/j.quascirev.2018.06.02710.1029/2001jc00129110.5194/bg-10-6225-201310.1126/science.aam724010.1126/science.125233210.1002/lno.1141210.1002/2016jd0247511 2023-07-31T20:43:07Z The magnitude of natural oceanic dissolved oxygen (DO) variability remains poorly understood due to the short duration of the observational record. Here we present a high‐resolution (4–9 years) reconstruction of the Southern California oxygen minimum zone (OMZ) through the Common Era using redox‐sensitive metals. Rapid OMZ intensification on multidecadal timescales reveals greater DO variability than observed in instrumental records. An anomalous interval of intensified OMZ between 1600–1750 CE contradicts the expectation of better‐ventilated mid‐depth North Pacific during cool climates. Although the influence of low‐DO Equatorial Pacific Intermediate Water on the Southern California Margin was likely weaker during this interval, we attribute the observed rapid deoxygenation to reduced North Pacific Intermediate Water (NPIW) ventilation. NPIW ventilation thus appears very sensitive to atmospheric circulation reorganization (e.g., a weakened Siberian High and Aleutian Low). In addition to temperature‐induced gas solubility, atmospheric forcing under future anthropogenic influences could amplify OMZ variability.Plain Language SummaryOxygen content of the ocean is declining as seawater warms due to anthropogenic climate change impacting gas solubility. However, how much dissolved oxygen in seawater can decrease naturally is unknown, as we have only been measuring oxygen in ocean waters for ∼60 years. We reconstructed oxygen concentrations of bottom waters in Santa Barbara Basin (SBB), CA for the past 2,000 years using marine sediments on sub‐decadal time scales. We found that seawater oxygen varied more in the past than has been recently observed, and that seawater oxygen was surprisingly low during 1600–1750 CE—one of the coldest intervals during the last 1,000 years. At this time the atmospheric circulation over the Sea of Okhotsk suppressed sea ice formation, reducing the surface ocean mixing that supplies oxygen to the subsurface waters. This low‐oxygen subsurface water moved around the northeastern Pacific ... Article in Journal/Newspaper aleutian low Sea ice University of Michigan: Deep Blue Okhotsk Pacific Geophysical Research Letters 48 15