Superposed Epoch Analysis of Nighttime Magnetic Perturbation Events Observed in Arctic Canada

Rapid changes of magnetic fields associated with nighttime magnetic perturbation events (MPEs) with amplitudes |ΔB| of hundreds of nT and 5–10 min duration can induce geomagnetically induced currents (GICs) that can harm technological systems. Here we present superposed epoch analyses of large night...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Space Physics
Main Authors: Engebretson, Mark J., Ahmed, Lidiya Y., Pilipenko, Viacheslav A., Steinmetz, Erik S., Moldwin, Mark B., Connors, Martin G., Boteler, David H., Weygand, James M., Coyle, Shane, Ohtani, Shin, Gjerloev, Jesper, Russell, Christopher T.
Format: Article in Journal/Newspaper
Language:unknown
Published: Wiley Periodicals, Inc. 2021
Subjects:
Online Access:https://hdl.handle.net/2027.42/169302
https://doi.org/10.1029/2021JA029465
_version_ 1835010284169723904
author Engebretson, Mark J.
Ahmed, Lidiya Y.
Pilipenko, Viacheslav A.
Steinmetz, Erik S.
Moldwin, Mark B.
Connors, Martin G.
Boteler, David H.
Weygand, James M.
Coyle, Shane
Ohtani, Shin
Gjerloev, Jesper
Russell, Christopher T.
author_facet Engebretson, Mark J.
Ahmed, Lidiya Y.
Pilipenko, Viacheslav A.
Steinmetz, Erik S.
Moldwin, Mark B.
Connors, Martin G.
Boteler, David H.
Weygand, James M.
Coyle, Shane
Ohtani, Shin
Gjerloev, Jesper
Russell, Christopher T.
author_sort Engebretson, Mark J.
collection Unknown
container_issue 9
container_title Journal of Geophysical Research: Space Physics
container_volume 126
description Rapid changes of magnetic fields associated with nighttime magnetic perturbation events (MPEs) with amplitudes |ΔB| of hundreds of nT and 5–10 min duration can induce geomagnetically induced currents (GICs) that can harm technological systems. Here we present superposed epoch analyses of large nighttime MPEs (|dB/dt| ≥ 6 nT/s) observed during 2015 and 2017 at five stations in Arctic Canada ranging from 64.7° to 75.2° in corrected geomagnetic latitude (MLAT) as functions of the interplanetary magnetic field (IMF), solar wind dynamic pressure, density, and velocity, and the SML, SMU, and SYM/H geomagnetic activity indices. Analyses were produced for premidnight and postmidnight events and for three ranges of time after the most recent substorm onset: (a) 0–30 min, (b) 30–60 min, and (c) >60 min. Of the solar wind and IMF parameters studied, only the IMF Bz component showed any consistent temporal variations prior to MPEs: a 1–2 h wide 1–3 nT negative minimum at all stations beginning ∼30–80 min before premidnight MPEs, and minima that were less consistent but often deeper before postmidnight MPEs. Median, 25th, and 75th percentile SuperMAG auroral indices SML (SMU) showed drops (rises) before pre‐ and post‐midnight type A MPEs, but most of the MPEs in categories B and C did not coincide with large‐scale peaks in ionospheric electrojets. Median SYM/H indices were flat near −30 nT for premidnight events and showed no consistent temporal association with any MPE events. More disturbed values of IMF Bz, Psw, Nsw, SML, SMU, and SYM/H appeared postmidnight than premidnight.Key PointsSuperposed epoch analyses of 2 years of >6 nT/s magnetic perturbation events (MPEs) from 5 high latitude Arctic stations are presentedOf the solar wind and interplanetary magnetic field (IMF) parameters studied, only IMF Bz showed any consistent pattern: a drop and rise prior to MPE occurrenceMost of the MPEs that occurred more than 30 min after a substorm onset did not coincide with peaks in the westward electrojet Peer Reviewed ...
format Article in Journal/Newspaper
genre Arctic
Arctic
genre_facet Arctic
Arctic
geographic Arctic
Canada
geographic_facet Arctic
Canada
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/169302
institution Open Polar
language unknown
op_collection_id ftumdeepblue
op_relation https://hdl.handle.net/2027.42/169302
doi:10.1029/2021JA029465
Journal of Geophysical Research: Space Physics
Pulkkinen, A., Klimas, A., Vassiliadis, D., Uritsky, V., & Tanskanen, E. ( 2006 ). Spatiotemporal scaling properties of the ground geomagnetic field variations. Journal of Geophysical Research, 111, A03305. https://doi.org/10.1029/2006JA01129410.1029/2005ja011294
Mukhopadhyay, A., Welling, D. T., Liemohn, M. W., Ridley, A. J., Chakraborty, S., & Anderson, B. J. ( 2020 ). Conductance Model for Extreme Events: Impact of auroral conductance on space weather forecasts. Space Weather, 18, e2020SW002551. https://doi.org/10.1029/2020SW002551
Newell, P. T., & Gjerloev, J. W. ( 2011 ). Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power. Journal of Geophysical Research, 116, A12211. https://doi.org/10.1029/2011JA016779
Ngwira, C. M., & Pulkkinen, A. A. ( 2019 ). An introduction to geomagnetically induced currents (2019). In J. L. Gannon, A. Swidinsky, & Z. Xu (Eds.), Geomagnetically induced currents from the Sun to the power grid, geophysical monograph series (Vol. 244, pp. 3 – 13 ). American Geophysical Union. https://doi.org/10.1002/9781119434412.ch1
Ngwira, C. M., Pulkkinen, A. A., Bernabeu, E., Eichner, J., Viljanen, A., & Crowley, G. ( 2015 ). Characteristics of extreme geoelectric fields and their possible causes: Localized peak enhancements. Geophysical Research Letters, 42, 6916 – 6921. https://doi.org/10.1002/2015GL065061
Ngwira, C. M., Sibeck, D. G., Silveira, M. D. V., Georgiou, M., Weygand, J. M., Nishimura, Y., & Hampton, D. ( 2018 ). A study of intense local d Bdt variations during two geomagnetic storms. Space Weather, 16, 676 – 693. https://doi.org/10.1029/2018SW001911
Nikitina, L., Trichtchenko, L., & Boteler, D. H. ( 2016 ). Assessment of extreme values in geomagnetic and geoelectric field variations for Canada. Space Weather, 14, 481 – 494. https://doi.org/10.1002/2016SW001386
Nishimura, Y., Lyons, L. R., Gabrielse, C., Sivadas, N., Donovan, E. F., Varney, R. H., et al. ( 2020 ). Extreme magnetosphere‐ionosphere‐thermosphere responses to the 5 April 2010 Supersubstorm. Journal of Geophysical Research: Space Physics, 125 ( 4 ), A09218. https://doi.org/10.1029/2019JA027654
Oliveira, D. M., Arel, D., Raeder, J., Zesta, E., Ngwira, C. M., Carter, B. A., et al. ( 2018 ). Geomagnetically induced currents caused by interplanetary shocks with different impact angles and speeds. Space Weather, 16, 636 – 647. https://doi.org/10.1029/2018SW001880
Oliveira, D. M., & Raeder, J. ( 2015 ). Impact angle control of interplanetary shock geoeffectiveness: A statistical study. Journal of Geophysical Research: Space Physics, 120, 4313 – 4323. https://doi.org/10.1002/2015JA021147
Richardson, J. D., & Paularena, K. I. ( 2001 ). Plasma and magnetic field correlations in the solar wind. Journal of Geophysical Research, 106, 239 – 251. https://doi.org/10.1029/2000JA000071
Rogers, N. C., Wild, J. A., Eastoe, E. F., Gjerloev, J. W., Thomson, A. W. P., & Thomson, A. W. P. ( 2020 ). A global climatological model of extreme geomagnetic field fluctuations. Journal of Space Weather and Space Climate, 10, 5. https://doi.org/10.1051/swsc/2020008
Søraas, F., Laundal, K. M., & Usanova, M. ( 2013 ). Coincident particle and optical observations of nightside subauroral proton precipitation. Journal of Geophysical Research: Space Physics, 118, 1112 – 1122. https://doi.org/10.1002/jgra.50172
Sugiura, M., & Poros, D. J. ( 1971 ). Hourly values of equatorial Dst for years 1957 to 1970, Rep. X‐645‐71‐278. Goddard Space Flight Center.
Tetrick, S. S., Engebretson, M. J., Posch, J. L., Olson, C. N., Smith, C. W., Denton, R. E., et al. ( 2017 ). Location of intense electromagnetic ion cyclotron (EMIC) wave events relative to the plasmapause: Van Allen Probes observations. Journal of Geophysical Research: Space Physics, 122, 4064 – 4088. https://doi.org/10.1002/2016JA023392
Usanova, M. E., Mann, I. R., Bortnik, J., Shao, L., & Angelopoulos, V. ( 2012 ). THEMIS observations of electromagnetic ion cyclotron wave occurrence: Dependence on AE, SYMH, and solar wind dynamic pressure. Journal of Geophysical Research, 117, A10218. https://doi.org/10.1029/2012JA018049
Viljanen, A. ( 1997 ). The relation between geomagnetic variations and their time derivatives and implications for estimation of induction risks. Geophysical Research Letters, 24, 631 – 634. https://doi.org/10.1029/97GL00538
Villante, U., & Piersanti, M. ( 2012 ). Sudden Impulses in the Magnetosphere and at Ground. In M. Lazar, & IntechOpen (Eds.), Sudden impulses in the magnetosphere and at ground, exploring the solar wind (pp. 399 – 416 ). https://doi.org/10.5772/36770
Walsh, B. M., Bhakyapaibul, T., & Zou, Y. ( 2019 ). Quantifying the uncertainty of using solar wind measurements for geospace inputs. Journal of Geophysical Research: Space Physics, 124, 3291 – 3302. https://doi.org/10.1029/2019JA026507
Wang, B., Nishimura, Y., Zou, Y., Lyons, L. R., Angelopoulos, V., Frey, H., & Mende, S. ( 2016 ). Investigation of triggering of poleward moving auroral forms using satellite‐imager coordinated observations. Journal of Geophysical Research: Space Physics, 121, 10929 – 10941. https://doi.org/10.1002/2016JA023128
Wanliss, J. A., & Showalter, K. M. ( 2006 ). High‐resolution global storm index: Dst versus SYM‐ H. Journal of Geophysical Research, 111, A02202. https://doi.org/10.1029/2005JA011034
Wei, D., Dunlop, M. W., Yang, J., Dong, X., Yu, Y., & Wang, T. ( 2021 ). Intense dB/dt variations driven by near‐Earth bursty bulk flows (BBFs): A case study. Geophysical Research Letters, 48, e2020GL091781. https://doi.org/10.1029/2020GL091781
Welling, D. T., Love, J. J., Rigler, E. J., Oliveira, D. M., Komar, C. M., & Morley, S. K. ( 2020 ). Numerical simulations of the geospace response to the arrival of an idealized perfect interplanetary coronal mass ejection. Space Weather, 18. https://doi.org/10.1029/2020SW002489
Wintoft, P., Wik, M., & Viljanen, A. ( 2015 ). Solar wind driven empirical forecast models of the time derivative of the ground magnetic field. Journal of Space Weather and Space Climate, 5 ( A7 ). https://doi.org/10.1051/swsc/2015008
Woodroffe, J. R., Morley, S. K., Jordanova, V. K., Henderson, M. G., Cowee, M. M., & Gjerloev, J. ( 2016 ). The latitudinal variation of geoelectromagnetic disturbances during large ( Dst ≤−100 nT) geomagnetic storms. Space Weather, 14, 668 – 681. https://doi.org/10.1002/2016SW001376
Yagova, N. V., Pilipenko, V. A., Fedorov, E. N., Lhamdon‐tong, A. D., & Gusev, Y. P. ( 2018 ). Geomagnetically induced currents and space weather: Pi3 pulsations and extreme values of the time derivatives of the horizontal components of the geomagnetic field, Izvestiya. Physics of the Solid Earth, 54, 749 – 763. https://doi.org/10.1134/S1069351318050130
Zhang, Y., Paxton, L. J., & Zheng, Y. ( 2008 ). Interplanetary shock induced ring current auroras. Journal of Geophysical Research, 113, A01212. https://doi.org/10.1029/2007JA012554
Zhang, Y., Paxton, L., Morrison, D., Wolven, B., Kil, H., & Wing, S. ( 2005 ). Nightside detached auroras due to precipitating protons/ions during intense magnetic storms. Journal of Geophysical Research, 110, A02206. https://doi.org/10.1029/2004JA010498
Anderson, B. J., & Hamilton, D. C. ( 1993 ). Electromagnetic ion cyclotron waves stimulated by modest magnetospheric compressions. Journal of Geophysical Research, 98, 11369 – 11382. https://doi.org/10.1029/93JA00605
Apatenkov, S. V., Pilipenko, V. A., Gordeev, E. I., Viljanen, A., Juusola, L., Belakhovsky, V. B., et al. ( 2020 ). Auroral omega bands are a significant cause of large geomagnetically induced currents. Geophysical Research Letters, 47, e2019GL086677. https://doi.org/10.1029/2019GL086677
Araki, T. ( 1994 ). A physical model of the geomagnetic sudden commencement, in solar wind sources of magnetospheric ultra‐low‐frequency waves. In M. J. Engebretson, K. Takahashi, & M. Scholer (Eds.), Geophysical. Monograph series (Vol. 81, pp. 183 – 200 ). https://doi.org/10.1029/GM081p0183
Belakhovsky, V. B., Sakharov, Y. A., Pilipenko, V. A., & Selivanov, V. N. ( 2018 ). Characteristics of the variability of a geomagnetic field for studying the impact of the magnetic storms and substorms on electrical energy systems, Izvestiya. Physics of the Solid Earth, 54, 52 – 65. https://doi.org/10.1134/S1069351318010032
Bier, E. A., Owusu, N., Engebretson, M. J., Posch, J. L., Lessard, M. R., & Pilipenko, V. A. ( 2014 ). Investigating the IMF cone angle control of Pc3‐4 pulsations observed on the ground. Journal of Geophysical Research: Space Physics, 119, 1797 – 1813. https://doi.org/10.1002/2013JA019637
Borovsky, J. E. ( 2008 ). Flux tube texture of the solar wind: Strands of the magnetic carpet at 1 AU? Journal of Geophysical Research, 113, A08110. https://doi.org/10.1029/2007JA012684
Borovsky, J. E. ( 2017 ). The spatial structure of the oncoming solar wind at Earth and the shortcomings of a solar wind monitor at L1. Journal of Atmospheric and Solar‐Terrestrial Physics, 177, 2 – 11. https://doi.org/10.1016/j.jastp.2017.03.014
Boteler, D. H. ( 2001 ). Assessment of geomagnetic hazard to power systems in Canada. Natural Hazards, 23, 101 – 120. https://doi.org/10.1023/A:1011194414259
Boteler, D. H. ( 2019 ). A 21st century view of the March 1989 magnetic storm. Space Weather, 17, 1427 – 1441. https://doi.org/10.1029/2019SW002278
Carrington, R. C. ( 1859 ). Description of a singular appearance seen in the Sun on September 1. Monthly Notices of the Royal Astronomical Society, 20, 13 – 15. https://doi.org/10.1093/mnras/20.1.13
Chree, C. ( 1913 ). Some phenomena of sunspots and of terrestrial magnetism at Kew observatory. Philosophical Transactions of the Royal Society of London. Series A, 212, 75 – 116. https://doi.org/10.1098/rsta.1913.0003
Dimmock, A. P., Rosenqvist, L., Hall, J.‐O., Viljanen, A., Yordanova, E., Honkonen, I., et al. ( 2019 ). The GIC and geomagnetic response over Fennoscandia to the 7–8 September 2017 geomagnetic storm. Space Weather, 17, 989 – 1010. https://doi.org/10.1029/2018SW002132
Dimmock, A. P., Rosenqvist, L., Welling, D. T., Viljanen, A., Honkonen, I., Boynton, R. J., & Yordanova, E. ( 2020 ). On the regional variability of dB/dt and its significance to GIC. Space Weather, 18, e2020SW002497. https://doi.org/10.1029/2020SW002497
Drozdov, A. Y., Usanova, M. E., Hudson, M. K., Allison, H. J., & Shprits, Y. Y. ( 2020 ). The role of hiss, chorus, and EMIC waves in the modeling of the dynamics of the multi‐MeV radiation belt electrons. Journal of Geophysical Research: Space Physics, 125, e2020JA028282. https://doi.org/10.1029/2020JA028282
Engebretson, M. J., Hughes, W. J., Alford, J. L., Zesta, E., Cahill, L. J., Jr., Arnoldy, R. L., & Reeves, G. D. ( 1995 ). Magnetometer array for cusp and cleft studies observations of the spatial extent of broadband ULF magnetic pulsations at cusp/cleft latitudes. Journal of Geophysical Research, 100, 19371 – 19386. https://doi.org/10.1029/95JA00768
Engebretson, M. J., Kirkevold, K. R., Steinmetz, E. S., Pilipenko, V. A., Moldwin, M. B., McCuen, B. A., et al. ( 2020 ). Interhemispheric comparisons of large nighttime magnetic perturbation events relevant to GICs. Journal of Geophysical Research: Space Physics, 125, e2020JA028128. https://doi.org/10.1029/2020JA028128
Engebretson, M. J., Pilipenko, V. A., Ahmed, L. Y., Posch, J. L., Steinmetz, E. S., Moldwin, M. B., et al. ( 2019a ). Nighttime magnetic perturbation events observed in Arctic Canada: 1. Survey and statistical analysis. Journal of Geophysical Research: Space Physics, 124, 7442 – 7458. https://doi.org/10.1029/2019JA026794
Engebretson, M. J., Pilipenko, V. A., Steinmetz, E. S., Moldwin, M. B., Connors, M. G., Boteler, D. H., et al. ( 2021 ). Nighttime magnetic perturbation events observed in Arctic Canada: 3. Occurrence and amplitude as functions of magnetic latitude, local time, and magnetic disturbances. Space Weather, 19, e2020SW002526. https://doi.org/10.1029/2020SW002526
Engebretson, M. J., Steinmetz, E. S., Posch, J. L., Pilipenko, V. A., Moldwin, M. B., Connors, M. G., et al. ( 2019b ). Nighttime magnetic perturbation events observed in Arctic Canada: 2. Multiple‐ instrument observations. Journal of Geophysical Research: Space Physics, 124, 7459 – 7476. https://doi.org/10.1029/2019JA026797
op_rights IndexNoFollow
publishDate 2021
publisher Wiley Periodicals, Inc.
record_format openpolar
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/169302 2025-06-15T14:17:46+00:00 Superposed Epoch Analysis of Nighttime Magnetic Perturbation Events Observed in Arctic Canada Engebretson, Mark J. Ahmed, Lidiya Y. Pilipenko, Viacheslav A. Steinmetz, Erik S. Moldwin, Mark B. Connors, Martin G. Boteler, David H. Weygand, James M. Coyle, Shane Ohtani, Shin Gjerloev, Jesper Russell, Christopher T. 2021-09 application/pdf https://hdl.handle.net/2027.42/169302 https://doi.org/10.1029/2021JA029465 unknown Wiley Periodicals, Inc. Kyoto University https://hdl.handle.net/2027.42/169302 doi:10.1029/2021JA029465 Journal of Geophysical Research: Space Physics Pulkkinen, A., Klimas, A., Vassiliadis, D., Uritsky, V., & Tanskanen, E. ( 2006 ). Spatiotemporal scaling properties of the ground geomagnetic field variations. Journal of Geophysical Research, 111, A03305. https://doi.org/10.1029/2006JA01129410.1029/2005ja011294 Mukhopadhyay, A., Welling, D. T., Liemohn, M. W., Ridley, A. J., Chakraborty, S., & Anderson, B. J. ( 2020 ). Conductance Model for Extreme Events: Impact of auroral conductance on space weather forecasts. Space Weather, 18, e2020SW002551. https://doi.org/10.1029/2020SW002551 Newell, P. T., & Gjerloev, J. W. ( 2011 ). Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power. Journal of Geophysical Research, 116, A12211. https://doi.org/10.1029/2011JA016779 Ngwira, C. M., & Pulkkinen, A. A. ( 2019 ). An introduction to geomagnetically induced currents (2019). In J. L. Gannon, A. Swidinsky, & Z. Xu (Eds.), Geomagnetically induced currents from the Sun to the power grid, geophysical monograph series (Vol. 244, pp. 3 – 13 ). American Geophysical Union. https://doi.org/10.1002/9781119434412.ch1 Ngwira, C. M., Pulkkinen, A. A., Bernabeu, E., Eichner, J., Viljanen, A., & Crowley, G. ( 2015 ). Characteristics of extreme geoelectric fields and their possible causes: Localized peak enhancements. Geophysical Research Letters, 42, 6916 – 6921. https://doi.org/10.1002/2015GL065061 Ngwira, C. M., Sibeck, D. G., Silveira, M. D. V., Georgiou, M., Weygand, J. M., Nishimura, Y., & Hampton, D. ( 2018 ). A study of intense local d Bdt variations during two geomagnetic storms. Space Weather, 16, 676 – 693. https://doi.org/10.1029/2018SW001911 Nikitina, L., Trichtchenko, L., & Boteler, D. H. ( 2016 ). Assessment of extreme values in geomagnetic and geoelectric field variations for Canada. Space Weather, 14, 481 – 494. https://doi.org/10.1002/2016SW001386 Nishimura, Y., Lyons, L. R., Gabrielse, C., Sivadas, N., Donovan, E. F., Varney, R. H., et al. ( 2020 ). Extreme magnetosphere‐ionosphere‐thermosphere responses to the 5 April 2010 Supersubstorm. Journal of Geophysical Research: Space Physics, 125 ( 4 ), A09218. https://doi.org/10.1029/2019JA027654 Oliveira, D. M., Arel, D., Raeder, J., Zesta, E., Ngwira, C. M., Carter, B. A., et al. ( 2018 ). Geomagnetically induced currents caused by interplanetary shocks with different impact angles and speeds. Space Weather, 16, 636 – 647. https://doi.org/10.1029/2018SW001880 Oliveira, D. M., & Raeder, J. ( 2015 ). Impact angle control of interplanetary shock geoeffectiveness: A statistical study. Journal of Geophysical Research: Space Physics, 120, 4313 – 4323. https://doi.org/10.1002/2015JA021147 Richardson, J. D., & Paularena, K. I. ( 2001 ). Plasma and magnetic field correlations in the solar wind. Journal of Geophysical Research, 106, 239 – 251. https://doi.org/10.1029/2000JA000071 Rogers, N. C., Wild, J. A., Eastoe, E. F., Gjerloev, J. W., Thomson, A. W. P., & Thomson, A. W. P. ( 2020 ). A global climatological model of extreme geomagnetic field fluctuations. Journal of Space Weather and Space Climate, 10, 5. https://doi.org/10.1051/swsc/2020008 Søraas, F., Laundal, K. M., & Usanova, M. ( 2013 ). Coincident particle and optical observations of nightside subauroral proton precipitation. Journal of Geophysical Research: Space Physics, 118, 1112 – 1122. https://doi.org/10.1002/jgra.50172 Sugiura, M., & Poros, D. J. ( 1971 ). Hourly values of equatorial Dst for years 1957 to 1970, Rep. X‐645‐71‐278. Goddard Space Flight Center. Tetrick, S. S., Engebretson, M. J., Posch, J. L., Olson, C. N., Smith, C. W., Denton, R. E., et al. ( 2017 ). Location of intense electromagnetic ion cyclotron (EMIC) wave events relative to the plasmapause: Van Allen Probes observations. Journal of Geophysical Research: Space Physics, 122, 4064 – 4088. https://doi.org/10.1002/2016JA023392 Usanova, M. E., Mann, I. R., Bortnik, J., Shao, L., & Angelopoulos, V. ( 2012 ). THEMIS observations of electromagnetic ion cyclotron wave occurrence: Dependence on AE, SYMH, and solar wind dynamic pressure. Journal of Geophysical Research, 117, A10218. https://doi.org/10.1029/2012JA018049 Viljanen, A. ( 1997 ). The relation between geomagnetic variations and their time derivatives and implications for estimation of induction risks. Geophysical Research Letters, 24, 631 – 634. https://doi.org/10.1029/97GL00538 Villante, U., & Piersanti, M. ( 2012 ). Sudden Impulses in the Magnetosphere and at Ground. In M. Lazar, & IntechOpen (Eds.), Sudden impulses in the magnetosphere and at ground, exploring the solar wind (pp. 399 – 416 ). https://doi.org/10.5772/36770 Walsh, B. M., Bhakyapaibul, T., & Zou, Y. ( 2019 ). Quantifying the uncertainty of using solar wind measurements for geospace inputs. Journal of Geophysical Research: Space Physics, 124, 3291 – 3302. https://doi.org/10.1029/2019JA026507 Wang, B., Nishimura, Y., Zou, Y., Lyons, L. R., Angelopoulos, V., Frey, H., & Mende, S. ( 2016 ). Investigation of triggering of poleward moving auroral forms using satellite‐imager coordinated observations. Journal of Geophysical Research: Space Physics, 121, 10929 – 10941. https://doi.org/10.1002/2016JA023128 Wanliss, J. A., & Showalter, K. M. ( 2006 ). High‐resolution global storm index: Dst versus SYM‐ H. Journal of Geophysical Research, 111, A02202. https://doi.org/10.1029/2005JA011034 Wei, D., Dunlop, M. W., Yang, J., Dong, X., Yu, Y., & Wang, T. ( 2021 ). Intense dB/dt variations driven by near‐Earth bursty bulk flows (BBFs): A case study. Geophysical Research Letters, 48, e2020GL091781. https://doi.org/10.1029/2020GL091781 Welling, D. T., Love, J. J., Rigler, E. J., Oliveira, D. M., Komar, C. M., & Morley, S. K. ( 2020 ). Numerical simulations of the geospace response to the arrival of an idealized perfect interplanetary coronal mass ejection. Space Weather, 18. https://doi.org/10.1029/2020SW002489 Wintoft, P., Wik, M., & Viljanen, A. ( 2015 ). Solar wind driven empirical forecast models of the time derivative of the ground magnetic field. Journal of Space Weather and Space Climate, 5 ( A7 ). https://doi.org/10.1051/swsc/2015008 Woodroffe, J. R., Morley, S. K., Jordanova, V. K., Henderson, M. G., Cowee, M. M., & Gjerloev, J. ( 2016 ). The latitudinal variation of geoelectromagnetic disturbances during large ( Dst ≤−100 nT) geomagnetic storms. Space Weather, 14, 668 – 681. https://doi.org/10.1002/2016SW001376 Yagova, N. V., Pilipenko, V. A., Fedorov, E. N., Lhamdon‐tong, A. D., & Gusev, Y. P. ( 2018 ). Geomagnetically induced currents and space weather: Pi3 pulsations and extreme values of the time derivatives of the horizontal components of the geomagnetic field, Izvestiya. Physics of the Solid Earth, 54, 749 – 763. https://doi.org/10.1134/S1069351318050130 Zhang, Y., Paxton, L. J., & Zheng, Y. ( 2008 ). Interplanetary shock induced ring current auroras. Journal of Geophysical Research, 113, A01212. https://doi.org/10.1029/2007JA012554 Zhang, Y., Paxton, L., Morrison, D., Wolven, B., Kil, H., & Wing, S. ( 2005 ). Nightside detached auroras due to precipitating protons/ions during intense magnetic storms. Journal of Geophysical Research, 110, A02206. https://doi.org/10.1029/2004JA010498 Anderson, B. J., & Hamilton, D. C. ( 1993 ). Electromagnetic ion cyclotron waves stimulated by modest magnetospheric compressions. Journal of Geophysical Research, 98, 11369 – 11382. https://doi.org/10.1029/93JA00605 Apatenkov, S. V., Pilipenko, V. A., Gordeev, E. I., Viljanen, A., Juusola, L., Belakhovsky, V. B., et al. ( 2020 ). Auroral omega bands are a significant cause of large geomagnetically induced currents. Geophysical Research Letters, 47, e2019GL086677. https://doi.org/10.1029/2019GL086677 Araki, T. ( 1994 ). A physical model of the geomagnetic sudden commencement, in solar wind sources of magnetospheric ultra‐low‐frequency waves. In M. J. Engebretson, K. Takahashi, & M. Scholer (Eds.), Geophysical. Monograph series (Vol. 81, pp. 183 – 200 ). https://doi.org/10.1029/GM081p0183 Belakhovsky, V. B., Sakharov, Y. A., Pilipenko, V. A., & Selivanov, V. N. ( 2018 ). Characteristics of the variability of a geomagnetic field for studying the impact of the magnetic storms and substorms on electrical energy systems, Izvestiya. Physics of the Solid Earth, 54, 52 – 65. https://doi.org/10.1134/S1069351318010032 Bier, E. A., Owusu, N., Engebretson, M. J., Posch, J. L., Lessard, M. R., & Pilipenko, V. A. ( 2014 ). Investigating the IMF cone angle control of Pc3‐4 pulsations observed on the ground. Journal of Geophysical Research: Space Physics, 119, 1797 – 1813. https://doi.org/10.1002/2013JA019637 Borovsky, J. E. ( 2008 ). Flux tube texture of the solar wind: Strands of the magnetic carpet at 1 AU? Journal of Geophysical Research, 113, A08110. https://doi.org/10.1029/2007JA012684 Borovsky, J. E. ( 2017 ). The spatial structure of the oncoming solar wind at Earth and the shortcomings of a solar wind monitor at L1. Journal of Atmospheric and Solar‐Terrestrial Physics, 177, 2 – 11. https://doi.org/10.1016/j.jastp.2017.03.014 Boteler, D. H. ( 2001 ). Assessment of geomagnetic hazard to power systems in Canada. Natural Hazards, 23, 101 – 120. https://doi.org/10.1023/A:1011194414259 Boteler, D. H. ( 2019 ). A 21st century view of the March 1989 magnetic storm. Space Weather, 17, 1427 – 1441. https://doi.org/10.1029/2019SW002278 Carrington, R. C. ( 1859 ). Description of a singular appearance seen in the Sun on September 1. Monthly Notices of the Royal Astronomical Society, 20, 13 – 15. https://doi.org/10.1093/mnras/20.1.13 Chree, C. ( 1913 ). Some phenomena of sunspots and of terrestrial magnetism at Kew observatory. Philosophical Transactions of the Royal Society of London. Series A, 212, 75 – 116. https://doi.org/10.1098/rsta.1913.0003 Dimmock, A. P., Rosenqvist, L., Hall, J.‐O., Viljanen, A., Yordanova, E., Honkonen, I., et al. ( 2019 ). The GIC and geomagnetic response over Fennoscandia to the 7–8 September 2017 geomagnetic storm. Space Weather, 17, 989 – 1010. https://doi.org/10.1029/2018SW002132 Dimmock, A. P., Rosenqvist, L., Welling, D. T., Viljanen, A., Honkonen, I., Boynton, R. J., & Yordanova, E. ( 2020 ). On the regional variability of dB/dt and its significance to GIC. Space Weather, 18, e2020SW002497. https://doi.org/10.1029/2020SW002497 Drozdov, A. Y., Usanova, M. E., Hudson, M. K., Allison, H. J., & Shprits, Y. Y. ( 2020 ). The role of hiss, chorus, and EMIC waves in the modeling of the dynamics of the multi‐MeV radiation belt electrons. Journal of Geophysical Research: Space Physics, 125, e2020JA028282. https://doi.org/10.1029/2020JA028282 Engebretson, M. J., Hughes, W. J., Alford, J. L., Zesta, E., Cahill, L. J., Jr., Arnoldy, R. L., & Reeves, G. D. ( 1995 ). Magnetometer array for cusp and cleft studies observations of the spatial extent of broadband ULF magnetic pulsations at cusp/cleft latitudes. Journal of Geophysical Research, 100, 19371 – 19386. https://doi.org/10.1029/95JA00768 Engebretson, M. J., Kirkevold, K. R., Steinmetz, E. S., Pilipenko, V. A., Moldwin, M. B., McCuen, B. A., et al. ( 2020 ). Interhemispheric comparisons of large nighttime magnetic perturbation events relevant to GICs. Journal of Geophysical Research: Space Physics, 125, e2020JA028128. https://doi.org/10.1029/2020JA028128 Engebretson, M. J., Pilipenko, V. A., Ahmed, L. Y., Posch, J. L., Steinmetz, E. S., Moldwin, M. B., et al. ( 2019a ). Nighttime magnetic perturbation events observed in Arctic Canada: 1. Survey and statistical analysis. Journal of Geophysical Research: Space Physics, 124, 7442 – 7458. https://doi.org/10.1029/2019JA026794 Engebretson, M. J., Pilipenko, V. A., Steinmetz, E. S., Moldwin, M. B., Connors, M. G., Boteler, D. H., et al. ( 2021 ). Nighttime magnetic perturbation events observed in Arctic Canada: 3. Occurrence and amplitude as functions of magnetic latitude, local time, and magnetic disturbances. Space Weather, 19, e2020SW002526. https://doi.org/10.1029/2020SW002526 Engebretson, M. J., Steinmetz, E. S., Posch, J. L., Pilipenko, V. A., Moldwin, M. B., Connors, M. G., et al. ( 2019b ). Nighttime magnetic perturbation events observed in Arctic Canada: 2. Multiple‐ instrument observations. Journal of Geophysical Research: Space Physics, 124, 7459 – 7476. https://doi.org/10.1029/2019JA026797 IndexNoFollow substorms geomagnetic storms magnetic indices GIC geomagnetically induced currents magnetic perturbation events Astronomy and Astrophysics Science Article 2021 ftumdeepblue 2025-06-04T05:59:19Z Rapid changes of magnetic fields associated with nighttime magnetic perturbation events (MPEs) with amplitudes |ΔB| of hundreds of nT and 5–10 min duration can induce geomagnetically induced currents (GICs) that can harm technological systems. Here we present superposed epoch analyses of large nighttime MPEs (|dB/dt| ≥ 6 nT/s) observed during 2015 and 2017 at five stations in Arctic Canada ranging from 64.7° to 75.2° in corrected geomagnetic latitude (MLAT) as functions of the interplanetary magnetic field (IMF), solar wind dynamic pressure, density, and velocity, and the SML, SMU, and SYM/H geomagnetic activity indices. Analyses were produced for premidnight and postmidnight events and for three ranges of time after the most recent substorm onset: (a) 0–30 min, (b) 30–60 min, and (c) >60 min. Of the solar wind and IMF parameters studied, only the IMF Bz component showed any consistent temporal variations prior to MPEs: a 1–2 h wide 1–3 nT negative minimum at all stations beginning ∼30–80 min before premidnight MPEs, and minima that were less consistent but often deeper before postmidnight MPEs. Median, 25th, and 75th percentile SuperMAG auroral indices SML (SMU) showed drops (rises) before pre‐ and post‐midnight type A MPEs, but most of the MPEs in categories B and C did not coincide with large‐scale peaks in ionospheric electrojets. Median SYM/H indices were flat near −30 nT for premidnight events and showed no consistent temporal association with any MPE events. More disturbed values of IMF Bz, Psw, Nsw, SML, SMU, and SYM/H appeared postmidnight than premidnight.Key PointsSuperposed epoch analyses of 2 years of >6 nT/s magnetic perturbation events (MPEs) from 5 high latitude Arctic stations are presentedOf the solar wind and interplanetary magnetic field (IMF) parameters studied, only IMF Bz showed any consistent pattern: a drop and rise prior to MPE occurrenceMost of the MPEs that occurred more than 30 min after a substorm onset did not coincide with peaks in the westward electrojet Peer Reviewed ... Article in Journal/Newspaper Arctic Arctic Unknown Arctic Canada Journal of Geophysical Research: Space Physics 126 9
spellingShingle substorms
geomagnetic storms
magnetic indices
GIC
geomagnetically induced currents
magnetic perturbation events
Astronomy and Astrophysics
Science
Engebretson, Mark J.
Ahmed, Lidiya Y.
Pilipenko, Viacheslav A.
Steinmetz, Erik S.
Moldwin, Mark B.
Connors, Martin G.
Boteler, David H.
Weygand, James M.
Coyle, Shane
Ohtani, Shin
Gjerloev, Jesper
Russell, Christopher T.
Superposed Epoch Analysis of Nighttime Magnetic Perturbation Events Observed in Arctic Canada
title Superposed Epoch Analysis of Nighttime Magnetic Perturbation Events Observed in Arctic Canada
title_full Superposed Epoch Analysis of Nighttime Magnetic Perturbation Events Observed in Arctic Canada
title_fullStr Superposed Epoch Analysis of Nighttime Magnetic Perturbation Events Observed in Arctic Canada
title_full_unstemmed Superposed Epoch Analysis of Nighttime Magnetic Perturbation Events Observed in Arctic Canada
title_short Superposed Epoch Analysis of Nighttime Magnetic Perturbation Events Observed in Arctic Canada
title_sort superposed epoch analysis of nighttime magnetic perturbation events observed in arctic canada
topic substorms
geomagnetic storms
magnetic indices
GIC
geomagnetically induced currents
magnetic perturbation events
Astronomy and Astrophysics
Science
topic_facet substorms
geomagnetic storms
magnetic indices
GIC
geomagnetically induced currents
magnetic perturbation events
Astronomy and Astrophysics
Science
url https://hdl.handle.net/2027.42/169302
https://doi.org/10.1029/2021JA029465