Sustained‐Flux Global Warming Potential Driven by Nitrogen Inflow and Hydroperiod in a Model of Great Lakes Coastal Wetlands

Wetlands impact global warming by regulating the atmospheric exchange of greenhouse gases (GHGs), including carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). We investigated GHG emissions in the Great Lakes coastal wetlands across various hydrologic, temperature, and nitrogen (N) inflow...

Full description

Bibliographic Details
Published in:Journal of Animal Ecology
Main Authors: Yuan, Y., Sharp, S. J., Martina, J. P., Elgersma, K. J., Currie, W. S.
Format: Article in Journal/Newspaper
Language:unknown
Published: Cambridge University Press 2021
Subjects:
Online Access:https://hdl.handle.net/2027.42/169244
https://doi.org/10.1029/2021JG006242
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/169244
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic coastal wetlands
methane
C sequestration
global warming
greenhouse gas
ecosystem model
Geological Sciences
Science
spellingShingle coastal wetlands
methane
C sequestration
global warming
greenhouse gas
ecosystem model
Geological Sciences
Science
Yuan, Y.
Sharp, S. J.
Martina, J. P.
Elgersma, K. J.
Currie, W. S.
Sustained‐Flux Global Warming Potential Driven by Nitrogen Inflow and Hydroperiod in a Model of Great Lakes Coastal Wetlands
topic_facet coastal wetlands
methane
C sequestration
global warming
greenhouse gas
ecosystem model
Geological Sciences
Science
description Wetlands impact global warming by regulating the atmospheric exchange of greenhouse gases (GHGs), including carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). We investigated GHG emissions in the Great Lakes coastal wetlands across various hydrologic, temperature, and nitrogen (N) inflow regimes using a process‐based simulation model. We found the emission of CH4, N2O, and sequestration of C (i.e., negative net ecosystem exchange, NEE) in our simulations were all positively related to water residence time and N inflow, primarily due to greater plant productivity and N uptake, which facilitated greater C and N cycling rates in the model. Water level scenarios also had an effect on GHG exchanges by moderating the transitions between aerobic and anaerobic conditions. Temperature effects on GHGs were minimal compared with other factors. The net sustained‐flux global warming potential (SGWP; i.e., sum SGWP of CH4, N2O, and NEE) of wetlands on 20‐year and 100‐year time horizons were both primarily driven by CH4 emissions and strongly controlled by the tradeoffs between CH4 emission and CO2 sequestration, with a negligible amount of simulated N2O emissions. Future research could include model enhancements to provide increased process‐level details on the aerobic‐anaerobic transitions or the direct effects of plants on mediating GHG exchanges. Field studies addressing the interaction of N inflows and water residence time at appropriately large scales are needed to test the complex interactions revealed by our modeling study. Our results highlight the previously under‐appreciated role of nitrogen and water residence time in modulating SGWP in coastal wetlands.Plain Language SummaryWetlands impact global warming by emitting carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) to the atmosphere, but can absorb these greenhouse gases (GHGs). In our study, we investigated GHG emission in the Great Lakes coastal wetlands under different hydrologic, temperature, and nitrogen (N) inflow regimes using a ...
format Article in Journal/Newspaper
author Yuan, Y.
Sharp, S. J.
Martina, J. P.
Elgersma, K. J.
Currie, W. S.
author_facet Yuan, Y.
Sharp, S. J.
Martina, J. P.
Elgersma, K. J.
Currie, W. S.
author_sort Yuan, Y.
title Sustained‐Flux Global Warming Potential Driven by Nitrogen Inflow and Hydroperiod in a Model of Great Lakes Coastal Wetlands
title_short Sustained‐Flux Global Warming Potential Driven by Nitrogen Inflow and Hydroperiod in a Model of Great Lakes Coastal Wetlands
title_full Sustained‐Flux Global Warming Potential Driven by Nitrogen Inflow and Hydroperiod in a Model of Great Lakes Coastal Wetlands
title_fullStr Sustained‐Flux Global Warming Potential Driven by Nitrogen Inflow and Hydroperiod in a Model of Great Lakes Coastal Wetlands
title_full_unstemmed Sustained‐Flux Global Warming Potential Driven by Nitrogen Inflow and Hydroperiod in a Model of Great Lakes Coastal Wetlands
title_sort sustained‐flux global warming potential driven by nitrogen inflow and hydroperiod in a model of great lakes coastal wetlands
publisher Cambridge University Press
publishDate 2021
url https://hdl.handle.net/2027.42/169244
https://doi.org/10.1029/2021JG006242
genre Arctic
genre_facet Arctic
op_relation Yuan, Y.; Sharp, S. J.; Martina, J. P.; Elgersma, K. J.; Currie, W. S. (2021). "Sustained‐Flux Global Warming Potential Driven by Nitrogen Inflow and Hydroperiod in a Model of Great Lakes Coastal Wetlands." Journal of Geophysical Research: Biogeosciences 126(8): n/a-n/a.
2169-8953
2169-8961
https://hdl.handle.net/2027.42/169244
doi:10.1029/2021JG006242
Journal of Geophysical Research: Biogeosciences
Schlesinger, W. H. ( 2009 ). On the fate of anthropogenic nitrogen. Proceedings of the National Academy of Sciences of the United States of America, 106 ( 1 ), 203 – 208. https://doi.org/10.1073/pnas.0810193105
Sierszen, M. E., Brazner, J. C., Cotter, A. M., Morrice, J. A., Peterson, G. S., & Trebitz, A. S. ( 2012 ). Watershed and lake influences on the energetic base of coastal wetland food webs across the Great Lakes Basin. Journal of Great Lakes Research, 38 ( 3 ), 418 – 428. https://doi.org/10.1016/j.jglr.2012.04.005
Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., et al. ( 2003 ). Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 9 ( 2 ), 161 – 185. https://doi.org/10.1046/j.1365-2486.2003.00569.x
Song, C., Xu, X., Tian, H., & Wang, Y. ( 2009 ). Ecosystem–atmosphere exchange of CH 4 and N 2 O and ecosystem respiration in wetlands in the Sanjiang Plain, Northeastern China. Global Change Biology, 15 ( 3 ), 692 – 705. https://doi.org/10.1111/j.1365-2486.2008.01821.x
Song, Y., Linderholm, H. W., Chen, D., & Walther, A. ( 2010 ). Trends of the thermal growing season in China, 1951–2007. International Journal of Climatology: A Journal of the Royal Meteorological Society, 30 ( 1 ), 33. https://doi.org/10.1002/joc.1868
Søvik, A. K., Augustin, J., Heikkinen, K., Huttunen, J. T., Necki, J. M., Karjalainen, S. M., et al. ( 2006 ). Emission of the greenhouse gases nitrous oxide and methane from constructed wetlands in Europe. Journal of Environmental Quality, 35 ( 6 ), 2360 – 2373. https://doi.org/10.2134/jeq2006.0038
Stadmark, J., & Leonardson, L. ( 2007 ). Greenhouse gas production in a pond sediment: Effects of temperature, nitrate, acetate and season. The Science of the Total Environment, 387 ( 1–3 ), 194 – 205. https://doi.org/10.1016/j.scitotenv.2007.07.039
Ström, L., & Christensen, T. R. ( 2007 ). Below ground carbon turnover and greenhouse gas exchanges in a sub‐arctic wetland. Soil Biology and Biochemistry, 39 ( 7 ), 1689 – 1698. https://doi.org/10.1016/j.soilbio.2007.01.019
Tan, L., Ge, Z., Zhou, X., Li, S., Li, X., & Tang, J. ( 2020 ). Conversion of coastal wetlands, riparian wetlands, and peatlands increases greenhouse gas emissions: A global meta‐analysis. Global Change Biology, 26 ( 3 ), 1638 – 1653. https://doi.org/10.1111/gcb.14933
Tian, H., Xu, X., Liu, M., Ren, W., Zhang, C., Chen, G., & Lu, C. ( 2010 ). Spatial and temporal patterns of CH 4 and N 2 O fluxes in terrestrial ecosystems of North America during 1979–2008: Application of a global biogeochemistry model. Biogeosciences, 7 ( 9 ), 2673 – 2694. https://doi.org/10.5194/bg-7-2673-2010
Tiedje, J. M. ( 1988 ). Ecology of denitrification and dissimilatory nitrate reduction to ammonium. Biology of Anaerobic Microorganisms, 717, 179 – 244.
Turunen, J., Tomppo, E., Tolonen, K., & Reinikainen, A. ( 2002 ). Estimating carbon accumulation rates of undrained mires in Finland—Application to boreal and subarctic regions. The Holocene, 12 ( 1 ), 69 – 80. https://doi.org/10.1191/0959683602hl522rp
Wang, H., Liao, G., D’Souza, M., Yu, X., Yang, J., Yang, X., & Zheng, T. ( 2016 ). Temporal and spatial variations of greenhouse gas fluxes from a tidal mangrove wetland in Southeast China. Environmental Science and Pollution Research, 23 ( 2 ), 1873 – 1885. https://doi.org/10.1007/s11356-015-5440-4
Wang, H., Yu, L., Zhang, Z., Liu, W., Chen, L., Cao, G., et al. ( 2017 ). Molecular mechanisms of water table lowering and nitrogen deposition in affecting greenhouse gas emissions from a Tibetan alpine wetland. Global Change Biology, 23 ( 2 ), 815 – 829. https://doi.org/10.1111/gcb.13467
Wania, R., Ross, I., & Prentice, I. C. ( 2010 ). Implementation and evaluation of a new methane model within a dynamic global vegetation model: LPJ‐WHyMe v1. 3.1. Geoscientific Model Development, 3 ( 2 ), 565 – 584. https://doi.org/10.5194/gmd-3-565-2010
Weier, K. L., Doran, J. W., Power, J. F., & Walters, D. T. ( 1993 ). Denitrification and the dinitrogen/nitrous oxide ratio as affected by soil water, available carbon, and nitrate. Soil Science Society of America Journal, 57 ( 1 ), 66 – 72. https://doi.org/10.2136/sssaj1993.03615995005700010013x
Weslien, P., Kasimir Klemedtsson, Å., Börjesson, G., & Klemedtsson, L. ( 2009 ). Strong pH influence on N 2 O and CH 4 fluxes from forested organic soils. European Journal of Soil Science, 60 ( 3 ), 311 – 320. https://doi.org/10.1111/j.1365-2389.2009.01123.x
Whiting, G. J., & Chanton, J. P. ( 1993 ). Primary production control of methane emission from wetlands. Nature, 364 ( 6440 ), 794 – 795. https://doi.org/10.1038/364794a0
Whiting, G. J., & Chanton, J. P. ( 2001 ). Greenhouse carbon balance of wetlands: Methane emission versus carbon sequestration. Tellus B: Chemical and Physical Meteorology, 53 ( 5 ), 521 – 528. https://doi.org/10.3402/tellusb.v53i5.16628
Wolfe, D. W., Schwartz, M. D., Lakso, A. N., Otsuki, Y., Pool, R. M., & Shaulis, N. J. ( 2005 ). Climate change and shifts in spring phenology of three horticultural woody perennials in northeastern USA. International Journal of Biometeorology, 49 ( 5 ), 303 – 309. https://doi.org/10.1007/s00484-004-0248-9
Xu, X., Tian, H., & Hui, D. ( 2008 ). Convergence in the relationship of CO 2 and N 2 O exchanges between soil and atmosphere within terrestrial ecosystems. Global Change Biology, 14 ( 7 ), 1651 – 1660. https://doi.org/10.1111/j.1365-2486.2008.01595.x
Xu, X., Zou, X., Cao, L., Zhamangulova, N., Zhao, Y., Tang, D., & Liu, D. ( 2014 ). Seasonal and spatial dynamics of greenhouse gas emissions under various vegetation covers in a coastal saline wetland in southeast China. Ecological Engineering, 73, 469 – 477. https://doi.org/10.1016/j.ecoleng.2014.09.087
Yang, J., Liu, J., Hu, X., Li, X., Wang, Y., & Li, H. ( 2013 ). Effect of water table level on CO 2, CH 4 and N 2 O emissions in a freshwater marsh of Northeast China. Soil Biology and Biochemistry, 61, 52 – 60. https://doi.org/10.1016/j.soilbio.2013.02.009
Yvon‐Durocher, G., Allen, A., Bastviken, D., Conrad, R., Gudasz, C., St‐Pierre, A., et al. ( 2014 ). Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature, 507, 488 – 491. https://doi.org/10.1038/nature13164
Zhang, J. B., Song, C. C., & Yang, W. Y. ( 2005 ). Cold season CH 4, CO 2 and N 2 O fluxes from freshwater marshes in northeast China. Chemosphere, 59 ( 11 ), 1703 – 1705. https://doi.org/10.1016/j.chemosphere.2004.11.051
Zhou, L., Tucker, C. J., Kaufmann, R. K., Slayback, D., Shabanov, N. V., & Myneni, R. B. ( 2001 ). Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. Journal of Geophysical Research: Atmospheres, 106 ( D17 ), 20069 – 20083. https://doi.org/10.1029/2000JD000115
Zhu, Q., Liu, J., Peng, C., Chen, H., Fang, X., Jiang, H., et al. ( 2014 ). Modelling methane emissions from natural wetlands by development and application of the TRIPLEX‐GHG model. Geoscientific Model Development, 7 ( 3 ), 981 – 999. https://doi.org/10.5194/gmd-7-981-2014
Al‐Haj, A. N., & Fulweiler, R. W. ( 2020 ). A synthesis of methane emissions from shallow vegetated coastal ecosystems. Global Change Biology, 26 ( 5 ), 2988 – 3005. https://doi.org/10.1111/gcb.15046
Aurela, M., Riutta, T., Laurila, T., Tuovinen, J. P., Vesala, T., Tuittila, E. S., et al. ( 2007 ). CO 2 exchange of a sedge fen in southern Finland—The impact of a drought period. Tellus B: Chemical and Physical Meteorology, 59 ( 5 ), 826 – 837. https://doi.org/10.1111/j.1600-0889.2007.00309.x
Beaulieu, J. J., Tank, J. L., Hamilton, S. K., Wollheim, W. M., Hall, R. O., Mulholland, P. J., et al. ( 2011 ). Nitrous oxide emission from denitrification in stream and river networks. Proceedings of the National Academy of Sciences of the United States of America, 108 ( 1 ), 214 – 219. https://doi.org/10.1073/pnas.1011464108
Beringer, J., Livesley, S. J., Randle, J., & Hutley, L. B. ( 2013 ). Carbon dioxide fluxes dominate the greenhouse gas exchanges of a seasonal wetland in the wet–dry tropics of northern Australia. Agricultural and Forest Meteorology, 182, 239 – 247. https://doi.org/10.1016/j.agrformet.2013.06.008
Blodau, C., Basiliko, N., & Moore, T. R. ( 2004 ). Carbon turnover in peatland mesocosms exposed to different water table levels. Biogeochemistry, 67 ( 3 ), 331 – 351. https://doi.org/10.1023/B:BIOG.0000015788.30164.e2
Blodau, C., & Moore, T. R. ( 2003 ). Experimental response of peatland carbon dynamics to a water table fluctuation. Aquatic Sciences, 65 ( 1 ), 47 – 62. https://doi.org/10.1007/s000270300004
Bonneville, M. C., Strachan, I. B., Humphreys, E. R., & Roulet, N. T. ( 2008 ). Net ecosystem CO 2 exchange in a temperate cattail marsh in relation to biophysical properties. Agricultural and Forest Meteorology, 148 ( 1 ), 69 – 81. https://doi.org/10.1016/j.agrformet.2007.09.004
Bridgham, S. D., Cadillo‐Quiroz, H., Keller, J. K., & Zhuang, Q. ( 2013 ). Methane emissions from wetlands: Biogeochemical, microbial, and modeling perspectives from local to global scales. Global Change Biology, 19 ( 5 ), 1325 – 1346. https://doi.org/10.1111/gcb.12131
Bubier, J. L., Moore, T. R., & Bledzki, L. A. ( 2007 ). Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog. Global Change Biology, 13 ( 6 ), 1168 – 1186. https://doi.org/10.1111/j.1365-2486.2007.01346.x
Cao, M., Marshall, S., & Gregson, K. ( 1996 ). Global carbon exchange and methane emissions from natural wetlands: Application of a process‐based model. Journal of Geophysical Research, 101 ( D9 ), 14399 – 14414. https://doi.org/10.1029/96JD00219
Chanton, J. P. ( 2005 ). The effect of gas transport on the isotope signature of methane in wetlands. Organic Geochemistry, 36 ( 5 ), 753 – 768. https://doi.org/10.1016/j.orggeochem.2004.10.007
Chimner, R. A., & Cooper, D. J. ( 2003 ). Influence of water table levels on CO 2 emissions in a Colorado subalpine fen: An in‐situ microcosm study. Soil Biology and Biochemistry, 35 ( 3 ), 345 – 351. https://doi.org/10.1016/S0038-0717(02)00284-5
Chmielewski, F. M., & Rötzer, T. ( 2001 ). Response of tree phenology to climate change across Europe. Agricultural and Forest Meteorology, 108 ( 2 ), 101 – 112. https://doi.org/10.1016/S0168-1923(01)00233-7
Christensen, T. R., Ekberg, A., Ström, L., Mastepanov, M., Panikov, N., Öquist, M., et al. ( 2003 ). Factors controlling large scale variations in methane emissions from wetlands. Geophysical Research Letters, 30 ( 7 ). 1414. https://doi.org/10.1029/2002GL016848
Ciarlo, E., Conti, M., Bartoloni, N., & Rubio, G. ( 2007 ). The effect of moisture on nitrous oxide emissions from soil and the N 2 O/(N 2 O+N 2 ) ratio under laboratory conditions. Biology and Fertility of Soils, 43 ( 6 ), 675 – 681. https://doi.org/10.1007/s00374-006-0147-9
Colbourn, P., & Dowdell, R. J. ( 1984 ). Denitrification in field soils. Plant and Soil, 76 ( 1–3 ), 213 – 226. https://doi.org/10.1007/BF02205581
Currie, W. S., Goldberg, D. E., Martina, J., Wildova, R., Farrer, E., & Elgersma, K. J. ( 2014 ). Emergence of nutrient‐cycling feedbacks related to plant size and invasion success in a wetland community–ecosystem model. Ecological Modelling, 282, 69 – 82. https://doi.org/10.1016/j.ecolmodel.2014.01.010
op_rights IndexNoFollow
op_doi https://doi.org/10.1029/2021JG00624210.1073/pnas.081019310510.1046/j.1365-2486.2003.00569.x10.2134/jeq2006.003810.1111/gcb.1346710.1038/nature1316410.5194/gmd-7-981-201410.1111/j.1600-0889.2007.00309.x10.1073/pnas.101146410810.1016/j.orggeochem.2004.10.00
container_title Journal of Animal Ecology
container_volume 90
container_issue 10
container_start_page 2348
op_container_end_page 2361
_version_ 1774713613286637568
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/169244 2023-08-20T04:03:12+02:00 Sustained‐Flux Global Warming Potential Driven by Nitrogen Inflow and Hydroperiod in a Model of Great Lakes Coastal Wetlands Yuan, Y. Sharp, S. J. Martina, J. P. Elgersma, K. J. Currie, W. S. 2021-08 application/pdf https://hdl.handle.net/2027.42/169244 https://doi.org/10.1029/2021JG006242 unknown Cambridge University Press Wiley Periodicals, Inc. Yuan, Y.; Sharp, S. J.; Martina, J. P.; Elgersma, K. J.; Currie, W. S. (2021). "Sustained‐Flux Global Warming Potential Driven by Nitrogen Inflow and Hydroperiod in a Model of Great Lakes Coastal Wetlands." Journal of Geophysical Research: Biogeosciences 126(8): n/a-n/a. 2169-8953 2169-8961 https://hdl.handle.net/2027.42/169244 doi:10.1029/2021JG006242 Journal of Geophysical Research: Biogeosciences Schlesinger, W. H. ( 2009 ). On the fate of anthropogenic nitrogen. Proceedings of the National Academy of Sciences of the United States of America, 106 ( 1 ), 203 – 208. https://doi.org/10.1073/pnas.0810193105 Sierszen, M. E., Brazner, J. C., Cotter, A. M., Morrice, J. A., Peterson, G. S., & Trebitz, A. S. ( 2012 ). Watershed and lake influences on the energetic base of coastal wetland food webs across the Great Lakes Basin. Journal of Great Lakes Research, 38 ( 3 ), 418 – 428. https://doi.org/10.1016/j.jglr.2012.04.005 Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., et al. ( 2003 ). Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 9 ( 2 ), 161 – 185. https://doi.org/10.1046/j.1365-2486.2003.00569.x Song, C., Xu, X., Tian, H., & Wang, Y. ( 2009 ). Ecosystem–atmosphere exchange of CH 4 and N 2 O and ecosystem respiration in wetlands in the Sanjiang Plain, Northeastern China. Global Change Biology, 15 ( 3 ), 692 – 705. https://doi.org/10.1111/j.1365-2486.2008.01821.x Song, Y., Linderholm, H. W., Chen, D., & Walther, A. ( 2010 ). Trends of the thermal growing season in China, 1951–2007. International Journal of Climatology: A Journal of the Royal Meteorological Society, 30 ( 1 ), 33. https://doi.org/10.1002/joc.1868 Søvik, A. K., Augustin, J., Heikkinen, K., Huttunen, J. T., Necki, J. M., Karjalainen, S. M., et al. ( 2006 ). Emission of the greenhouse gases nitrous oxide and methane from constructed wetlands in Europe. Journal of Environmental Quality, 35 ( 6 ), 2360 – 2373. https://doi.org/10.2134/jeq2006.0038 Stadmark, J., & Leonardson, L. ( 2007 ). Greenhouse gas production in a pond sediment: Effects of temperature, nitrate, acetate and season. The Science of the Total Environment, 387 ( 1–3 ), 194 – 205. https://doi.org/10.1016/j.scitotenv.2007.07.039 Ström, L., & Christensen, T. R. ( 2007 ). Below ground carbon turnover and greenhouse gas exchanges in a sub‐arctic wetland. Soil Biology and Biochemistry, 39 ( 7 ), 1689 – 1698. https://doi.org/10.1016/j.soilbio.2007.01.019 Tan, L., Ge, Z., Zhou, X., Li, S., Li, X., & Tang, J. ( 2020 ). Conversion of coastal wetlands, riparian wetlands, and peatlands increases greenhouse gas emissions: A global meta‐analysis. Global Change Biology, 26 ( 3 ), 1638 – 1653. https://doi.org/10.1111/gcb.14933 Tian, H., Xu, X., Liu, M., Ren, W., Zhang, C., Chen, G., & Lu, C. ( 2010 ). Spatial and temporal patterns of CH 4 and N 2 O fluxes in terrestrial ecosystems of North America during 1979–2008: Application of a global biogeochemistry model. Biogeosciences, 7 ( 9 ), 2673 – 2694. https://doi.org/10.5194/bg-7-2673-2010 Tiedje, J. M. ( 1988 ). Ecology of denitrification and dissimilatory nitrate reduction to ammonium. Biology of Anaerobic Microorganisms, 717, 179 – 244. Turunen, J., Tomppo, E., Tolonen, K., & Reinikainen, A. ( 2002 ). Estimating carbon accumulation rates of undrained mires in Finland—Application to boreal and subarctic regions. The Holocene, 12 ( 1 ), 69 – 80. https://doi.org/10.1191/0959683602hl522rp Wang, H., Liao, G., D’Souza, M., Yu, X., Yang, J., Yang, X., & Zheng, T. ( 2016 ). Temporal and spatial variations of greenhouse gas fluxes from a tidal mangrove wetland in Southeast China. Environmental Science and Pollution Research, 23 ( 2 ), 1873 – 1885. https://doi.org/10.1007/s11356-015-5440-4 Wang, H., Yu, L., Zhang, Z., Liu, W., Chen, L., Cao, G., et al. ( 2017 ). Molecular mechanisms of water table lowering and nitrogen deposition in affecting greenhouse gas emissions from a Tibetan alpine wetland. Global Change Biology, 23 ( 2 ), 815 – 829. https://doi.org/10.1111/gcb.13467 Wania, R., Ross, I., & Prentice, I. C. ( 2010 ). Implementation and evaluation of a new methane model within a dynamic global vegetation model: LPJ‐WHyMe v1. 3.1. Geoscientific Model Development, 3 ( 2 ), 565 – 584. https://doi.org/10.5194/gmd-3-565-2010 Weier, K. L., Doran, J. W., Power, J. F., & Walters, D. T. ( 1993 ). Denitrification and the dinitrogen/nitrous oxide ratio as affected by soil water, available carbon, and nitrate. Soil Science Society of America Journal, 57 ( 1 ), 66 – 72. https://doi.org/10.2136/sssaj1993.03615995005700010013x Weslien, P., Kasimir Klemedtsson, Å., Börjesson, G., & Klemedtsson, L. ( 2009 ). Strong pH influence on N 2 O and CH 4 fluxes from forested organic soils. European Journal of Soil Science, 60 ( 3 ), 311 – 320. https://doi.org/10.1111/j.1365-2389.2009.01123.x Whiting, G. J., & Chanton, J. P. ( 1993 ). Primary production control of methane emission from wetlands. Nature, 364 ( 6440 ), 794 – 795. https://doi.org/10.1038/364794a0 Whiting, G. J., & Chanton, J. P. ( 2001 ). Greenhouse carbon balance of wetlands: Methane emission versus carbon sequestration. Tellus B: Chemical and Physical Meteorology, 53 ( 5 ), 521 – 528. https://doi.org/10.3402/tellusb.v53i5.16628 Wolfe, D. W., Schwartz, M. D., Lakso, A. N., Otsuki, Y., Pool, R. M., & Shaulis, N. J. ( 2005 ). Climate change and shifts in spring phenology of three horticultural woody perennials in northeastern USA. International Journal of Biometeorology, 49 ( 5 ), 303 – 309. https://doi.org/10.1007/s00484-004-0248-9 Xu, X., Tian, H., & Hui, D. ( 2008 ). Convergence in the relationship of CO 2 and N 2 O exchanges between soil and atmosphere within terrestrial ecosystems. Global Change Biology, 14 ( 7 ), 1651 – 1660. https://doi.org/10.1111/j.1365-2486.2008.01595.x Xu, X., Zou, X., Cao, L., Zhamangulova, N., Zhao, Y., Tang, D., & Liu, D. ( 2014 ). Seasonal and spatial dynamics of greenhouse gas emissions under various vegetation covers in a coastal saline wetland in southeast China. Ecological Engineering, 73, 469 – 477. https://doi.org/10.1016/j.ecoleng.2014.09.087 Yang, J., Liu, J., Hu, X., Li, X., Wang, Y., & Li, H. ( 2013 ). Effect of water table level on CO 2, CH 4 and N 2 O emissions in a freshwater marsh of Northeast China. Soil Biology and Biochemistry, 61, 52 – 60. https://doi.org/10.1016/j.soilbio.2013.02.009 Yvon‐Durocher, G., Allen, A., Bastviken, D., Conrad, R., Gudasz, C., St‐Pierre, A., et al. ( 2014 ). Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature, 507, 488 – 491. https://doi.org/10.1038/nature13164 Zhang, J. B., Song, C. C., & Yang, W. Y. ( 2005 ). Cold season CH 4, CO 2 and N 2 O fluxes from freshwater marshes in northeast China. Chemosphere, 59 ( 11 ), 1703 – 1705. https://doi.org/10.1016/j.chemosphere.2004.11.051 Zhou, L., Tucker, C. J., Kaufmann, R. K., Slayback, D., Shabanov, N. V., & Myneni, R. B. ( 2001 ). Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. Journal of Geophysical Research: Atmospheres, 106 ( D17 ), 20069 – 20083. https://doi.org/10.1029/2000JD000115 Zhu, Q., Liu, J., Peng, C., Chen, H., Fang, X., Jiang, H., et al. ( 2014 ). Modelling methane emissions from natural wetlands by development and application of the TRIPLEX‐GHG model. Geoscientific Model Development, 7 ( 3 ), 981 – 999. https://doi.org/10.5194/gmd-7-981-2014 Al‐Haj, A. N., & Fulweiler, R. W. ( 2020 ). A synthesis of methane emissions from shallow vegetated coastal ecosystems. Global Change Biology, 26 ( 5 ), 2988 – 3005. https://doi.org/10.1111/gcb.15046 Aurela, M., Riutta, T., Laurila, T., Tuovinen, J. P., Vesala, T., Tuittila, E. S., et al. ( 2007 ). CO 2 exchange of a sedge fen in southern Finland—The impact of a drought period. Tellus B: Chemical and Physical Meteorology, 59 ( 5 ), 826 – 837. https://doi.org/10.1111/j.1600-0889.2007.00309.x Beaulieu, J. J., Tank, J. L., Hamilton, S. K., Wollheim, W. M., Hall, R. O., Mulholland, P. J., et al. ( 2011 ). Nitrous oxide emission from denitrification in stream and river networks. Proceedings of the National Academy of Sciences of the United States of America, 108 ( 1 ), 214 – 219. https://doi.org/10.1073/pnas.1011464108 Beringer, J., Livesley, S. J., Randle, J., & Hutley, L. B. ( 2013 ). Carbon dioxide fluxes dominate the greenhouse gas exchanges of a seasonal wetland in the wet–dry tropics of northern Australia. Agricultural and Forest Meteorology, 182, 239 – 247. https://doi.org/10.1016/j.agrformet.2013.06.008 Blodau, C., Basiliko, N., & Moore, T. R. ( 2004 ). Carbon turnover in peatland mesocosms exposed to different water table levels. Biogeochemistry, 67 ( 3 ), 331 – 351. https://doi.org/10.1023/B:BIOG.0000015788.30164.e2 Blodau, C., & Moore, T. R. ( 2003 ). Experimental response of peatland carbon dynamics to a water table fluctuation. Aquatic Sciences, 65 ( 1 ), 47 – 62. https://doi.org/10.1007/s000270300004 Bonneville, M. C., Strachan, I. B., Humphreys, E. R., & Roulet, N. T. ( 2008 ). Net ecosystem CO 2 exchange in a temperate cattail marsh in relation to biophysical properties. Agricultural and Forest Meteorology, 148 ( 1 ), 69 – 81. https://doi.org/10.1016/j.agrformet.2007.09.004 Bridgham, S. D., Cadillo‐Quiroz, H., Keller, J. K., & Zhuang, Q. ( 2013 ). Methane emissions from wetlands: Biogeochemical, microbial, and modeling perspectives from local to global scales. Global Change Biology, 19 ( 5 ), 1325 – 1346. https://doi.org/10.1111/gcb.12131 Bubier, J. L., Moore, T. R., & Bledzki, L. A. ( 2007 ). Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog. Global Change Biology, 13 ( 6 ), 1168 – 1186. https://doi.org/10.1111/j.1365-2486.2007.01346.x Cao, M., Marshall, S., & Gregson, K. ( 1996 ). Global carbon exchange and methane emissions from natural wetlands: Application of a process‐based model. Journal of Geophysical Research, 101 ( D9 ), 14399 – 14414. https://doi.org/10.1029/96JD00219 Chanton, J. P. ( 2005 ). The effect of gas transport on the isotope signature of methane in wetlands. Organic Geochemistry, 36 ( 5 ), 753 – 768. https://doi.org/10.1016/j.orggeochem.2004.10.007 Chimner, R. A., & Cooper, D. J. ( 2003 ). Influence of water table levels on CO 2 emissions in a Colorado subalpine fen: An in‐situ microcosm study. Soil Biology and Biochemistry, 35 ( 3 ), 345 – 351. https://doi.org/10.1016/S0038-0717(02)00284-5 Chmielewski, F. M., & Rötzer, T. ( 2001 ). Response of tree phenology to climate change across Europe. Agricultural and Forest Meteorology, 108 ( 2 ), 101 – 112. https://doi.org/10.1016/S0168-1923(01)00233-7 Christensen, T. R., Ekberg, A., Ström, L., Mastepanov, M., Panikov, N., Öquist, M., et al. ( 2003 ). Factors controlling large scale variations in methane emissions from wetlands. Geophysical Research Letters, 30 ( 7 ). 1414. https://doi.org/10.1029/2002GL016848 Ciarlo, E., Conti, M., Bartoloni, N., & Rubio, G. ( 2007 ). The effect of moisture on nitrous oxide emissions from soil and the N 2 O/(N 2 O+N 2 ) ratio under laboratory conditions. Biology and Fertility of Soils, 43 ( 6 ), 675 – 681. https://doi.org/10.1007/s00374-006-0147-9 Colbourn, P., & Dowdell, R. J. ( 1984 ). Denitrification in field soils. Plant and Soil, 76 ( 1–3 ), 213 – 226. https://doi.org/10.1007/BF02205581 Currie, W. S., Goldberg, D. E., Martina, J., Wildova, R., Farrer, E., & Elgersma, K. J. ( 2014 ). Emergence of nutrient‐cycling feedbacks related to plant size and invasion success in a wetland community–ecosystem model. Ecological Modelling, 282, 69 – 82. https://doi.org/10.1016/j.ecolmodel.2014.01.010 IndexNoFollow coastal wetlands methane C sequestration global warming greenhouse gas ecosystem model Geological Sciences Science Article 2021 ftumdeepblue https://doi.org/10.1029/2021JG00624210.1073/pnas.081019310510.1046/j.1365-2486.2003.00569.x10.2134/jeq2006.003810.1111/gcb.1346710.1038/nature1316410.5194/gmd-7-981-201410.1111/j.1600-0889.2007.00309.x10.1073/pnas.101146410810.1016/j.orggeochem.2004.10.00 2023-07-31T21:14:25Z Wetlands impact global warming by regulating the atmospheric exchange of greenhouse gases (GHGs), including carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). We investigated GHG emissions in the Great Lakes coastal wetlands across various hydrologic, temperature, and nitrogen (N) inflow regimes using a process‐based simulation model. We found the emission of CH4, N2O, and sequestration of C (i.e., negative net ecosystem exchange, NEE) in our simulations were all positively related to water residence time and N inflow, primarily due to greater plant productivity and N uptake, which facilitated greater C and N cycling rates in the model. Water level scenarios also had an effect on GHG exchanges by moderating the transitions between aerobic and anaerobic conditions. Temperature effects on GHGs were minimal compared with other factors. The net sustained‐flux global warming potential (SGWP; i.e., sum SGWP of CH4, N2O, and NEE) of wetlands on 20‐year and 100‐year time horizons were both primarily driven by CH4 emissions and strongly controlled by the tradeoffs between CH4 emission and CO2 sequestration, with a negligible amount of simulated N2O emissions. Future research could include model enhancements to provide increased process‐level details on the aerobic‐anaerobic transitions or the direct effects of plants on mediating GHG exchanges. Field studies addressing the interaction of N inflows and water residence time at appropriately large scales are needed to test the complex interactions revealed by our modeling study. Our results highlight the previously under‐appreciated role of nitrogen and water residence time in modulating SGWP in coastal wetlands.Plain Language SummaryWetlands impact global warming by emitting carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) to the atmosphere, but can absorb these greenhouse gases (GHGs). In our study, we investigated GHG emission in the Great Lakes coastal wetlands under different hydrologic, temperature, and nitrogen (N) inflow regimes using a ... Article in Journal/Newspaper Arctic University of Michigan: Deep Blue Journal of Animal Ecology 90 10 2348 2361