Calving Multiplier Effect Controlled by Melt Undercut Geometry

Quantifying the impact of submarine melting on calving is central to understanding the response of marine‐terminating glaciers to ocean forcing. Modeling and observational studies suggest the potential for submarine melting to amplify calving (the calving multiplier effect), but there is little cons...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Earth Surface
Main Authors: Slater, D. A., Benn, D. I., Cowton, T. R., Bassis, J. N., Todd, J. A.
Format: Article in Journal/Newspaper
Language:unknown
Published: Wiley Periodicals, Inc. 2021
Subjects:
Online Access:https://hdl.handle.net/2027.42/168459
https://doi.org/10.1029/2021JF006191
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/168459
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic melt‐undercutting
parameterization
Greenland ice sheet
tidewater glaciers
calving
submarine melting
Geological Sciences
Science
spellingShingle melt‐undercutting
parameterization
Greenland ice sheet
tidewater glaciers
calving
submarine melting
Geological Sciences
Science
Slater, D. A.
Benn, D. I.
Cowton, T. R.
Bassis, J. N.
Todd, J. A.
Calving Multiplier Effect Controlled by Melt Undercut Geometry
topic_facet melt‐undercutting
parameterization
Greenland ice sheet
tidewater glaciers
calving
submarine melting
Geological Sciences
Science
description Quantifying the impact of submarine melting on calving is central to understanding the response of marine‐terminating glaciers to ocean forcing. Modeling and observational studies suggest the potential for submarine melting to amplify calving (the calving multiplier effect), but there is little consensus as to under what conditions this occurs. Here, by viewing a marine‐terminating glacier as an elastic beam, we propose an analytical basis for understanding the presence or absence of the calving multiplier effect. We show that as a terminus becomes undercut it becomes more susceptible to both serac failure (calving only of ice that is undercut, driven by vertical imbalance) and rotational failure (full‐thickness calving of ice behind the grounding line, driven by rotational imbalance). By deriving analytical stress thresholds for these two forms of calving, we suggest that the dominant of the two calving styles is determined principally by the shape of melt‐undercutting. Uniform undercutting extending from the bed to the waterline promotes serac failure and no multiplier effect, while glaciers experiencing linear undercutting that is greatest at the bed and zero at the waterline are more likely to experience rotational failure and a multiplier effect. Our study offers a quantitative framework for understanding where and when the calving multiplier effect occurs, and, therefore, a route to parameterizing the effect in ice sheet‐scale models.Key PointsAn elastic beam model is used to analyze calving driven by melt‐undercutting at tidewater glaciersThe presence of a calving multiplier effect is found to be sensitive to the shape of melt‐undercuttingThe approach offers a promising route to parameterizing calving driven by melt‐undercutting in large‐scale ice sheet models Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/168459/1/jgrf21393.pdf http://deepblue.lib.umich.edu/bitstream/2027.42/168459/2/2021JF006191-sup-0001-Supporting_Information_SI-S01.pdf ...
format Article in Journal/Newspaper
author Slater, D. A.
Benn, D. I.
Cowton, T. R.
Bassis, J. N.
Todd, J. A.
author_facet Slater, D. A.
Benn, D. I.
Cowton, T. R.
Bassis, J. N.
Todd, J. A.
author_sort Slater, D. A.
title Calving Multiplier Effect Controlled by Melt Undercut Geometry
title_short Calving Multiplier Effect Controlled by Melt Undercut Geometry
title_full Calving Multiplier Effect Controlled by Melt Undercut Geometry
title_fullStr Calving Multiplier Effect Controlled by Melt Undercut Geometry
title_full_unstemmed Calving Multiplier Effect Controlled by Melt Undercut Geometry
title_sort calving multiplier effect controlled by melt undercut geometry
publisher Wiley Periodicals, Inc.
publishDate 2021
url https://hdl.handle.net/2027.42/168459
https://doi.org/10.1029/2021JF006191
geographic Greenland
geographic_facet Greenland
genre glacier
Greenland
Ice Sheet
Journal of Glaciology
The Cryosphere
Tidewater
genre_facet glacier
Greenland
Ice Sheet
Journal of Glaciology
The Cryosphere
Tidewater
op_relation Slater, D. A.; Benn, D. I.; Cowton, T. R.; Bassis, J. N.; Todd, J. A. (2021). "Calving Multiplier Effect Controlled by Melt Undercut Geometry." Journal of Geophysical Research: Earth Surface 126(7): n/a-n/a.
2169-9003
2169-9011
https://hdl.handle.net/2027.42/168459
doi:10.1029/2021JF006191
Journal of Geophysical Research: Earth Surface
Slater, D. A., Goldberg, D. N., Nienow, P. W., & Cowton, T. R. ( 2016 ). Scalings for submarine melting at tidewater glaciers from buoyant plume theory. Journal of Physical Oceanography, 46 ( 6 ), 1839 – 1855. https://doi.org/10.1175/JPO-D-15-0132.1
Rignot, E., Fenty, I., Xu, Y., Cai, C., & Kemp, C. ( 2015 ). Undercutting of marine‐terminating glaciers in West Greenland. Geophysical Research Letters, 42 ( 14 ), 5909 – 5917. https://doi.org/10.1002/2015GL064236
Ryan, J. C., Hubbard, A. L., Box, J. E., Todd, J., Christoffersen, P., Carr, J. R., et al. ( 2015 ). UAV photogrammetry and structure from motion to assess calving dynamics at Store Glacier, a large outlet draining the Greenland ice sheet. The Cryosphere, 9 ( 1 ), 1 – 11. https://doi.org/10.5194/tc-9-1-2015
Sayag, R., & Worster, M. G. ( 2011 ). Elastic response of a grounded ice sheet coupled to a floating ice shelf. Physical Review E, 84 ( 3 ), 036111. https://doi.org/10.1103/PhysRevE.84.036111
Sayag, R., & Worster, M. G. ( 2013 ). Elastic dynamics and tidal migration of grounding lines modify subglacial lubrication and melting. Geophysical Research Letters, 40 ( 22 ), 5877 – 5881. https://doi.org/10.1002/2013GL057942
Schild, K. M., & Hamilton, G. S. ( 2013 ). Seasonal variations of outlet glacier terminus position in Greenland. Journal of Glaciology, 59 ( 216 ), 759 – 770. https://doi.org/10.3189/2013JoG12J238
Sergienko, O. V. ( 2010 ). Elastic response of floating glacier ice to impact of long‐period ocean waves. Journal of Geophysical Research, 115 ( F4 ). https://doi.org/10.1029/2010JF001721
Seroussi, H., Nowicki, S., Payne, A. J., Goelzer, H., Lipscomb, W. H., Abe Ouchi, A., & Zwinger, T. ( 2020 ). ISMIP6 Antarctica: A multi‐model ensemble of the Antarctic ice sheet evolution over the 21st century. The Cryosphere, 14 ( 9 ), 3033 – 3070. https://doi.org/10.5194/tc-2019-324
Shapero, D. N., Joughin, I. R., Poinar, K., Morlighem, M., & Gillet‐Chaulet, F. ( 2016 ). Basal resistance for three of the largest Greenland outlet glaciers. Journal of Geophysical Research: Earth Surface, 121 ( 1 ), 168 – 180. https://doi.org/10.1002/2015JF003643
Slater, D. A., Nienow, P. W., Goldberg, D. N., Cowton, T. R., & Sole, A. J. ( 2017 ). A model for tidewater glacier undercutting by submarine melting. Geophysical Research Letters, 44 ( 5 ), 2360 – 2368. https://doi.org/10.1002/2016GL072374
Slater, D. A., Straneo, F., Das, S. B., Richards, C. G., Wagner, T. J. W., & Nienow, P. W. ( 2018 ). Localized plumes drive front‐wide ocean melting of a Greenlandic tidewater glacier. Geophysical Research Letters, 45 ( 22 ), 12350 – 12358. https://doi.org/10.1029/2018GL080763
Slater, D. A., Straneo, F., Felikson, D., Little, C. M., Goelzer, H., Fettweis, X., & Holte, J. ( 2019 ). Estimating Greenland tidewater glacier retreat driven by submarine melting. The Cryosphere, 13 ( 9 ), 2489 – 2509. https://doi.org/10.5194/tc-13-2489-2019
Straneo, F., & Heimbach, P. ( 2013 ). North Atlantic warming and the retreat of Greenland’s outlet glaciers. Nature, 504, 36 – 43. https://doi.org/10.1038/nature12854
Sutherland, D. A., Jackson, R. H., Kienholz, C., Amundson, J. M., Dryer, W. P., Duncan, D., et al. ( 2019 ). Direct observations of submarine melt and subsurface geometry at a tidewater glacier. Science, 365 ( 6451 ), 369 – 374. https://doi.org/10.1126/science.aax3528
The IMBIE Team. ( 2020 ). Mass balance of the Greenland ice sheet from 1992 to 2018. Nature, 579, 233 – 239. https://doi.org/10.1038/s41586-019-1855-2
Todd, J., & Christoffersen, P. ( 2014 ). Are seasonal calving dynamics forced by buttressing from ice melange or undercutting by melting? Outcomes from full‐Stokes simulations of Store glacier, West Greenland. The Cryosphere, 8 ( 6 ), 2353 – 2365. https://doi.org/10.5194/tc-8-2353-2014
Todd, J., Christoffersen, P., Zwinger, T., Råback, P., & Benn, D. I. ( 2019 ). Sensitivity of a calving glacier to ice–ocean interactions under climate change: New insights from a 3‐D full‐Stokes model. The Cryosphere, 13 ( 6 ), 1681 – 1694. https://doi.org/10.5194/tc-13-1681-2019
Todd, J., Christoffersen, P., Zwinger, T., Raback, P., Chauche, N., Benn, D., et al. ( 2018 ). A full‐stokes 3D calving model applied to a large Greenlandic glacier. Journal of Geophysical Research: Earth Surface, 123 ( 3 ), 410 – 432. https://doi.org/10.1002/2017JF004349
Ultee, L., Meyer, C., & Minchew, B. ( 2020 ). Tensile strength of glacial ice deduced from observations of the 2015 eastern Skaftá cauldron collapse, Vatnajökull ice cap, Iceland. Journal of Glaciology, 66, 1024 – 1033. https://doi.org/10.1017/jog.2020.65
Vallot, D., Åström, J., Zwinger, T., Pettersson, R., Everett, A., Benn, D. I., et al. ( 2018 ). Effects of undercutting and sliding on calving: A global approach applied to Kronebreen, Svalbard. The Cryosphere, 12 ( 2 ), 609 – 625. https://doi.org/10.5194/tc-12-609-2018
van den Broeke, M. R., Enderlin, E. M., Howat, I. M., Kuipers Munneke, P., Noel, B. P. Y., Berg, van de, W. J., et al. ( 2016 ). On the recent contribution of the Greenland ice sheet to sea level change. The Cryosphere, 10 ( 5 ), 1933 – 1946. https://doi.org/10.5194/tc-10-1933-2016
van Dongen, E. C. H., Åström, J. A., Jouvet, G., Todd, J., Benn, D. I., & Funk, M. ( 2020 ). Numerical modeling shows increased fracturing due to melt‐undercutting prior to major calving at Bowdoin Glacier. Frontiers in Earth Science, 8, 253. https://doi.org/10.3389/feart.2020.00253
Vaughan, D. G. ( 1995 ). Tidal flexure at ice shelf margins. Journal of Geophysical Research: Solid Earth, 100 ( B4 ), 6213 – 6224. https://doi.org/10.1029/94JB02467
Wagner, T. J. W., James, T. D., Murray, T., & Vella, D. ( 2016 ). On the role of buoyant flexure in glacier calving. Geophysical Research Letters, 43 ( 1 ), 232 – 240. https://doi.org/10.1002/2015GL067247
Wagner, T. J. W., Straneo, F., Richards, C. G., Slater, D. A., Stevens, L. A., Das, S. B., & Singh, H. ( 2019 ). Large spatial variations in the flux balance along the front of a Greenland tidewater glacier. The Cryosphere, 13 ( 3 ), 911 – 925. https://doi.org/10.5194/tc-13-911-2019
Xu, Y., Rignot, E., Fenty, I., Menemenlis, D., & Flexas, M. M. ( 2013 ). Subaqueous melting of Store Glacier, West Greenland from three‐dimensional, high‐resolution numerical modeling and ocean observations. Geophysical Research Letters, 40 ( 17 ), 4648 – 4653. https://doi.org/10.1002/grl.50825
Åström, J. A., Vallot, D., Schäfer, M., Welty, E. Z., O’Neel, S., Bartholomaus, T. C., et al. ( 2014 ). Termini of calving glaciers as self‐organized critical systems. Nature Geoscience, 7, 874 – 878. https://doi.org/10.1038/ngeo2290
Amundson, J. M., Fahnestock, M., Truffer, M., Brown, J., Lüthi, M. P., & Motyka, R. J. ( 2010 ). Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbrae, Greenland. Journal of Geophysical Research, 115, F01005. https://doi.org/10.1029/2009JF001405
Aschwanden, A., Fahnestock, M. A., Truffer, M., Brinkerhoff, D. J., Hock, R., Khroulev, C., et al. ( 2019 ). Contribution of the Greenland ice sheet to sea level over the next millennium. Science Advances, 5 ( 6 ), eaav9396. https://doi.org/10.1126/sciadv.aav9396
Bartholomaus, T. C., Larsen, C. F., & O’Neel, S. ( 2013 ). Does calving matter? Evidence for significant submarine melt. Earth and Planetary Science Letters, 380, 21 – 30. https://doi.org/10.1016/j.epsl.2013.08.014
Bassis, J. N., & Walker, C. C. ( 2012 ). Upper and lower limits on the stability of calving glaciers from the yield strength envelope of ice. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 468 ( 2140 ), 913 – 931. https://doi.org/10.1098/rspa.2011.0422
Benn, D. I., Astrom, J., Zwinger, T., Todd, J., Nick, F. M., Cook, S., et al. ( 2017 ). Melt‐under‐cutting and buoyancy‐driven calving from tidewater glaciers: New insights from discrete element and continuum model simulations. Journal of Glaciology, 63 ( 240 ), 691 – 702. https://doi.org/10.1017/jog.2017.41
Benn, D. I., Cowton, T., Todd, J., & Luckman, A. ( 2017 ). Glacier calving in Greenland. Current Climate Change Reports, 3, 282 – 290. https://doi.org/10.1007/s40641-017-0070-1
Benn, D. I., Warren, C. R., & Mottram, R. H. ( 2007 ). Calving processes and the dynamics of calving glaciers. Earth‐Science Reviews, 82 ( 3–4 ), 143 – 179. https://doi.org/10.1016/j.earscirev.2007.02.002
Burton, J. C., Amundson, J. M., Cassotto, R., Kuo, C.‐C., & Dennin, M. ( 2018 ). Quantifying flow and stress in ice mélange, the world’s largest granular material. Proceedings of the National Academy of Sciences, 115 ( 20 ), 5105 – 5110. https://doi.org/10.1073/pnas.1715136115
Carroll, D., Sutherland, D. A., Hudson, B., Moon, T., Catania, G. A., Shroyer, E. L., et al. ( 2016 ). The impact of glacier geometry on meltwater plume structure and submarine melt in Greenland fjords. Geophysical Research Letters, 43 ( 18 ), 9739 – 9748. https://doi.org/10.1002/2016GL070170
Catania, G. A., Stearns, L. A., Moon, T. A., Enderlin, E. M., & Jackson, R. H. ( 2020 ). Future evolution of Greenland’s marine‐terminating outlet glaciers. Journal of Geophysical Research: Earth Surface, 125 ( 2 ). https://doi.org/10.1029/2018JF004873
Cook, S., Rutt, I. C., Murray, T., Luckman, A., Zwinger, T., Selmes, N., et al. ( 2014 ). Modelling environmental influences on calving at Helheim Glacier in eastern Greenland. The Cryosphere, 8 ( 3 ), 827 – 841. https://doi.org/10.5194/tc-8-827-2014
Cowton, T. R., Todd, J. A., & Benn, D. I. ( 2019 ). Sensitivity of tidewater glaciers to submarine melting governed by plume locations. Geophysical Research Letters, 46 ( 20 ), 11219 – 11227. https://doi.org/10.1029/2019GL084215
De Andrés, E., Slater, D. A., Straneo, F., Otero, J., Das, S., & Navarro, F. ( 2020 ). Surface emergence of glacial plumes determined by fjord stratification. The Cryosphere, 14 ( 6 ), 1951 – 1969. https://doi.org/10.5194/tc-14-1951-2020
Fried, M. J., Carroll, D., Catania, G. A., Sutherland, D. A., Stearns, L. A., Shroyer, E. L., & Nash, J. D. ( 2019 ). Distinct frontal ablation processes drive heterogeneous submarine terminus morphology. Geophysical Research Letters, 46 ( 21 ), 12083 – 12091. https://doi.org/10.1029/2019GL083980
Goelzer, H., Nowicki, S., Payne, A., Larour, E., Seroussi, H., Lipscomb, W. H., & van den Broeke, M. ( 2020 ). The future sea‐level contribution of the Greenland ice sheet: A multi‐model ensemble study of ISMIP6. The Cryosphere, 14 ( 9 ), 3071 – 3096. https://doi.org/10.5194/tc-2019-319
Hanson, B., & Hooke, R. L. ( 2000 ). Glacier calving: A numerical model of forces in the calving‐speed/water‐depth relation. Journal of Glaciology, 46 ( 153 ), 188 – 196. https://doi.org/10.3189/172756500781832792
Hock, R., Bliss, A., Marzeion, B., Giesen, R. H., Hirabayashi, Y., Huss, M., et al. ( 2019 ). GlacierMIP – A model intercomparison of global‐scale glacier mass‐balance models and projections. Journal of Glaciology, 65 ( 251 ), 453 – 467. https://doi.org/10.1017/jog.2019.22
op_rights IndexNoFollow
op_doi https://doi.org/10.1029/2021JF00619110.5194/tc-9-1-201510.1029/2010JF00172110.1126/science.aax352810.1038/s41586-019-1855-210.1002/2017JF00434910.5194/tc-12-609-201810.5194/tc-10-1933-201610.1029/94JB0246710.1038/ngeo229010.1126/sciadv.aav939610.1017/jog.
container_title Journal of Geophysical Research: Earth Surface
container_volume 126
container_issue 7
_version_ 1774717986364456960
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/168459 2023-08-20T04:06:42+02:00 Calving Multiplier Effect Controlled by Melt Undercut Geometry Slater, D. A. Benn, D. I. Cowton, T. R. Bassis, J. N. Todd, J. A. 2021-07 application/pdf https://hdl.handle.net/2027.42/168459 https://doi.org/10.1029/2021JF006191 unknown Wiley Periodicals, Inc. Slater, D. A.; Benn, D. I.; Cowton, T. R.; Bassis, J. N.; Todd, J. A. (2021). "Calving Multiplier Effect Controlled by Melt Undercut Geometry." Journal of Geophysical Research: Earth Surface 126(7): n/a-n/a. 2169-9003 2169-9011 https://hdl.handle.net/2027.42/168459 doi:10.1029/2021JF006191 Journal of Geophysical Research: Earth Surface Slater, D. A., Goldberg, D. N., Nienow, P. W., & Cowton, T. R. ( 2016 ). Scalings for submarine melting at tidewater glaciers from buoyant plume theory. Journal of Physical Oceanography, 46 ( 6 ), 1839 – 1855. https://doi.org/10.1175/JPO-D-15-0132.1 Rignot, E., Fenty, I., Xu, Y., Cai, C., & Kemp, C. ( 2015 ). Undercutting of marine‐terminating glaciers in West Greenland. Geophysical Research Letters, 42 ( 14 ), 5909 – 5917. https://doi.org/10.1002/2015GL064236 Ryan, J. C., Hubbard, A. L., Box, J. E., Todd, J., Christoffersen, P., Carr, J. R., et al. ( 2015 ). UAV photogrammetry and structure from motion to assess calving dynamics at Store Glacier, a large outlet draining the Greenland ice sheet. The Cryosphere, 9 ( 1 ), 1 – 11. https://doi.org/10.5194/tc-9-1-2015 Sayag, R., & Worster, M. G. ( 2011 ). Elastic response of a grounded ice sheet coupled to a floating ice shelf. Physical Review E, 84 ( 3 ), 036111. https://doi.org/10.1103/PhysRevE.84.036111 Sayag, R., & Worster, M. G. ( 2013 ). Elastic dynamics and tidal migration of grounding lines modify subglacial lubrication and melting. Geophysical Research Letters, 40 ( 22 ), 5877 – 5881. https://doi.org/10.1002/2013GL057942 Schild, K. M., & Hamilton, G. S. ( 2013 ). Seasonal variations of outlet glacier terminus position in Greenland. Journal of Glaciology, 59 ( 216 ), 759 – 770. https://doi.org/10.3189/2013JoG12J238 Sergienko, O. V. ( 2010 ). Elastic response of floating glacier ice to impact of long‐period ocean waves. Journal of Geophysical Research, 115 ( F4 ). https://doi.org/10.1029/2010JF001721 Seroussi, H., Nowicki, S., Payne, A. J., Goelzer, H., Lipscomb, W. H., Abe Ouchi, A., & Zwinger, T. ( 2020 ). ISMIP6 Antarctica: A multi‐model ensemble of the Antarctic ice sheet evolution over the 21st century. The Cryosphere, 14 ( 9 ), 3033 – 3070. https://doi.org/10.5194/tc-2019-324 Shapero, D. N., Joughin, I. R., Poinar, K., Morlighem, M., & Gillet‐Chaulet, F. ( 2016 ). Basal resistance for three of the largest Greenland outlet glaciers. Journal of Geophysical Research: Earth Surface, 121 ( 1 ), 168 – 180. https://doi.org/10.1002/2015JF003643 Slater, D. A., Nienow, P. W., Goldberg, D. N., Cowton, T. R., & Sole, A. J. ( 2017 ). A model for tidewater glacier undercutting by submarine melting. Geophysical Research Letters, 44 ( 5 ), 2360 – 2368. https://doi.org/10.1002/2016GL072374 Slater, D. A., Straneo, F., Das, S. B., Richards, C. G., Wagner, T. J. W., & Nienow, P. W. ( 2018 ). Localized plumes drive front‐wide ocean melting of a Greenlandic tidewater glacier. Geophysical Research Letters, 45 ( 22 ), 12350 – 12358. https://doi.org/10.1029/2018GL080763 Slater, D. A., Straneo, F., Felikson, D., Little, C. M., Goelzer, H., Fettweis, X., & Holte, J. ( 2019 ). Estimating Greenland tidewater glacier retreat driven by submarine melting. The Cryosphere, 13 ( 9 ), 2489 – 2509. https://doi.org/10.5194/tc-13-2489-2019 Straneo, F., & Heimbach, P. ( 2013 ). North Atlantic warming and the retreat of Greenland’s outlet glaciers. Nature, 504, 36 – 43. https://doi.org/10.1038/nature12854 Sutherland, D. A., Jackson, R. H., Kienholz, C., Amundson, J. M., Dryer, W. P., Duncan, D., et al. ( 2019 ). Direct observations of submarine melt and subsurface geometry at a tidewater glacier. Science, 365 ( 6451 ), 369 – 374. https://doi.org/10.1126/science.aax3528 The IMBIE Team. ( 2020 ). Mass balance of the Greenland ice sheet from 1992 to 2018. Nature, 579, 233 – 239. https://doi.org/10.1038/s41586-019-1855-2 Todd, J., & Christoffersen, P. ( 2014 ). Are seasonal calving dynamics forced by buttressing from ice melange or undercutting by melting? Outcomes from full‐Stokes simulations of Store glacier, West Greenland. The Cryosphere, 8 ( 6 ), 2353 – 2365. https://doi.org/10.5194/tc-8-2353-2014 Todd, J., Christoffersen, P., Zwinger, T., Råback, P., & Benn, D. I. ( 2019 ). Sensitivity of a calving glacier to ice–ocean interactions under climate change: New insights from a 3‐D full‐Stokes model. The Cryosphere, 13 ( 6 ), 1681 – 1694. https://doi.org/10.5194/tc-13-1681-2019 Todd, J., Christoffersen, P., Zwinger, T., Raback, P., Chauche, N., Benn, D., et al. ( 2018 ). A full‐stokes 3D calving model applied to a large Greenlandic glacier. Journal of Geophysical Research: Earth Surface, 123 ( 3 ), 410 – 432. https://doi.org/10.1002/2017JF004349 Ultee, L., Meyer, C., & Minchew, B. ( 2020 ). Tensile strength of glacial ice deduced from observations of the 2015 eastern Skaftá cauldron collapse, Vatnajökull ice cap, Iceland. Journal of Glaciology, 66, 1024 – 1033. https://doi.org/10.1017/jog.2020.65 Vallot, D., Åström, J., Zwinger, T., Pettersson, R., Everett, A., Benn, D. I., et al. ( 2018 ). Effects of undercutting and sliding on calving: A global approach applied to Kronebreen, Svalbard. The Cryosphere, 12 ( 2 ), 609 – 625. https://doi.org/10.5194/tc-12-609-2018 van den Broeke, M. R., Enderlin, E. M., Howat, I. M., Kuipers Munneke, P., Noel, B. P. Y., Berg, van de, W. J., et al. ( 2016 ). On the recent contribution of the Greenland ice sheet to sea level change. The Cryosphere, 10 ( 5 ), 1933 – 1946. https://doi.org/10.5194/tc-10-1933-2016 van Dongen, E. C. H., Åström, J. A., Jouvet, G., Todd, J., Benn, D. I., & Funk, M. ( 2020 ). Numerical modeling shows increased fracturing due to melt‐undercutting prior to major calving at Bowdoin Glacier. Frontiers in Earth Science, 8, 253. https://doi.org/10.3389/feart.2020.00253 Vaughan, D. G. ( 1995 ). Tidal flexure at ice shelf margins. Journal of Geophysical Research: Solid Earth, 100 ( B4 ), 6213 – 6224. https://doi.org/10.1029/94JB02467 Wagner, T. J. W., James, T. D., Murray, T., & Vella, D. ( 2016 ). On the role of buoyant flexure in glacier calving. Geophysical Research Letters, 43 ( 1 ), 232 – 240. https://doi.org/10.1002/2015GL067247 Wagner, T. J. W., Straneo, F., Richards, C. G., Slater, D. A., Stevens, L. A., Das, S. B., & Singh, H. ( 2019 ). Large spatial variations in the flux balance along the front of a Greenland tidewater glacier. The Cryosphere, 13 ( 3 ), 911 – 925. https://doi.org/10.5194/tc-13-911-2019 Xu, Y., Rignot, E., Fenty, I., Menemenlis, D., & Flexas, M. M. ( 2013 ). Subaqueous melting of Store Glacier, West Greenland from three‐dimensional, high‐resolution numerical modeling and ocean observations. Geophysical Research Letters, 40 ( 17 ), 4648 – 4653. https://doi.org/10.1002/grl.50825 Åström, J. A., Vallot, D., Schäfer, M., Welty, E. Z., O’Neel, S., Bartholomaus, T. C., et al. ( 2014 ). Termini of calving glaciers as self‐organized critical systems. Nature Geoscience, 7, 874 – 878. https://doi.org/10.1038/ngeo2290 Amundson, J. M., Fahnestock, M., Truffer, M., Brown, J., Lüthi, M. P., & Motyka, R. J. ( 2010 ). Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbrae, Greenland. Journal of Geophysical Research, 115, F01005. https://doi.org/10.1029/2009JF001405 Aschwanden, A., Fahnestock, M. A., Truffer, M., Brinkerhoff, D. J., Hock, R., Khroulev, C., et al. ( 2019 ). Contribution of the Greenland ice sheet to sea level over the next millennium. Science Advances, 5 ( 6 ), eaav9396. https://doi.org/10.1126/sciadv.aav9396 Bartholomaus, T. C., Larsen, C. F., & O’Neel, S. ( 2013 ). Does calving matter? Evidence for significant submarine melt. Earth and Planetary Science Letters, 380, 21 – 30. https://doi.org/10.1016/j.epsl.2013.08.014 Bassis, J. N., & Walker, C. C. ( 2012 ). Upper and lower limits on the stability of calving glaciers from the yield strength envelope of ice. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 468 ( 2140 ), 913 – 931. https://doi.org/10.1098/rspa.2011.0422 Benn, D. I., Astrom, J., Zwinger, T., Todd, J., Nick, F. M., Cook, S., et al. ( 2017 ). Melt‐under‐cutting and buoyancy‐driven calving from tidewater glaciers: New insights from discrete element and continuum model simulations. Journal of Glaciology, 63 ( 240 ), 691 – 702. https://doi.org/10.1017/jog.2017.41 Benn, D. I., Cowton, T., Todd, J., & Luckman, A. ( 2017 ). Glacier calving in Greenland. Current Climate Change Reports, 3, 282 – 290. https://doi.org/10.1007/s40641-017-0070-1 Benn, D. I., Warren, C. R., & Mottram, R. H. ( 2007 ). Calving processes and the dynamics of calving glaciers. Earth‐Science Reviews, 82 ( 3–4 ), 143 – 179. https://doi.org/10.1016/j.earscirev.2007.02.002 Burton, J. C., Amundson, J. M., Cassotto, R., Kuo, C.‐C., & Dennin, M. ( 2018 ). Quantifying flow and stress in ice mélange, the world’s largest granular material. Proceedings of the National Academy of Sciences, 115 ( 20 ), 5105 – 5110. https://doi.org/10.1073/pnas.1715136115 Carroll, D., Sutherland, D. A., Hudson, B., Moon, T., Catania, G. A., Shroyer, E. L., et al. ( 2016 ). The impact of glacier geometry on meltwater plume structure and submarine melt in Greenland fjords. Geophysical Research Letters, 43 ( 18 ), 9739 – 9748. https://doi.org/10.1002/2016GL070170 Catania, G. A., Stearns, L. A., Moon, T. A., Enderlin, E. M., & Jackson, R. H. ( 2020 ). Future evolution of Greenland’s marine‐terminating outlet glaciers. Journal of Geophysical Research: Earth Surface, 125 ( 2 ). https://doi.org/10.1029/2018JF004873 Cook, S., Rutt, I. C., Murray, T., Luckman, A., Zwinger, T., Selmes, N., et al. ( 2014 ). Modelling environmental influences on calving at Helheim Glacier in eastern Greenland. The Cryosphere, 8 ( 3 ), 827 – 841. https://doi.org/10.5194/tc-8-827-2014 Cowton, T. R., Todd, J. A., & Benn, D. I. ( 2019 ). Sensitivity of tidewater glaciers to submarine melting governed by plume locations. Geophysical Research Letters, 46 ( 20 ), 11219 – 11227. https://doi.org/10.1029/2019GL084215 De Andrés, E., Slater, D. A., Straneo, F., Otero, J., Das, S., & Navarro, F. ( 2020 ). Surface emergence of glacial plumes determined by fjord stratification. The Cryosphere, 14 ( 6 ), 1951 – 1969. https://doi.org/10.5194/tc-14-1951-2020 Fried, M. J., Carroll, D., Catania, G. A., Sutherland, D. A., Stearns, L. A., Shroyer, E. L., & Nash, J. D. ( 2019 ). Distinct frontal ablation processes drive heterogeneous submarine terminus morphology. Geophysical Research Letters, 46 ( 21 ), 12083 – 12091. https://doi.org/10.1029/2019GL083980 Goelzer, H., Nowicki, S., Payne, A., Larour, E., Seroussi, H., Lipscomb, W. H., & van den Broeke, M. ( 2020 ). The future sea‐level contribution of the Greenland ice sheet: A multi‐model ensemble study of ISMIP6. The Cryosphere, 14 ( 9 ), 3071 – 3096. https://doi.org/10.5194/tc-2019-319 Hanson, B., & Hooke, R. L. ( 2000 ). Glacier calving: A numerical model of forces in the calving‐speed/water‐depth relation. Journal of Glaciology, 46 ( 153 ), 188 – 196. https://doi.org/10.3189/172756500781832792 Hock, R., Bliss, A., Marzeion, B., Giesen, R. H., Hirabayashi, Y., Huss, M., et al. ( 2019 ). GlacierMIP – A model intercomparison of global‐scale glacier mass‐balance models and projections. Journal of Glaciology, 65 ( 251 ), 453 – 467. https://doi.org/10.1017/jog.2019.22 IndexNoFollow melt‐undercutting parameterization Greenland ice sheet tidewater glaciers calving submarine melting Geological Sciences Science Article 2021 ftumdeepblue https://doi.org/10.1029/2021JF00619110.5194/tc-9-1-201510.1029/2010JF00172110.1126/science.aax352810.1038/s41586-019-1855-210.1002/2017JF00434910.5194/tc-12-609-201810.5194/tc-10-1933-201610.1029/94JB0246710.1038/ngeo229010.1126/sciadv.aav939610.1017/jog. 2023-07-31T21:01:39Z Quantifying the impact of submarine melting on calving is central to understanding the response of marine‐terminating glaciers to ocean forcing. Modeling and observational studies suggest the potential for submarine melting to amplify calving (the calving multiplier effect), but there is little consensus as to under what conditions this occurs. Here, by viewing a marine‐terminating glacier as an elastic beam, we propose an analytical basis for understanding the presence or absence of the calving multiplier effect. We show that as a terminus becomes undercut it becomes more susceptible to both serac failure (calving only of ice that is undercut, driven by vertical imbalance) and rotational failure (full‐thickness calving of ice behind the grounding line, driven by rotational imbalance). By deriving analytical stress thresholds for these two forms of calving, we suggest that the dominant of the two calving styles is determined principally by the shape of melt‐undercutting. Uniform undercutting extending from the bed to the waterline promotes serac failure and no multiplier effect, while glaciers experiencing linear undercutting that is greatest at the bed and zero at the waterline are more likely to experience rotational failure and a multiplier effect. Our study offers a quantitative framework for understanding where and when the calving multiplier effect occurs, and, therefore, a route to parameterizing the effect in ice sheet‐scale models.Key PointsAn elastic beam model is used to analyze calving driven by melt‐undercutting at tidewater glaciersThe presence of a calving multiplier effect is found to be sensitive to the shape of melt‐undercuttingThe approach offers a promising route to parameterizing calving driven by melt‐undercutting in large‐scale ice sheet models Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/168459/1/jgrf21393.pdf http://deepblue.lib.umich.edu/bitstream/2027.42/168459/2/2021JF006191-sup-0001-Supporting_Information_SI-S01.pdf ... Article in Journal/Newspaper glacier Greenland Ice Sheet Journal of Glaciology The Cryosphere Tidewater University of Michigan: Deep Blue Greenland Journal of Geophysical Research: Earth Surface 126 7