Seasonally Variable Aquifer Discharge and Cooler Climate in Bermuda During the Last Interglacial Revealed by Subannual Clumped Isotope Analysis

Faunal analog reconstructions suggest that Last Interglacial (MIS 5e) sea surface temperatures were cooler around Bermuda and in the Caribbean than modern climate. Here we describe new and revised clumped isotope measurements of Cittarium pica fossil shells supporting previous findings of cooler tha...

Full description

Bibliographic Details
Published in:Paleoceanography and Paleoclimatology
Main Authors: Zhang, Jade Z., Petersen, Sierra V., Winkelstern, Ian Z., Lohmann, Kyger C.
Format: Article in Journal/Newspaper
Language:unknown
Published: Wiley Periodicals, Inc. 2021
Subjects:
Online Access:https://hdl.handle.net/2027.42/167776
https://doi.org/10.1029/2020PA004145
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/167776
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic freshwater influence
last interglacial
paleoclimate
subannual clumped isotope
Bermuda
Geological Sciences
Science
spellingShingle freshwater influence
last interglacial
paleoclimate
subannual clumped isotope
Bermuda
Geological Sciences
Science
Zhang, Jade Z.
Petersen, Sierra V.
Winkelstern, Ian Z.
Lohmann, Kyger C.
Seasonally Variable Aquifer Discharge and Cooler Climate in Bermuda During the Last Interglacial Revealed by Subannual Clumped Isotope Analysis
topic_facet freshwater influence
last interglacial
paleoclimate
subannual clumped isotope
Bermuda
Geological Sciences
Science
description Faunal analog reconstructions suggest that Last Interglacial (MIS 5e) sea surface temperatures were cooler around Bermuda and in the Caribbean than modern climate. Here we describe new and revised clumped isotope measurements of Cittarium pica fossil shells supporting previous findings of cooler than modern temperatures in Bermuda during the Last Interglacial. We resolve temperature and δ18Ow differences between two closely located and apparently coeval sites described in Winkelstern et al. (2017), https://doi.org/10.1002/2016pa003014 through reprocessing raw isotopic data with the updated Brand/IUPAC parameters. New subannual‐resolution clumped isotope data reveal large variations in δ18Ow out of phase with seasonal temperature changes (i.e., lower δ18Ow values in winter). Supported by modern δ18Ow measurements identifying similar processes occurring today, we suggest past variations in coastal δ18Ow were driven by seasonally variable freshwater discharge from a subterranean aquifer beneath the island. Taken together, our results emphasize the importance of δ18Ow in controlling carbonate δ18O, and suggest that typical assumptions of constant δ18Ow should be made cautiously in nearshore settings and can contribute to less accurate reconstructions of paleotemperature.Key PointsBermudan climate during the Last Interglacial period (MIS 5e) was colder than todaySubannual clumped isotope analyses capture seasonal‐scale changes in temperature and water compositionVariable discharge from an underground aquifer affects oxygen isotopic composition of coastal water during MIS 5e and today Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/167776/1/palo21033_am.pdf http://deepblue.lib.umich.edu/bitstream/2027.42/167776/2/palo21033.pdf http://deepblue.lib.umich.edu/bitstream/2027.42/167776/3/2020PA004145-sup-0001-Supporting_Information_SI-S01.pdf
format Article in Journal/Newspaper
author Zhang, Jade Z.
Petersen, Sierra V.
Winkelstern, Ian Z.
Lohmann, Kyger C.
author_facet Zhang, Jade Z.
Petersen, Sierra V.
Winkelstern, Ian Z.
Lohmann, Kyger C.
author_sort Zhang, Jade Z.
title Seasonally Variable Aquifer Discharge and Cooler Climate in Bermuda During the Last Interglacial Revealed by Subannual Clumped Isotope Analysis
title_short Seasonally Variable Aquifer Discharge and Cooler Climate in Bermuda During the Last Interglacial Revealed by Subannual Clumped Isotope Analysis
title_full Seasonally Variable Aquifer Discharge and Cooler Climate in Bermuda During the Last Interglacial Revealed by Subannual Clumped Isotope Analysis
title_fullStr Seasonally Variable Aquifer Discharge and Cooler Climate in Bermuda During the Last Interglacial Revealed by Subannual Clumped Isotope Analysis
title_full_unstemmed Seasonally Variable Aquifer Discharge and Cooler Climate in Bermuda During the Last Interglacial Revealed by Subannual Clumped Isotope Analysis
title_sort seasonally variable aquifer discharge and cooler climate in bermuda during the last interglacial revealed by subannual clumped isotope analysis
publisher Wiley Periodicals, Inc.
publishDate 2021
url https://hdl.handle.net/2027.42/167776
https://doi.org/10.1029/2020PA004145
genre Arctic
genre_facet Arctic
op_relation Zhang, Jade Z.; Petersen, Sierra V.; Winkelstern, Ian Z.; Lohmann, Kyger C. (2021). "Seasonally Variable Aquifer Discharge and Cooler Climate in Bermuda During the Last Interglacial Revealed by Subannual Clumped Isotope Analysis." Paleoceanography and Paleoclimatology 36(6): n/a-n/a.
2572-4517
2572-4525
https://hdl.handle.net/2027.42/167776
doi:10.1029/2020PA004145
Paleoceanography and Paleoclimatology
Saenger, C., Affek, H. P., Felis, T., Thiagarajan, N., Lough, J. M., & Holcomb, M. ( 2012 ). Carbonate clumped isotope variability in shallow water corals: Temperature dependence and growth‐related vital effects. Geochimica et Cosmochimica Acta, 99, 224 – 242. https://doi.org/10.1016/j.gca.2012.09.035
Petersen, S. V., Winkelstern, I. Z., Lohmann, K. C., & Meyer, K. W. ( 2016 ). The effects of Porapak trap temperature on δ 18 O, δ 13 C, and Δ 47 values in preparing samples for clumped isotope analysis. Rapid Communications in Mass Spectrometry, 30 ( 1 ), 199 – 208. https://doi.org/10.1002/rcm.7438
Robertson, R. ( 2003 ). The edible West Indian “whelk” Cittarium pica (Gastropoda: Trochidae): Natural history with new observations. Proceedings of the Academy of Natural Sciences of Philadelphia, 153, 27 – 47. https://doi.org/10.1635/0097-3157(2003)153[0027:tewiwc]2.0.co;2
Rosenheim, B. E., Tang, J., & Fernandez, A. ( 2013 ). Measurement of multiply substituted isotopologues (‘clumped isotopes’) of CO 2 using a 5 kV compact isotope ratio mass spectrometer: Performance, reference frame, and carbonate paleothermometry. Rapid Communications in Mass Spectrometry, 27, 1847 – 1857. https://doi.org/10.1002/rcm.6634
Rowe, M. ( 1984 ). The freshwater "Central Lens" of Bermuda. Journal of Hydrology, 73, 165 – 176. https://doi.org/10.1016/0022-1694(84)90038-6
Rowe, M. P., Wainer, K. A. I., Bristow, C. S., & Thomas, A. L. ( 2014 ). Anomalous MIS 7 sea level recorded on Bermuda. Quaternary Science Reviews, 90 ( C ), 47 – 59. https://doi.org/10.1016/j.quascirev.2014.02.012
Sanchez Goni, M. F., Bakker, P., Desprat, S., Carlson, A. E., Van Meerbeeck, C. J., Peyron, O., et al. ( 2012 ). European climate optimum and enhanced Greenland melt during the Last Interglacial. Geology, 40 ( 7 ), 627 – 630. https://doi.org/10.1130/G32908.1
Schmidt, M. W., Spero, H. J., & Lea, D. W. ( 2004 ). Links between salinity variation in the Caribbean and North Atlantic thermohaline circulation. Nature, 428, 160 – 163. https://doi.org/10.1038/nature02346
Schöne, B. R., Freyre Castro, A. D., Fiebig, J., Houk, S. D., Oschmann, W., & Kröncke, I. ( 2004 ). Sea surface water temperatures over the period 1884–1983 reconstructed from oxygen isotope ratios of a bivalve mollusk shell (Arctica islandica, southern North Sea). Palaeogeography, Palaeoclimatology, Palaeoecology, 212 ( 3–4 ), 215 – 232. https://doi.org/10.1016/j.palaeo.2004.05.024
Stolper, D. A., & Eiler, J. M. ( 2015 ). The kinetics of solid‐state isotope‐exchange reactions for clumped isotopes: A study of inorganic calcites and apatites from natural and experimental samples. American Journal of Science, 315 ( 5 ), 363 – 411. https://doi.org/10.2475/05.2015.01
Tao, K., Robbins, J. A., Grossman, E. L., & O’Dea, A. ( 2013 ). Quantifying upwelling and freshening in nearshore tropical American environments using stable isotopes in modern gastropods. BMS, 89 ( 4 ), 815 – 835. https://doi.org/10.5343/bms.2012.1065
Thiagarajan, N., Adkins, J., & Eiler, J. ( 2011 ). Carbonate clumped isotope thermometry of deep‐sea corals and implications for vital effects. Geochimica et Cosmochimica Acta, 75 ( 16 ), 4416 – 4425. https://doi.org/10.1016/j.gca.2011.05.004
Tripati, A. K., Eagle, R. A., Thiagarajan, N., Gagnon, A. C., Bauch, H., Halloran, P. R., & Eiler, J. M. ( 2010 ). 13 C‐ 18 O isotope signatures and ‘clumped isotope’ thermometry in foraminifera and coccoliths. Geochimica et Cosmochimica Acta, 74 ( 20 ), 5697 – 5717. https://doi.org/10.1016/j.gca.2010.07.006
Tripati, A., Zachos, J., Marincovich, L., Jr, & Bice, K. ( 2001 ). Late Paleocene Arctic coastal climate inferred from molluscan stable and radiogenic isotope ratios. Palaeogeography, Palaeoclimatology, Palaeoecology, 170, 101 – 113. https://doi.org/10.1016/s0031-0182(01)00230-9
Turney, C. S. M., & Jones, R. T. ( 2010 ). Does the Agulhas Current amplify global temperatures during super‐interglacials? Journal of Quaternary Science, 25 ( 6 ), 839 – 843. https://doi.org/10.1002/jqs.1423
Vacher, H. L. ( 1978 ). Hydrogeology of Bermuda ‐ Significance of an across‐the‐island variation in permeability. Journal of Hydrology, 39, 207 – 226. https://doi.org/10.1016/0022-1694(78)90001-x
Vacher, H. L., & Rowe, M. P. ( 1997 ). Geology and Hydrogeology of Bermuda. Developments in Sedimentology, 54, 35 – 90.
Vacher, H. L., & Wallis, T. N. ( 1992 ). Comparative hydrogeology of fresh‐water lenses of Bermuda and Great Exuma Island, Bahamas. Ground Water, 30, 15 – 20. https://doi.org/10.1111/j.1745-6584.1992.tb00806.x
van Hengstum, P. J., & Scott, D. B. ( 2012 ). Sea‐level rise and coastal circulation controlled Holocene groundwater development in Bermuda and caused a meteoric lens to collapse 1600years ago. Marine Micropaleontology, 90–91, 29 – 43. https://doi.org/10.1016/j.marmicro.2012.02.007
Walker, S. E. ( 1994 ). Biological Remanie: Gastropod fossils used by the living terrestrial hermit crab, coenobita clypeatus, on Bermuda. Palaios, 9, 403 – 412. https://doi.org/10.2307/3515058
Wanamaker, A. D., Jr, Kreutz, K. J., Borns, H. W., Jr., Introne, D. S., Feindel, S., & Barber, B. J. ( 2006 ). An aquaculture‐based method for calibrated bivalve isotope paleothermometry. Geochemistry, Geophysics, Geosystems, 7, Q09011. https://doi.org/10.1029/2005GC001189
Wanamaker, A. D., Jr, Kreutz, K. J., Schöne, B. R., Pettigrew, N., Borns, H. W., Introne, D. S., et al. ( 2008 ). Coupled North Atlantic slope water forcing on Gulf of Maine temperatures over the past millennium. Climate Dynamics, 31 ( 2–3 ), 183 – 194. https://doi.org/10.1007/s00382-007-0344-8
Whitaker, F. F., & Smart, P. L. ( 1990 ). Active circulation of saline ground waters in carbonate platforms: Evidence from the Great Bahama Bank. Geology, 18, 200 – 203. https://doi.org/10.1130/0091-7613(1990)018<0200:acosgw>2.3.co;2
Winkelstern, I. Z., Rowe, M. P., Lohmann, K. C., Defliese, W. F., Petersen, S. V., & Brewer, A. W. ( 2017 ). Meltwater pulse recorded in Last Interglacial mollusk shells from Bermuda. Paleoceanography, 32 ( 2 ), 132 – 145. https://doi.org/10.1002/2016PA003014
Winkelstern, I. Z., Surge, D., & Hudley, J. ( 2013 ). Multiproxy sclerochronological evidence for Plio‐Pleistocene regional warmth: United States mid‐Atlantic coastal plain. Palaios, 28, 649 – 660.
Epstein, S., Buchsbaum, R., Lowenstam, H. A., & Urey, H. C. ( 1953 ). Revised carbonate‐water isotopic temperature scale. Geological Society of America Bulletin, 64 ( 11 ), 1315 – 1326. https://doi.org/10.1130/0016-7606(1953)64[1315:RCITS]2.0.CO;2
Ghosh, P., Adkins, J., Affek, H., Balta, B., Guo, W., Schauble, E. A., et al. ( 2006 ). 13 C‐ 18 O bonds in carbonate minerals: A new kind of paleothermometer. Geochimica et Cosmochimica Acta, 70 ( 6 ), 1439 – 1456. https://doi.org/10.1016/j.gca.2005.11.014
Grossman, E. L., & Ku, T.‐L. ( 1986 ). Oxygen and carbon isotope fractionation in biogenic aragonite: Temperature effects. Chemical Geology: Isotope Geoscience section, 59, 59 – 74. https://doi.org/10.1016/0168-9622(86)90057-6
Vollbrecht, R. ( 1990 ). Marine and meteoric diagenesis of submarine pleistocene carbonates from the Bermuda carbonate platform. Carbonates and Evaporites, 5, 1 – 84. https://doi.org/10.1007/bf03174319
Affek, H. P. ( 2012 ). Clumped isotope paleothermometry: Principles, applications, and challenges. Paleontological Society Papers, 18, 101 – 114. https://doi.org/10.1017/s1089332600002576
Bajnai, D., Fiebig, J., Tomašových, A., Milner Garcia, S., Rollion‐Bard, C., Raddatz, J., et al. ( 2018 ). Assessing kinetic fractionation in brachiopod calcite using clumped isotopes. Scientific Reports, 8, 1 – 12. https://doi.org/10.1038/s41598-017-17353-7
Beddows, P. A., Smart, P. L., Whitaker, F. F., & Smith, S. L. ( 2007 ). Decoupled fresh‐saline groundwater circulation of a coastal carbonate aquifer: Spatial patterns of temperature and specific electrical conductivity. Journal of Hydrology, 346 ( 1–2 ), 18 – 32. https://doi.org/10.1016/j.jhydrol.2007.08.013
Brocas, W. M., Felis, T., & Mudelsee, M. ( 2019 ). Tropical Atlantic cooling and freshening in the middle of the last interglacial from coral proxy records. Geophysical Research Letters, 46, 8289 – 8299. https://doi.org/10.1029/2019GL083094
Buick, D. P., & Ivany, L. C. ( 2004 ). 100 years in the dark: Extreme longevity of Eocene bivalves from Antarctica. Geology, 32 ( 10 ), 921 – 924. https://doi.org/10.1130/G20796.1
Burchell, M., Cannon, A., Hallmann, N., Schwarcz, H. P., & Schöne, B. R. ( 2013 ). Refining estimates for the season of shellfish collection on the pacific northwest coast: Applying high‐resolution stable oxygen isotope analysis and sclerochronology. Archaeometry, 55 ( 2 ), 258 – 276. https://doi.org/10.1111/j.1475-4754.2012.00684.x
CLIMAP ( 1984 ). The Last Interglacial Ocean. Quaternary Research, 21, 123 – 224
Coates, K. A., Fourqurean, J. W., Kenworthy, W. J., Logan, A., Manuel, S. A., & Smith, S. R. ( 2013 ). Introduction to Bermuda: Geology, oceanography and climate. In C. R. C. Sheppard (Ed.). Coral reefs of the United Kingdom overseas territories (pp. 115 – 133 ). Dordrecht. Springer Netherlands.
Defliese, W. F., Hren, M. T., & Lohmann, K. C. ( 2015 ). Compositional and temperature effects of phosphoric acid fractionation on Δ 47 analysis and implications for discrepant calibrations. Chemical Geology, 396 ( C ), 51 – 60. https://doi.org/10.1016/j.chemgeo.2014.12.018
Defliese, W. F., & Lohmann, K. C. ( 2016 ). Evaluation of meteoric calcite cements as a proxy material for mass‐47 clumped isotope thermometry. Geochimica et Cosmochimica Acta, 173 ( C ), 126 – 141. https://doi.org/10.1016/j.gca.2015.10.022
Dennis, K. J., Affek, H. P., Passey, B. H., Schrag, D. P., & Eiler, J. M. ( 2011 ). Defining an absolute reference frame for ’clumped’ isotope studies of CO2. Geochimica et Cosmochimica Acta, 75 ( 22 ), 7117 – 7131. https://doi.org/10.1016/j.gca.2011.09.025
Eagle, R. A., Eiler, J. M., Tripati, A. K., Ries, J. B., Freitas, P. S., Hiebenthal, C., et al. ( 2013 ). The influence of temperature and seawater carbonate saturation state on 13C‐18O bond ordering in bivalve mollusks. Biogeosciences, 10 ( 7 ), 4591 – 4606. https://doi.org/10.5194/bg-10-4591-2013
Eagle, R. A., Schauble, E. A., Tripati, A. K., Tütken, T., Hulbert, R. C., & Eiler, J. M. ( 2010 ). Body temperatures of modern and extinct vertebrates from 13C‐18O bond abundances in bioapatite. Proceedings of the National Academy of Sciences, 107 ( 23 ), 10377 – 10382. https://doi.org/10.1073/pnas.0911115107/-/DCSupplemental
Eiler, J. M. ( 2007 ). "Clumped‐isotope" geochemistry‐The study of naturally‐occurring, multiply‐substituted isotopologues. Earth and Planetary Science Letters, 262 ( 3–4 ), 309 – 327. https://doi.org/10.1016/j.epsl.2007.08.020
Eiler, J. M. ( 2011 ). Paleoclimate reconstruction using carbonate clumped isotope thermometry. Quaternary Science Reviews, 30 ( 25–26 ), 3575 – 3588. https://doi.org/10.1016/j.quascirev.2011.09.001
op_rights IndexNoFollow
op_doi https://doi.org/10.1029/2020PA00414510.1635/0097-3157(2003)153[0027:tewiwc]2.0.co;210.1016/0022-1694(84)90038-610.1130/G32908.110.1016/0022-1694(78)90001-x10.2307/351505810.1007/s00382-007-0344-810.1016/j.gca.2005.11.01410.1007/bf0317431910.1017/s10893326
container_title Paleoceanography and Paleoclimatology
container_volume 36
container_issue 6
_version_ 1774713611302731776
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/167776 2023-08-20T04:03:12+02:00 Seasonally Variable Aquifer Discharge and Cooler Climate in Bermuda During the Last Interglacial Revealed by Subannual Clumped Isotope Analysis Zhang, Jade Z. Petersen, Sierra V. Winkelstern, Ian Z. Lohmann, Kyger C. 2021-06 application/pdf https://hdl.handle.net/2027.42/167776 https://doi.org/10.1029/2020PA004145 unknown Wiley Periodicals, Inc. Springer Netherlands Zhang, Jade Z.; Petersen, Sierra V.; Winkelstern, Ian Z.; Lohmann, Kyger C. (2021). "Seasonally Variable Aquifer Discharge and Cooler Climate in Bermuda During the Last Interglacial Revealed by Subannual Clumped Isotope Analysis." Paleoceanography and Paleoclimatology 36(6): n/a-n/a. 2572-4517 2572-4525 https://hdl.handle.net/2027.42/167776 doi:10.1029/2020PA004145 Paleoceanography and Paleoclimatology Saenger, C., Affek, H. P., Felis, T., Thiagarajan, N., Lough, J. M., & Holcomb, M. ( 2012 ). Carbonate clumped isotope variability in shallow water corals: Temperature dependence and growth‐related vital effects. Geochimica et Cosmochimica Acta, 99, 224 – 242. https://doi.org/10.1016/j.gca.2012.09.035 Petersen, S. V., Winkelstern, I. Z., Lohmann, K. C., & Meyer, K. W. ( 2016 ). The effects of Porapak trap temperature on δ 18 O, δ 13 C, and Δ 47 values in preparing samples for clumped isotope analysis. Rapid Communications in Mass Spectrometry, 30 ( 1 ), 199 – 208. https://doi.org/10.1002/rcm.7438 Robertson, R. ( 2003 ). The edible West Indian “whelk” Cittarium pica (Gastropoda: Trochidae): Natural history with new observations. Proceedings of the Academy of Natural Sciences of Philadelphia, 153, 27 – 47. https://doi.org/10.1635/0097-3157(2003)153[0027:tewiwc]2.0.co;2 Rosenheim, B. E., Tang, J., & Fernandez, A. ( 2013 ). Measurement of multiply substituted isotopologues (‘clumped isotopes’) of CO 2 using a 5 kV compact isotope ratio mass spectrometer: Performance, reference frame, and carbonate paleothermometry. Rapid Communications in Mass Spectrometry, 27, 1847 – 1857. https://doi.org/10.1002/rcm.6634 Rowe, M. ( 1984 ). The freshwater "Central Lens" of Bermuda. Journal of Hydrology, 73, 165 – 176. https://doi.org/10.1016/0022-1694(84)90038-6 Rowe, M. P., Wainer, K. A. I., Bristow, C. S., & Thomas, A. L. ( 2014 ). Anomalous MIS 7 sea level recorded on Bermuda. Quaternary Science Reviews, 90 ( C ), 47 – 59. https://doi.org/10.1016/j.quascirev.2014.02.012 Sanchez Goni, M. F., Bakker, P., Desprat, S., Carlson, A. E., Van Meerbeeck, C. J., Peyron, O., et al. ( 2012 ). European climate optimum and enhanced Greenland melt during the Last Interglacial. Geology, 40 ( 7 ), 627 – 630. https://doi.org/10.1130/G32908.1 Schmidt, M. W., Spero, H. J., & Lea, D. W. ( 2004 ). Links between salinity variation in the Caribbean and North Atlantic thermohaline circulation. Nature, 428, 160 – 163. https://doi.org/10.1038/nature02346 Schöne, B. R., Freyre Castro, A. D., Fiebig, J., Houk, S. D., Oschmann, W., & Kröncke, I. ( 2004 ). Sea surface water temperatures over the period 1884–1983 reconstructed from oxygen isotope ratios of a bivalve mollusk shell (Arctica islandica, southern North Sea). Palaeogeography, Palaeoclimatology, Palaeoecology, 212 ( 3–4 ), 215 – 232. https://doi.org/10.1016/j.palaeo.2004.05.024 Stolper, D. A., & Eiler, J. M. ( 2015 ). The kinetics of solid‐state isotope‐exchange reactions for clumped isotopes: A study of inorganic calcites and apatites from natural and experimental samples. American Journal of Science, 315 ( 5 ), 363 – 411. https://doi.org/10.2475/05.2015.01 Tao, K., Robbins, J. A., Grossman, E. L., & O’Dea, A. ( 2013 ). Quantifying upwelling and freshening in nearshore tropical American environments using stable isotopes in modern gastropods. BMS, 89 ( 4 ), 815 – 835. https://doi.org/10.5343/bms.2012.1065 Thiagarajan, N., Adkins, J., & Eiler, J. ( 2011 ). Carbonate clumped isotope thermometry of deep‐sea corals and implications for vital effects. Geochimica et Cosmochimica Acta, 75 ( 16 ), 4416 – 4425. https://doi.org/10.1016/j.gca.2011.05.004 Tripati, A. K., Eagle, R. A., Thiagarajan, N., Gagnon, A. C., Bauch, H., Halloran, P. R., & Eiler, J. M. ( 2010 ). 13 C‐ 18 O isotope signatures and ‘clumped isotope’ thermometry in foraminifera and coccoliths. Geochimica et Cosmochimica Acta, 74 ( 20 ), 5697 – 5717. https://doi.org/10.1016/j.gca.2010.07.006 Tripati, A., Zachos, J., Marincovich, L., Jr, & Bice, K. ( 2001 ). Late Paleocene Arctic coastal climate inferred from molluscan stable and radiogenic isotope ratios. Palaeogeography, Palaeoclimatology, Palaeoecology, 170, 101 – 113. https://doi.org/10.1016/s0031-0182(01)00230-9 Turney, C. S. M., & Jones, R. T. ( 2010 ). Does the Agulhas Current amplify global temperatures during super‐interglacials? Journal of Quaternary Science, 25 ( 6 ), 839 – 843. https://doi.org/10.1002/jqs.1423 Vacher, H. L. ( 1978 ). Hydrogeology of Bermuda ‐ Significance of an across‐the‐island variation in permeability. Journal of Hydrology, 39, 207 – 226. https://doi.org/10.1016/0022-1694(78)90001-x Vacher, H. L., & Rowe, M. P. ( 1997 ). Geology and Hydrogeology of Bermuda. Developments in Sedimentology, 54, 35 – 90. Vacher, H. L., & Wallis, T. N. ( 1992 ). Comparative hydrogeology of fresh‐water lenses of Bermuda and Great Exuma Island, Bahamas. Ground Water, 30, 15 – 20. https://doi.org/10.1111/j.1745-6584.1992.tb00806.x van Hengstum, P. J., & Scott, D. B. ( 2012 ). Sea‐level rise and coastal circulation controlled Holocene groundwater development in Bermuda and caused a meteoric lens to collapse 1600years ago. Marine Micropaleontology, 90–91, 29 – 43. https://doi.org/10.1016/j.marmicro.2012.02.007 Walker, S. E. ( 1994 ). Biological Remanie: Gastropod fossils used by the living terrestrial hermit crab, coenobita clypeatus, on Bermuda. Palaios, 9, 403 – 412. https://doi.org/10.2307/3515058 Wanamaker, A. D., Jr, Kreutz, K. J., Borns, H. W., Jr., Introne, D. S., Feindel, S., & Barber, B. J. ( 2006 ). An aquaculture‐based method for calibrated bivalve isotope paleothermometry. Geochemistry, Geophysics, Geosystems, 7, Q09011. https://doi.org/10.1029/2005GC001189 Wanamaker, A. D., Jr, Kreutz, K. J., Schöne, B. R., Pettigrew, N., Borns, H. W., Introne, D. S., et al. ( 2008 ). Coupled North Atlantic slope water forcing on Gulf of Maine temperatures over the past millennium. Climate Dynamics, 31 ( 2–3 ), 183 – 194. https://doi.org/10.1007/s00382-007-0344-8 Whitaker, F. F., & Smart, P. L. ( 1990 ). Active circulation of saline ground waters in carbonate platforms: Evidence from the Great Bahama Bank. Geology, 18, 200 – 203. https://doi.org/10.1130/0091-7613(1990)018<0200:acosgw>2.3.co;2 Winkelstern, I. Z., Rowe, M. P., Lohmann, K. C., Defliese, W. F., Petersen, S. V., & Brewer, A. W. ( 2017 ). Meltwater pulse recorded in Last Interglacial mollusk shells from Bermuda. Paleoceanography, 32 ( 2 ), 132 – 145. https://doi.org/10.1002/2016PA003014 Winkelstern, I. Z., Surge, D., & Hudley, J. ( 2013 ). Multiproxy sclerochronological evidence for Plio‐Pleistocene regional warmth: United States mid‐Atlantic coastal plain. Palaios, 28, 649 – 660. Epstein, S., Buchsbaum, R., Lowenstam, H. A., & Urey, H. C. ( 1953 ). Revised carbonate‐water isotopic temperature scale. Geological Society of America Bulletin, 64 ( 11 ), 1315 – 1326. https://doi.org/10.1130/0016-7606(1953)64[1315:RCITS]2.0.CO;2 Ghosh, P., Adkins, J., Affek, H., Balta, B., Guo, W., Schauble, E. A., et al. ( 2006 ). 13 C‐ 18 O bonds in carbonate minerals: A new kind of paleothermometer. Geochimica et Cosmochimica Acta, 70 ( 6 ), 1439 – 1456. https://doi.org/10.1016/j.gca.2005.11.014 Grossman, E. L., & Ku, T.‐L. ( 1986 ). Oxygen and carbon isotope fractionation in biogenic aragonite: Temperature effects. Chemical Geology: Isotope Geoscience section, 59, 59 – 74. https://doi.org/10.1016/0168-9622(86)90057-6 Vollbrecht, R. ( 1990 ). Marine and meteoric diagenesis of submarine pleistocene carbonates from the Bermuda carbonate platform. Carbonates and Evaporites, 5, 1 – 84. https://doi.org/10.1007/bf03174319 Affek, H. P. ( 2012 ). Clumped isotope paleothermometry: Principles, applications, and challenges. Paleontological Society Papers, 18, 101 – 114. https://doi.org/10.1017/s1089332600002576 Bajnai, D., Fiebig, J., Tomašových, A., Milner Garcia, S., Rollion‐Bard, C., Raddatz, J., et al. ( 2018 ). Assessing kinetic fractionation in brachiopod calcite using clumped isotopes. Scientific Reports, 8, 1 – 12. https://doi.org/10.1038/s41598-017-17353-7 Beddows, P. A., Smart, P. L., Whitaker, F. F., & Smith, S. L. ( 2007 ). Decoupled fresh‐saline groundwater circulation of a coastal carbonate aquifer: Spatial patterns of temperature and specific electrical conductivity. Journal of Hydrology, 346 ( 1–2 ), 18 – 32. https://doi.org/10.1016/j.jhydrol.2007.08.013 Brocas, W. M., Felis, T., & Mudelsee, M. ( 2019 ). Tropical Atlantic cooling and freshening in the middle of the last interglacial from coral proxy records. Geophysical Research Letters, 46, 8289 – 8299. https://doi.org/10.1029/2019GL083094 Buick, D. P., & Ivany, L. C. ( 2004 ). 100 years in the dark: Extreme longevity of Eocene bivalves from Antarctica. Geology, 32 ( 10 ), 921 – 924. https://doi.org/10.1130/G20796.1 Burchell, M., Cannon, A., Hallmann, N., Schwarcz, H. P., & Schöne, B. R. ( 2013 ). Refining estimates for the season of shellfish collection on the pacific northwest coast: Applying high‐resolution stable oxygen isotope analysis and sclerochronology. Archaeometry, 55 ( 2 ), 258 – 276. https://doi.org/10.1111/j.1475-4754.2012.00684.x CLIMAP ( 1984 ). The Last Interglacial Ocean. Quaternary Research, 21, 123 – 224 Coates, K. A., Fourqurean, J. W., Kenworthy, W. J., Logan, A., Manuel, S. A., & Smith, S. R. ( 2013 ). Introduction to Bermuda: Geology, oceanography and climate. In C. R. C. Sheppard (Ed.). Coral reefs of the United Kingdom overseas territories (pp. 115 – 133 ). Dordrecht. Springer Netherlands. Defliese, W. F., Hren, M. T., & Lohmann, K. C. ( 2015 ). Compositional and temperature effects of phosphoric acid fractionation on Δ 47 analysis and implications for discrepant calibrations. Chemical Geology, 396 ( C ), 51 – 60. https://doi.org/10.1016/j.chemgeo.2014.12.018 Defliese, W. F., & Lohmann, K. C. ( 2016 ). Evaluation of meteoric calcite cements as a proxy material for mass‐47 clumped isotope thermometry. Geochimica et Cosmochimica Acta, 173 ( C ), 126 – 141. https://doi.org/10.1016/j.gca.2015.10.022 Dennis, K. J., Affek, H. P., Passey, B. H., Schrag, D. P., & Eiler, J. M. ( 2011 ). Defining an absolute reference frame for ’clumped’ isotope studies of CO2. Geochimica et Cosmochimica Acta, 75 ( 22 ), 7117 – 7131. https://doi.org/10.1016/j.gca.2011.09.025 Eagle, R. A., Eiler, J. M., Tripati, A. K., Ries, J. B., Freitas, P. S., Hiebenthal, C., et al. ( 2013 ). The influence of temperature and seawater carbonate saturation state on 13C‐18O bond ordering in bivalve mollusks. Biogeosciences, 10 ( 7 ), 4591 – 4606. https://doi.org/10.5194/bg-10-4591-2013 Eagle, R. A., Schauble, E. A., Tripati, A. K., Tütken, T., Hulbert, R. C., & Eiler, J. M. ( 2010 ). Body temperatures of modern and extinct vertebrates from 13C‐18O bond abundances in bioapatite. Proceedings of the National Academy of Sciences, 107 ( 23 ), 10377 – 10382. https://doi.org/10.1073/pnas.0911115107/-/DCSupplemental Eiler, J. M. ( 2007 ). "Clumped‐isotope" geochemistry‐The study of naturally‐occurring, multiply‐substituted isotopologues. Earth and Planetary Science Letters, 262 ( 3–4 ), 309 – 327. https://doi.org/10.1016/j.epsl.2007.08.020 Eiler, J. M. ( 2011 ). Paleoclimate reconstruction using carbonate clumped isotope thermometry. Quaternary Science Reviews, 30 ( 25–26 ), 3575 – 3588. https://doi.org/10.1016/j.quascirev.2011.09.001 IndexNoFollow freshwater influence last interglacial paleoclimate subannual clumped isotope Bermuda Geological Sciences Science Article 2021 ftumdeepblue https://doi.org/10.1029/2020PA00414510.1635/0097-3157(2003)153[0027:tewiwc]2.0.co;210.1016/0022-1694(84)90038-610.1130/G32908.110.1016/0022-1694(78)90001-x10.2307/351505810.1007/s00382-007-0344-810.1016/j.gca.2005.11.01410.1007/bf0317431910.1017/s10893326 2023-07-31T21:01:53Z Faunal analog reconstructions suggest that Last Interglacial (MIS 5e) sea surface temperatures were cooler around Bermuda and in the Caribbean than modern climate. Here we describe new and revised clumped isotope measurements of Cittarium pica fossil shells supporting previous findings of cooler than modern temperatures in Bermuda during the Last Interglacial. We resolve temperature and δ18Ow differences between two closely located and apparently coeval sites described in Winkelstern et al. (2017), https://doi.org/10.1002/2016pa003014 through reprocessing raw isotopic data with the updated Brand/IUPAC parameters. New subannual‐resolution clumped isotope data reveal large variations in δ18Ow out of phase with seasonal temperature changes (i.e., lower δ18Ow values in winter). Supported by modern δ18Ow measurements identifying similar processes occurring today, we suggest past variations in coastal δ18Ow were driven by seasonally variable freshwater discharge from a subterranean aquifer beneath the island. Taken together, our results emphasize the importance of δ18Ow in controlling carbonate δ18O, and suggest that typical assumptions of constant δ18Ow should be made cautiously in nearshore settings and can contribute to less accurate reconstructions of paleotemperature.Key PointsBermudan climate during the Last Interglacial period (MIS 5e) was colder than todaySubannual clumped isotope analyses capture seasonal‐scale changes in temperature and water compositionVariable discharge from an underground aquifer affects oxygen isotopic composition of coastal water during MIS 5e and today Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/167776/1/palo21033_am.pdf http://deepblue.lib.umich.edu/bitstream/2027.42/167776/2/palo21033.pdf http://deepblue.lib.umich.edu/bitstream/2027.42/167776/3/2020PA004145-sup-0001-Supporting_Information_SI-S01.pdf Article in Journal/Newspaper Arctic University of Michigan: Deep Blue Paleoceanography and Paleoclimatology 36 6