ICESat‐2 Meltwater Depth Estimates: Application to Surface Melt on Amery Ice Shelf, East Antarctica

Surface melting occurs during summer on the Antarctic and Greenland ice sheets, but the volume of stored surface meltwater has been difficult to quantify due to a lack of accurate depth estimates. NASA’s ICESat‐2 laser altimeter brings a new capability: photons penetrate water and are reflected from...

Full description

Bibliographic Details
Published in:Geophysical Research Letters
Main Authors: Fricker, Helen Amanda, Arndt, Philipp, Brunt, Kelly M., Datta, Rajashree Tri, Fair, Zachary, Jasinski, Michael F., Kingslake, Jonathan, Magruder, Lori A., Moussavi, Mahsa, Pope, Allen, Spergel, Julian J., Stoll, Jeremy D., Wouters, Bert
Format: Article in Journal/Newspaper
Language:unknown
Published: NASA Goddard Space Flight Center 2021
Subjects:
Online Access:https://hdl.handle.net/2027.42/167549
https://doi.org/10.1029/2020GL090550
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/167549
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic Antarctica
ice shelves
ICESat‐2
surface melt
Greenland
Geological Sciences
Science
spellingShingle Antarctica
ice shelves
ICESat‐2
surface melt
Greenland
Geological Sciences
Science
Fricker, Helen Amanda
Arndt, Philipp
Brunt, Kelly M.
Datta, Rajashree Tri
Fair, Zachary
Jasinski, Michael F.
Kingslake, Jonathan
Magruder, Lori A.
Moussavi, Mahsa
Pope, Allen
Spergel, Julian J.
Stoll, Jeremy D.
Wouters, Bert
ICESat‐2 Meltwater Depth Estimates: Application to Surface Melt on Amery Ice Shelf, East Antarctica
topic_facet Antarctica
ice shelves
ICESat‐2
surface melt
Greenland
Geological Sciences
Science
description Surface melting occurs during summer on the Antarctic and Greenland ice sheets, but the volume of stored surface meltwater has been difficult to quantify due to a lack of accurate depth estimates. NASA’s ICESat‐2 laser altimeter brings a new capability: photons penetrate water and are reflected from both the water and the underlying ice; the difference provides a depth estimate. ICESat‐2 sampled Amery Ice Shelf on January 2, 2019 and showed double returns from surface depressions, indicating meltwater. For four melt features, we compared depth estimates from eight algorithms: six based on ICESat‐2 and two from coincident Landsat‐8 and Sentinel‐2 imagery. All algorithms successfully identified surface water at the same locations. Algorithms based on ICESat‐2 produced the most accurate depths; the image‐based algorithms underestimated depths (by 30%–70%). This implies that ICESat‐2 depths can be used to tune image‐based algorithms, moving us closer to quantifying stored meltwater volumes across Antarctica and Greenland.Plain Language SummarySummer surface melting on Antarctica’s ice shelves is a small component of overall ice sheet mass loss but can be important for individual ice shelves and may increase as the climate warms. However, the volume of meltwater has been difficult to monitor because depth estimates are challenging. NASA’s ICESat‐2 laser altimetry mission brings a new capability to this problem. ICESat‐2 532 nm photons (green light) are able to pass through water and reflect from both the water surface and the underlying ice surface; the difference in elevation provides meltwater depth estimates. In this pilot study, we compared depths from eight algorithms (six ICESat‐2 and two image based) over four Amery Ice Shelf meltwater lakes for an ICESat‐2 pass in early January 2019. The ICESat‐2 algorithms all produced more reliable depth estimates, and the image‐based algorithms underestimated the depths. This implies that ICESat‐2 water depths can be used to tune image‐based depth retrieval algorithms, ...
format Article in Journal/Newspaper
author Fricker, Helen Amanda
Arndt, Philipp
Brunt, Kelly M.
Datta, Rajashree Tri
Fair, Zachary
Jasinski, Michael F.
Kingslake, Jonathan
Magruder, Lori A.
Moussavi, Mahsa
Pope, Allen
Spergel, Julian J.
Stoll, Jeremy D.
Wouters, Bert
author_facet Fricker, Helen Amanda
Arndt, Philipp
Brunt, Kelly M.
Datta, Rajashree Tri
Fair, Zachary
Jasinski, Michael F.
Kingslake, Jonathan
Magruder, Lori A.
Moussavi, Mahsa
Pope, Allen
Spergel, Julian J.
Stoll, Jeremy D.
Wouters, Bert
author_sort Fricker, Helen Amanda
title ICESat‐2 Meltwater Depth Estimates: Application to Surface Melt on Amery Ice Shelf, East Antarctica
title_short ICESat‐2 Meltwater Depth Estimates: Application to Surface Melt on Amery Ice Shelf, East Antarctica
title_full ICESat‐2 Meltwater Depth Estimates: Application to Surface Melt on Amery Ice Shelf, East Antarctica
title_fullStr ICESat‐2 Meltwater Depth Estimates: Application to Surface Melt on Amery Ice Shelf, East Antarctica
title_full_unstemmed ICESat‐2 Meltwater Depth Estimates: Application to Surface Melt on Amery Ice Shelf, East Antarctica
title_sort icesat‐2 meltwater depth estimates: application to surface melt on amery ice shelf, east antarctica
publisher NASA Goddard Space Flight Center
publishDate 2021
url https://hdl.handle.net/2027.42/167549
https://doi.org/10.1029/2020GL090550
long_lat ENVELOPE(-94.063,-94.063,56.565,56.565)
ENVELOPE(71.000,71.000,-69.750,-69.750)
geographic Antarctic
The Antarctic
East Antarctica
Greenland
Amery
Amery Ice Shelf
geographic_facet Antarctic
The Antarctic
East Antarctica
Greenland
Amery
Amery Ice Shelf
genre Amery Ice Shelf
Annals of Glaciology
Antarc*
Antarctic
Antarctica
Antarctica Journal
East Antarctica
Greenland
Ice Sheet
Ice Shelf
Ice Shelves
Journal of Glaciology
Polar Record
The Cryosphere
The Cryosphere Discussions
genre_facet Amery Ice Shelf
Annals of Glaciology
Antarc*
Antarctic
Antarctica
Antarctica Journal
East Antarctica
Greenland
Ice Sheet
Ice Shelf
Ice Shelves
Journal of Glaciology
Polar Record
The Cryosphere
The Cryosphere Discussions
op_relation Fricker, Helen Amanda; Arndt, Philipp; Brunt, Kelly M.; Datta, Rajashree Tri; Fair, Zachary; Jasinski, Michael F.; Kingslake, Jonathan; Magruder, Lori A.; Moussavi, Mahsa; Pope, Allen; Spergel, Julian J.; Stoll, Jeremy D.; Wouters, Bert (2021). "ICESat‐2 Meltwater Depth Estimates: Application to Surface Melt on Amery Ice Shelf, East Antarctica." Geophysical Research Letters 48(8): n/a-n/a.
0094-8276
1944-8007
https://hdl.handle.net/2027.42/167549
doi:10.1029/2020GL090550
Geophysical Research Letters
Rignot, E., Jacobs, S., Mouginot, J., & Scheuchl, B. ( 2013 ). Ice‐shelf melting around Antarctica. Science, 341 ( 6143 ), 266 – 270.
Jasinski, M., Stoll, J., Hancock, D., Robbins, J., Nattala, J., Pavelsky, T., et al. ( 2019 ). Algorithm theoretical basis document (ATBD) for Inland water data products, ATL13, version 2 ( 99 pp.). Greenbelt, MD: NASA Goddard Space Flight Center. Release Date October 1, 2019. https://doi.org/10.5067/3H94RJ271O0C
Kingslake, J., Ely, J. C., Das, I., & Bell, R. E. ( 2017 ). Widespread movement of meltwater onto and across Antarctic ice shelves. Nature, 544 ( 7650 ), 349 – 352.
Lai, C., Kingslake, J., Wearing, M. G., Chen, P.‐H. C., Gentine, P. H. L., Spergel, J. J., & van Wessem, J. M. ( 2020 ). Vulnerability of Antarctica’s ice shelves to meltwater‐driven fracture. Nature, 584, 574 – 578. https://doi.org/10.1038/s41586-020-2627-8
Lythe, M. B., & Vaughan, D. G. ( 2001 ). Bedmap: A new ice thickness and subglacial topographic model of Antarctica. Journal of Geophysical Research, 106 ( B6 ), 11335 – 11351.
Magruder, L., Brunt, K. M., Neumann, T., Klotz, B., & Alonzo, M. ( 2019 ). Passive ground‐based optical techniques for monitoring the on‐orbit ICESat‐2 1 altimeter geolocation and footprint diameter. Earth and Space Science (in review).
Magruder, M., Fricker, H. A., Farrell, S. L., Brunt, K. M., Gardner, A., Hancock, D., et al. ( 2019 ). New Earth orbiter provides a sharper look at a changing planet. Eos, 100. https://doi.org/10.1029/2019EO133233
Martino, A. J., Neumann, T. A., Kurtz, N. T., & McLennan, D. ( 2019 ). ICESat‐2 mission overview and early performance. In Sensors, systems, and next‐generation satellites XXIII (Vol. 11151, Strasbourg, France: pp. 111510C ). International Society for Optics and Photonics.
Mellor, M., & McKinnon, G. ( 1960 ). The Amery Ice Shelf and its hinterland. Polar Record, 10 ( 64 ), 30 – 34.
Moussavi, M., Pope, A., Halberstadt, A. R. W., Trusel, L. D., Cioffi, L., & Abdalati, W. ( 2020 ). Antarctic supraglacial lake detection using Landsat 8 and Sentinel‐2 imagery: Toward continental generation of lake volumes. Remote Sensing, 12 ( 1 ), 134.
Neuenschwander, A. L., & Pitts, K. ( 2019 ). The ATL08 land and vegetation product for the ICESat‐2 mission. Remote Sensing of the Environment, 221, 247 – 259. https://doi.org/10.1016/j.rse.2018.11.005
Neumann, T. A., Brenner, A., Hancock, D., Robbins, J., Saba, J., Harbeck, K., et al. ( 2020 ). ATLAS/ICESat‐2 L2A global geolocated photon data, version 3. Granule: ATL03_20190102184312_00810210_003_01.h5. Boulder, CO: NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/ATLAS/ATL03.003
Neumann, T. A., Martino, A. J., Markus, T., Bae, S., Bock, M. R., Brenner, A. C., et al. ( 2019 ). The ice, cloud, and land elevation satellite–2 mission: A global geolocated photon product derived from the Advanced Topographic Laser Altimeter System. Remote Sensing of Environment, 233, 111325.
Paolo, F. S., Fricker, H. A., & Padman, L. ( 2015 ). Volume loss from Antarctic ice shelves is accelerating. Science, 348 ( 6232 ), 327 – 331.
Parrish, C., Magruder, L. A., Neuenschwander, A., Forfinski‐Sarkozi, N., Alonzo, M., & Jasinski, M. ( 2019 ). Validation of ICESat‐2 ATLAS bathymetry and analysis of ATLAS’s bathymetric mapping performance. Remote Sensing, 11 ( 14 ), 111352. https://doi.org/10.3390/rs11141634
Phillips, H. A. ( 1998 ). Surface meltstreams on the Amery Ice Shelf, East Antarctica. Annals of Glaciology, 27, 177 – 181.
Pope, A. ( 2016 ). Reproducibly estimating and evaluating supraglacial lake depth with Landsat 8 and other multispectral sensors. Earth and Space Science, 3, 176 – 188. https://doi.org/10.1002/2015EA000125
Pope, A., Scambos, T., Moussavi, M., Tedesco, M., Willis, M., Shean, D., & Grigsby, S. ( 2016 ). Estimating supraglacial lake depth in West Greenland using Landsat 8 and comparison with other multispectral methods. The Cryosphere, 10 ( 1 ), 15 – 27. https://doi.org/10.5194/tc-10-15-2016
Rott, H., Skvarca, P., & Nagler, T. ( 1996 ). Rapid collapse of northern Larsen ice shelf, Antarctica. Science, 271 ( 5250 ), 788 – 792.
Scambos, T., Hulbe, C., & Fahnestock, M. ( 2003 ). Climate‐induced ice shelf disintegration in the Antarctic Peninsula. Antarctic Peninsula climate variability: Historical and paleoenvironmental perspectives. Antarctic Research Series, 79, 79 – 92.
Shepherd, A., Wingham, D., Payne, T., & Skvarca, P. ( 2003 ). Larsen ice shelf has progressively thinned. Science, 302 ( 5646 ), 856 – 859.
Smith, B., Fricker, H. A., Holschuh, N., Gardner, A. S., Adusumilli, S., Brunt, K. M., et al. ( 2019 ). Land ice height‐retrieval algorithms for NASA’s ICESat‐2 photon‐counting laser altimeter. Remote Sensing of the Environment, 233 ( 111352 ). https://doi.org/10.1016/j.rse.2019.111352
Sneed, W. A., & Hamilton, G. S. ( 2011 ). Validation of a method for determining the depth of glacial melt ponds using satellite imagery. Annals of Glaciology, 52 ( 15–22 ). https://doi.org/10.3189/172756411799096240
Spergel, J., Kingslake, J., Creyts, T., van Wessem, M., & Fricker, H. A. ( 2021 ). Surface meltwater drainage and ponding on the Amery Ice Shelf, East Antarctica, 1973–2019. Journal of Glaciology. https://doi.org/10.1017/jog.2021.46
Stokes, C. R., Sanderson, J. E., Miles, B. W., Jamieson, S. S., & Leeson, A. A. ( 2019 ). Widespread distribution of supraglacial lakes around the margin of the East Antarctic ice sheet. Scientific Reports, 9 ( 1 ), 1 – 14.
Tedesco, M. ( 2007 ). Snowmelt detection over the Greenland ice sheet from SSM/I brightness temperature daily variations. Geophysical Research Letters, 34, L02504. https://doi.org/10.1029/2006GL028466
Tedesco, M., & Steiner, N. ( 2011 ). In‐situ multispectral and bathymetric measurements over a supraglacial lake in western Greenland using a remotely controlled watercraft. The Cryosphere, 5, 445 – 452. https://doi.org/10.5194/tc-5-445-2011
Tinto, K. J., Padman, L., Siddoway, C. S., Springer, S. R., Fricker, H. A., Das, I., et al. ( 2019 ). Ross Ice Shelf response to climate driven by the tectonic imprint on seafloor bathymetry. Nature Geoscience, 12 ( 6 ), 441 – 449.
Trusel, L. D., Frey, K. E., Das, S. B., Karnauskas, K. B., Munneke, P. K., Van Meijgaard, E., et al. ( 2015 ). Divergent trajectories of Antarctic surface melt under two twenty‐first‐century climate scenarios. Nature Geoscience, 6 ( 12 ), 927 – 932.
van den Broeke, M. ( 2005 ). Strong surface melting preceded collapse of Antarctic Peninsula ice shelf. Geophysical Research Letters, 32, L12815. https://doi.org/10.1029/2005GL023247
Williamson, A. G., Banwell, A. F., Willis, I. C., & Arnold, N. S. ( 2018 ). Dual‐satellite (Sentinel‐2 and Landsat 8) remote sensing of supraglacial lakes in Greenland. The Cryosphere, 12, 3045 – 3065.
Zwally, H. J., & Fiegles, S. ( 1994 ). Extent and duration of Antarctic surface melting. Journal of Glaciology, 40 ( 136 ), 463 – 475.
Campello, R. J., Moulavi, D., & Sander, J. ( 2013 ). Density‐based clustering based on hierarchical density estimates. In Pacific‐Asia conference on knowledge discovery and data mining (pp. 160 – 172 ). Berlin/Heidelberg, Germany: Springer.
Adusumilli, S., Fricker, H. A., Medley, B., Padman, L., & Siegfried, M. R. ( 2020 ). Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves. Nature Geoscience, 13, 616 – 620. https://doi.org/10.1038/s41561-020-0616-z
Bell, R. E., Banwell, A. F., Trusel, L. D., & Kingslake, J. ( 2018 ). Antarctic surface hydrology and impacts on ice‐sheet mass balance. Nature Climate Change, 8, 1044 – 1052. https://doi.org/10.1038/s41558-018-0326-3
Brunt, K. M., Neumann, T. A., & Smith, B. E. ( 2019 ). Assessment of ICESat‐2 ice‐sheet surface heights, based on comparisons over the interior of the Antarctic ice sheet. Geophysical Research Letters, 46, 13072 – 13078. https://doi.org/10.1029/2019GL084886
Cook, A. J., & Vaughan, D. G. ( 2010 ). Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years. The Cryosphere, 4 ( 1 ), 77 – 98.
Datta, R. T., & Wouters, B. ( 2021 ). Supraglacial lake bathymetry automatically derived from ICESat‐2 constraining lake depth estimates from multi‐source satellite imagery. The Cryosphere Discuss. [preprint], https://doi.org/10.5194/tc-2021-4
Fair, Z., Flanner, M., Brunt, K. M., Fricker, H. A., & Gardner, A. S. ( 2020 ). Using ICESat‐2 and Operation IceBridge altimetry for supraglacial lake depth retrievals. The Cryosphere Discussions, 14, 4253 – 4263. https://doi.org/10.5194/tc-2020-136
Fricker, H. A., & Padman, L. ( 2012 ). Thirty years of elevation change on Antarctic Peninsula ice shelves from multimission satellite radar altimetry. Journal of Geophysical Research, 117, C02026. https://doi.org/10.1029/2011JC007126
op_rights IndexNoFollow
op_doi https://doi.org/10.1029/2020GL09055010.5067/3H94RJ271O0C10.1029/2019EO13323310.5067/ATLAS/ATL03.00310.1002/2015EA00012510.1016/j.rse.2019.11135210.1029/2006GL02846610.1029/2005GL023247
container_title Geophysical Research Letters
container_volume 48
container_issue 8
_version_ 1774713324017025024
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/167549 2023-08-20T03:59:31+02:00 ICESat‐2 Meltwater Depth Estimates: Application to Surface Melt on Amery Ice Shelf, East Antarctica Fricker, Helen Amanda Arndt, Philipp Brunt, Kelly M. Datta, Rajashree Tri Fair, Zachary Jasinski, Michael F. Kingslake, Jonathan Magruder, Lori A. Moussavi, Mahsa Pope, Allen Spergel, Julian J. Stoll, Jeremy D. Wouters, Bert 2021-04-28 application/pdf https://hdl.handle.net/2027.42/167549 https://doi.org/10.1029/2020GL090550 unknown NASA Goddard Space Flight Center Wiley Periodicals, Inc. Fricker, Helen Amanda; Arndt, Philipp; Brunt, Kelly M.; Datta, Rajashree Tri; Fair, Zachary; Jasinski, Michael F.; Kingslake, Jonathan; Magruder, Lori A.; Moussavi, Mahsa; Pope, Allen; Spergel, Julian J.; Stoll, Jeremy D.; Wouters, Bert (2021). "ICESat‐2 Meltwater Depth Estimates: Application to Surface Melt on Amery Ice Shelf, East Antarctica." Geophysical Research Letters 48(8): n/a-n/a. 0094-8276 1944-8007 https://hdl.handle.net/2027.42/167549 doi:10.1029/2020GL090550 Geophysical Research Letters Rignot, E., Jacobs, S., Mouginot, J., & Scheuchl, B. ( 2013 ). Ice‐shelf melting around Antarctica. Science, 341 ( 6143 ), 266 – 270. Jasinski, M., Stoll, J., Hancock, D., Robbins, J., Nattala, J., Pavelsky, T., et al. ( 2019 ). Algorithm theoretical basis document (ATBD) for Inland water data products, ATL13, version 2 ( 99 pp.). Greenbelt, MD: NASA Goddard Space Flight Center. Release Date October 1, 2019. https://doi.org/10.5067/3H94RJ271O0C Kingslake, J., Ely, J. C., Das, I., & Bell, R. E. ( 2017 ). Widespread movement of meltwater onto and across Antarctic ice shelves. Nature, 544 ( 7650 ), 349 – 352. Lai, C., Kingslake, J., Wearing, M. G., Chen, P.‐H. C., Gentine, P. H. L., Spergel, J. J., & van Wessem, J. M. ( 2020 ). Vulnerability of Antarctica’s ice shelves to meltwater‐driven fracture. Nature, 584, 574 – 578. https://doi.org/10.1038/s41586-020-2627-8 Lythe, M. B., & Vaughan, D. G. ( 2001 ). Bedmap: A new ice thickness and subglacial topographic model of Antarctica. Journal of Geophysical Research, 106 ( B6 ), 11335 – 11351. Magruder, L., Brunt, K. M., Neumann, T., Klotz, B., & Alonzo, M. ( 2019 ). Passive ground‐based optical techniques for monitoring the on‐orbit ICESat‐2 1 altimeter geolocation and footprint diameter. Earth and Space Science (in review). Magruder, M., Fricker, H. A., Farrell, S. L., Brunt, K. M., Gardner, A., Hancock, D., et al. ( 2019 ). New Earth orbiter provides a sharper look at a changing planet. Eos, 100. https://doi.org/10.1029/2019EO133233 Martino, A. J., Neumann, T. A., Kurtz, N. T., & McLennan, D. ( 2019 ). ICESat‐2 mission overview and early performance. In Sensors, systems, and next‐generation satellites XXIII (Vol. 11151, Strasbourg, France: pp. 111510C ). International Society for Optics and Photonics. Mellor, M., & McKinnon, G. ( 1960 ). The Amery Ice Shelf and its hinterland. Polar Record, 10 ( 64 ), 30 – 34. Moussavi, M., Pope, A., Halberstadt, A. R. W., Trusel, L. D., Cioffi, L., & Abdalati, W. ( 2020 ). Antarctic supraglacial lake detection using Landsat 8 and Sentinel‐2 imagery: Toward continental generation of lake volumes. Remote Sensing, 12 ( 1 ), 134. Neuenschwander, A. L., & Pitts, K. ( 2019 ). The ATL08 land and vegetation product for the ICESat‐2 mission. Remote Sensing of the Environment, 221, 247 – 259. https://doi.org/10.1016/j.rse.2018.11.005 Neumann, T. A., Brenner, A., Hancock, D., Robbins, J., Saba, J., Harbeck, K., et al. ( 2020 ). ATLAS/ICESat‐2 L2A global geolocated photon data, version 3. Granule: ATL03_20190102184312_00810210_003_01.h5. Boulder, CO: NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/ATLAS/ATL03.003 Neumann, T. A., Martino, A. J., Markus, T., Bae, S., Bock, M. R., Brenner, A. C., et al. ( 2019 ). The ice, cloud, and land elevation satellite–2 mission: A global geolocated photon product derived from the Advanced Topographic Laser Altimeter System. Remote Sensing of Environment, 233, 111325. Paolo, F. S., Fricker, H. A., & Padman, L. ( 2015 ). Volume loss from Antarctic ice shelves is accelerating. Science, 348 ( 6232 ), 327 – 331. Parrish, C., Magruder, L. A., Neuenschwander, A., Forfinski‐Sarkozi, N., Alonzo, M., & Jasinski, M. ( 2019 ). Validation of ICESat‐2 ATLAS bathymetry and analysis of ATLAS’s bathymetric mapping performance. Remote Sensing, 11 ( 14 ), 111352. https://doi.org/10.3390/rs11141634 Phillips, H. A. ( 1998 ). Surface meltstreams on the Amery Ice Shelf, East Antarctica. Annals of Glaciology, 27, 177 – 181. Pope, A. ( 2016 ). Reproducibly estimating and evaluating supraglacial lake depth with Landsat 8 and other multispectral sensors. Earth and Space Science, 3, 176 – 188. https://doi.org/10.1002/2015EA000125 Pope, A., Scambos, T., Moussavi, M., Tedesco, M., Willis, M., Shean, D., & Grigsby, S. ( 2016 ). Estimating supraglacial lake depth in West Greenland using Landsat 8 and comparison with other multispectral methods. The Cryosphere, 10 ( 1 ), 15 – 27. https://doi.org/10.5194/tc-10-15-2016 Rott, H., Skvarca, P., & Nagler, T. ( 1996 ). Rapid collapse of northern Larsen ice shelf, Antarctica. Science, 271 ( 5250 ), 788 – 792. Scambos, T., Hulbe, C., & Fahnestock, M. ( 2003 ). Climate‐induced ice shelf disintegration in the Antarctic Peninsula. Antarctic Peninsula climate variability: Historical and paleoenvironmental perspectives. Antarctic Research Series, 79, 79 – 92. Shepherd, A., Wingham, D., Payne, T., & Skvarca, P. ( 2003 ). Larsen ice shelf has progressively thinned. Science, 302 ( 5646 ), 856 – 859. Smith, B., Fricker, H. A., Holschuh, N., Gardner, A. S., Adusumilli, S., Brunt, K. M., et al. ( 2019 ). Land ice height‐retrieval algorithms for NASA’s ICESat‐2 photon‐counting laser altimeter. Remote Sensing of the Environment, 233 ( 111352 ). https://doi.org/10.1016/j.rse.2019.111352 Sneed, W. A., & Hamilton, G. S. ( 2011 ). Validation of a method for determining the depth of glacial melt ponds using satellite imagery. Annals of Glaciology, 52 ( 15–22 ). https://doi.org/10.3189/172756411799096240 Spergel, J., Kingslake, J., Creyts, T., van Wessem, M., & Fricker, H. A. ( 2021 ). Surface meltwater drainage and ponding on the Amery Ice Shelf, East Antarctica, 1973–2019. Journal of Glaciology. https://doi.org/10.1017/jog.2021.46 Stokes, C. R., Sanderson, J. E., Miles, B. W., Jamieson, S. S., & Leeson, A. A. ( 2019 ). Widespread distribution of supraglacial lakes around the margin of the East Antarctic ice sheet. Scientific Reports, 9 ( 1 ), 1 – 14. Tedesco, M. ( 2007 ). Snowmelt detection over the Greenland ice sheet from SSM/I brightness temperature daily variations. Geophysical Research Letters, 34, L02504. https://doi.org/10.1029/2006GL028466 Tedesco, M., & Steiner, N. ( 2011 ). In‐situ multispectral and bathymetric measurements over a supraglacial lake in western Greenland using a remotely controlled watercraft. The Cryosphere, 5, 445 – 452. https://doi.org/10.5194/tc-5-445-2011 Tinto, K. J., Padman, L., Siddoway, C. S., Springer, S. R., Fricker, H. A., Das, I., et al. ( 2019 ). Ross Ice Shelf response to climate driven by the tectonic imprint on seafloor bathymetry. Nature Geoscience, 12 ( 6 ), 441 – 449. Trusel, L. D., Frey, K. E., Das, S. B., Karnauskas, K. B., Munneke, P. K., Van Meijgaard, E., et al. ( 2015 ). Divergent trajectories of Antarctic surface melt under two twenty‐first‐century climate scenarios. Nature Geoscience, 6 ( 12 ), 927 – 932. van den Broeke, M. ( 2005 ). Strong surface melting preceded collapse of Antarctic Peninsula ice shelf. Geophysical Research Letters, 32, L12815. https://doi.org/10.1029/2005GL023247 Williamson, A. G., Banwell, A. F., Willis, I. C., & Arnold, N. S. ( 2018 ). Dual‐satellite (Sentinel‐2 and Landsat 8) remote sensing of supraglacial lakes in Greenland. The Cryosphere, 12, 3045 – 3065. Zwally, H. J., & Fiegles, S. ( 1994 ). Extent and duration of Antarctic surface melting. Journal of Glaciology, 40 ( 136 ), 463 – 475. Campello, R. J., Moulavi, D., & Sander, J. ( 2013 ). Density‐based clustering based on hierarchical density estimates. In Pacific‐Asia conference on knowledge discovery and data mining (pp. 160 – 172 ). Berlin/Heidelberg, Germany: Springer. Adusumilli, S., Fricker, H. A., Medley, B., Padman, L., & Siegfried, M. R. ( 2020 ). Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves. Nature Geoscience, 13, 616 – 620. https://doi.org/10.1038/s41561-020-0616-z Bell, R. E., Banwell, A. F., Trusel, L. D., & Kingslake, J. ( 2018 ). Antarctic surface hydrology and impacts on ice‐sheet mass balance. Nature Climate Change, 8, 1044 – 1052. https://doi.org/10.1038/s41558-018-0326-3 Brunt, K. M., Neumann, T. A., & Smith, B. E. ( 2019 ). Assessment of ICESat‐2 ice‐sheet surface heights, based on comparisons over the interior of the Antarctic ice sheet. Geophysical Research Letters, 46, 13072 – 13078. https://doi.org/10.1029/2019GL084886 Cook, A. J., & Vaughan, D. G. ( 2010 ). Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years. The Cryosphere, 4 ( 1 ), 77 – 98. Datta, R. T., & Wouters, B. ( 2021 ). Supraglacial lake bathymetry automatically derived from ICESat‐2 constraining lake depth estimates from multi‐source satellite imagery. The Cryosphere Discuss. [preprint], https://doi.org/10.5194/tc-2021-4 Fair, Z., Flanner, M., Brunt, K. M., Fricker, H. A., & Gardner, A. S. ( 2020 ). Using ICESat‐2 and Operation IceBridge altimetry for supraglacial lake depth retrievals. The Cryosphere Discussions, 14, 4253 – 4263. https://doi.org/10.5194/tc-2020-136 Fricker, H. A., & Padman, L. ( 2012 ). Thirty years of elevation change on Antarctic Peninsula ice shelves from multimission satellite radar altimetry. Journal of Geophysical Research, 117, C02026. https://doi.org/10.1029/2011JC007126 IndexNoFollow Antarctica ice shelves ICESat‐2 surface melt Greenland Geological Sciences Science Article 2021 ftumdeepblue https://doi.org/10.1029/2020GL09055010.5067/3H94RJ271O0C10.1029/2019EO13323310.5067/ATLAS/ATL03.00310.1002/2015EA00012510.1016/j.rse.2019.11135210.1029/2006GL02846610.1029/2005GL023247 2023-07-31T20:41:48Z Surface melting occurs during summer on the Antarctic and Greenland ice sheets, but the volume of stored surface meltwater has been difficult to quantify due to a lack of accurate depth estimates. NASA’s ICESat‐2 laser altimeter brings a new capability: photons penetrate water and are reflected from both the water and the underlying ice; the difference provides a depth estimate. ICESat‐2 sampled Amery Ice Shelf on January 2, 2019 and showed double returns from surface depressions, indicating meltwater. For four melt features, we compared depth estimates from eight algorithms: six based on ICESat‐2 and two from coincident Landsat‐8 and Sentinel‐2 imagery. All algorithms successfully identified surface water at the same locations. Algorithms based on ICESat‐2 produced the most accurate depths; the image‐based algorithms underestimated depths (by 30%–70%). This implies that ICESat‐2 depths can be used to tune image‐based algorithms, moving us closer to quantifying stored meltwater volumes across Antarctica and Greenland.Plain Language SummarySummer surface melting on Antarctica’s ice shelves is a small component of overall ice sheet mass loss but can be important for individual ice shelves and may increase as the climate warms. However, the volume of meltwater has been difficult to monitor because depth estimates are challenging. NASA’s ICESat‐2 laser altimetry mission brings a new capability to this problem. ICESat‐2 532 nm photons (green light) are able to pass through water and reflect from both the water surface and the underlying ice surface; the difference in elevation provides meltwater depth estimates. In this pilot study, we compared depths from eight algorithms (six ICESat‐2 and two image based) over four Amery Ice Shelf meltwater lakes for an ICESat‐2 pass in early January 2019. The ICESat‐2 algorithms all produced more reliable depth estimates, and the image‐based algorithms underestimated the depths. This implies that ICESat‐2 water depths can be used to tune image‐based depth retrieval algorithms, ... Article in Journal/Newspaper Amery Ice Shelf Annals of Glaciology Antarc* Antarctic Antarctica Antarctica Journal East Antarctica Greenland Ice Sheet Ice Shelf Ice Shelves Journal of Glaciology Polar Record The Cryosphere The Cryosphere Discussions University of Michigan: Deep Blue Antarctic The Antarctic East Antarctica Greenland Amery ENVELOPE(-94.063,-94.063,56.565,56.565) Amery Ice Shelf ENVELOPE(71.000,71.000,-69.750,-69.750) Geophysical Research Letters 48 8