Soil Carbon Isotope Values and Paleoprecipitation Reconstruction

Anthropogenic climate change has significant impacts at the ecosystem scale including widespread drought, flooding, and other natural disasters related to precipitation extremes. To contextualize modern climate change, scientists often look to ancient climate changes, such as shifts in ancient preci...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Oceans
Main Authors: Stein, Rebekah A., Sheldon, Nathan D., Smith, Selena Y.
Format: Article in Journal/Newspaper
Language:unknown
Published: Southern Methodist University 2021
Subjects:
Online Access:https://hdl.handle.net/2027.42/167532
https://doi.org/10.1029/2020PA004158
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/167532
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic isotopes
carbon
paleoclimate
precipitation
soil
water
Geological Sciences
Science
spellingShingle isotopes
carbon
paleoclimate
precipitation
soil
water
Geological Sciences
Science
Stein, Rebekah A.
Sheldon, Nathan D.
Smith, Selena Y.
Soil Carbon Isotope Values and Paleoprecipitation Reconstruction
topic_facet isotopes
carbon
paleoclimate
precipitation
soil
water
Geological Sciences
Science
description Anthropogenic climate change has significant impacts at the ecosystem scale including widespread drought, flooding, and other natural disasters related to precipitation extremes. To contextualize modern climate change, scientists often look to ancient climate changes, such as shifts in ancient precipitation ranges. Previous studies have used fossil leaf organic geochemistry and paleosol inorganic chemistry as paleoprecipitation proxies, but have largely ignored the organic soil layer, which acts as a bridge between aboveground biomass and belowground inorganic carbon accumulation, as a potential recorder of precipitation. We investigate the relationship between stable carbon isotope values in soil organic matter (δ13CSOM) and a variety of seasonal and annual climate parameters in modern ecosystems and find a statistically significant relationship between δ13CSOM values and mean annual precipitation (MAP). After testing the relationship between actual and reconstructed precipitation values in modern systems, we test this potential paleoprecipitation proxy in the geologic record by comparing precipitation values reconstructed using δ13CSOM to other reconstructed paleoprecipitation estimates from the same paleosols. This study provides a promising new proxy that can be applied to ecosystems post‐Devonian (∼420 Ma) to the Miocene (∼23 Ma), and in mixed C3/C4 ecosystems in the geologic record with additional paleobotanical and palynological information. It also extends paleoprecipitation reconstruction to more weakly developed paleosol types, such as those lacking B‐ horizons, than previous inorganic proxies and is calibrated for wetter environments.Plain Language SummaryRainfall is very important to plant health and function. When plant material is deposited onto the ground, it becomes soil. This soil retains records of plant chemistry. We tested whether this plant chemistry recorded amount of rainfall over a wide range of environments, and found that soil chemistry does record rainfall. When tested in fossil soils, ...
format Article in Journal/Newspaper
author Stein, Rebekah A.
Sheldon, Nathan D.
Smith, Selena Y.
author_facet Stein, Rebekah A.
Sheldon, Nathan D.
Smith, Selena Y.
author_sort Stein, Rebekah A.
title Soil Carbon Isotope Values and Paleoprecipitation Reconstruction
title_short Soil Carbon Isotope Values and Paleoprecipitation Reconstruction
title_full Soil Carbon Isotope Values and Paleoprecipitation Reconstruction
title_fullStr Soil Carbon Isotope Values and Paleoprecipitation Reconstruction
title_full_unstemmed Soil Carbon Isotope Values and Paleoprecipitation Reconstruction
title_sort soil carbon isotope values and paleoprecipitation reconstruction
publisher Southern Methodist University
publishDate 2021
url https://hdl.handle.net/2027.42/167532
https://doi.org/10.1029/2020PA004158
genre Arctic
Arctic and Alpine Research
genre_facet Arctic
Arctic and Alpine Research
op_relation Stein, Rebekah A.; Sheldon, Nathan D.; Smith, Selena Y. (2021). "Soil Carbon Isotope Values and Paleoprecipitation Reconstruction." Paleoceanography and Paleoclimatology 36(4): n/a-n/a.
2572-4517
2572-4525
https://hdl.handle.net/2027.42/167532
doi:10.1029/2020PA004158
Paleoceanography and Paleoclimatology
Smiley, T. M., Hyland, E. G., Cotton, J. M., & Reynolds, R. E. ( 2018 ). Evidence of early C 4 grasses, habitat heterogeneity, and faunal response during the Miocene Climatic Optimum in the Mojave Region. Palaeogeography, Palaeoclimatology, Palaeoecology, 490, 415 – 430. https://doi.org/10.1016/j.palaeo.2017.11.020
Tipple, B. J., & Pagani, M. ( 2007 ). The early origins of terrestrial C4 photosynthesis. Annual Review of Earth and Planetary Sciences, 35, 435 – 461. https://doi.org/10.1146/annurev.earth.35.031306.140150
Torn, M. S., Lapenis, A. G., Timofeev, A., Fischer, M. L., Babikov, B. V., & Harden, J. W. ( 2002 ). Organic carbon and carbon isotopes in modern and 100‐year‐old‐soil archives of the Russian steppe. Global Change Biology, 8 ( 10 ), 941 – 953. https://doi.org/10.1046/j.1365-2486.2002.00477.x
Townsend, A. R., Vitousek, P. M., Desmarais, D. J., & Tharpe, A. ( 1997 ). Soil carbon pool structure and temperature sensitivity inferred using CO 2 and 13 CO 2 incubation fluxes from five Hawaiian soils. Biogeochemistry, 38 ( 1 ), 1 – 17. https://doi.org/10.1023/a:1017942918708
Trumbore, S. ( 2000 ). Age of soil organic matter and soil respiration: Radiocarbon constraints on belowground C dynamics. Ecological Applications, 10 ( 2 ), 399 – 411. https://doi.org/10.1890/1051-0761(2000)010[0399:aosoma]2.0.co;2
USDA Natural Resources Conservation Service. ( 2017 ). ArcGIS soil survey. Retrieved from https://www.arcgis.com/home/item.html?id=204d94c9b1374de9a21574c9efa31164
Van der Merwe, N. J., & Medina, E. ( 1991 ). The canopy effect, carbon isotope ratios and foodwebs in Amazonia. Journal of Archaeological Science, 18 ( 3 ), 249 – 259. https://doi.org/10.1016/0305-4403(91)90064-v
Volkoff, B., & Cerri, C. C. ( 1987 ). Carbon isotopic fractionation in subtropical Brazilian grassland soils. Comparison with tropical forest soils. Plant and Soil, 102 ( 1 ), 27 – 31. https://doi.org/10.1007/bf02370896
von Fischer, J. C., & Tieszen, L. L. ( 1995 ). Carbon isotope characterization of vegetation and soil organic matter in subtropical forests in Luquillo, Puerto Rico (pp. 138 – 148 ). Biotropica.
von Fischer, J. C., Tieszen, L. L., & Schimel, D. S. ( 2008 ). Climate controls on C 3 vs. C 4 productivity in North American grasslands from carbon isotope composition of soil organic matter. Global Change Biology, 14 ( 5 ), 1141 – 1155. https://doi.org/10.1111/j.1365-2486.2008.01552.x
Wang, G., Li, J., Liu, X., & Li, X. ( 2013 ). Variations in carbon isotope ratios of plants across a temperature gradient along the 400 mm isoline of mean annual precipitation in north China and their relevance to paleovegetation reconstruction. Quaternary Science Reviews, 63, 83 – 90. https://doi.org/10.1016/j.quascirev.2012.12.004
Wang, Y., Kromhout, E., Zhang, C., Xu, Y., Parker, W., Deng, T., & Qiu, Z. ( 2008 ). Stable isotopic variations in modern herbivore tooth enamel, plants and water on the Tibetan Plateau: Implications for paleoclimate and paleoelevation reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology, 260 ( 3–4 ), 359 – 374. https://doi.org/10.1016/j.palaeo.2007.11.012
Weiguo, L., Xiahong, F., Youfeng, N., Qingle, Z., Yunning, C., & Zhisheng, A. N. ( 2005 ). δ 13 C variation of C 3 and C 4 plants across an Asian monsoon rainfall gradient in arid northwestern China. Global Change Biology, 11 ( 7 ), 1094 – 1100. https://doi.org/10.1111/j.1365-2486.2005.00969.x
Weltzin, J. F., Loik, M. E., Schwinning, S., Williams, D. G., Fay, P. A., Haddad, B. M., et al. ( 2003 ). Assessing the response of terrestrial ecosystems to potential changes in precipitation. BioScience, 53 ( 10 ), 941 – 952. https://doi.org/10.1641/0006-3568(2003)053[0941:atrote]2.0.co;2
Weltzin, J. F., & McPherson, G. R. (Eds.). ( 2003 ). Changing precipitation regimes and terrestrial ecosystems: A north American perspective. University of Arizona Press.
White, J. W. C., Vaughn, B. H., & Michel, S. E. ( 2015 ). Stable isotopic composition of atmospheric carbon dioxide ( 13 C and 18 O) from the NOAA ESRL carbon cycle cooperative global air sampling network, 1990–2014, version: 2015‐10‐26. University of Colorado, Institute of Arctic and Alpine Research (INSTAAR). Retrieved from ftp://aftp.cmdl.noaa.gov/data/trace_gases/co2c13/flask
Whittaker, R. H. ( 1970 ). Communities and ecosystems. Macmillan.
Wilf, P., Wing, S. L., Greenwood, D. R., & Greenwood, C. L. ( 1998 ). Using fossil leaves as paleoprecipitation indicators: An Eocene example. Geologica, 26 ( 3 ), 203 – 206. https://doi.org/10.1130/0091-7613(1998)026<0203:uflapi>2.3.co;2
Wynn, J. G. ( 2007 ). Carbon isotope fractionation during decomposition of organic matter in soils and paleosols: Implications for paleoecological interpretations of paleosols. Palaeogeography, Palaeoclimatology, Palaeoecology, 251 ( 3–4 ), 437 – 448. https://doi.org/10.1016/j.palaeo.2007.04.009
Wynn, J. G., & Bird, M. I. ( 2007 ). C 4 ‐derived soil organic carbon decomposes faster than its C 3 counterpart in mixed C 3 /C 4 soils. Global Change Biology, 13 ( 10 ), 2206 – 2217. https://doi.org/10.1111/j.1365-2486.2007.01435.x
Wynn, J. G., Bird, M. I., & Wong, V. N. L. ( 2005 ). Rayleigh distillation and the depth profile of 13 C/ 12 C ratios of soil organic carbon from soils of disparate texture in Iron Range National Park, Far North Queensland, Australia. Geochimica et Cosmochimica Acta, 69 ( 8 ), 1961 – 1973. https://doi.org/10.1016/j.gca.2004.09.003
Wynn, J. G., Harden, J. W., & Fries, T. L. ( 2006 ). Stable carbon isotope depth profiles and soil organic carbon dynamics in the lower Mississippi Basin. Geoderma, 131 ( 1–2 ), 89 – 109. https://doi.org/10.1016/j.geoderma.2005.03.005
Yoneyama, T., Nakanishi, Y., Morita, A., & LIYANAGE, B. C. ( 2001 ). δ 13 C values of organic carbon in cropland and forest soils in Japan. Soil Science and Plant Nutrition, 47 ( 1 ), 17 – 26. https://doi.org/10.1080/00380768.2001.10408364
Youfeng, N., Weiguo, L., & Zhisheng, A. ( 2008 ). A 130‐ka reconstruction of precipitation on the Chinese Loess Plateau from organic carbon isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 270 ( 1–2 ), 59 – 63. https://doi.org/10.1016/j.palaeo.2008.08.015
Zeller, B., Brechet, C., Maurice, J.‐P., & Le Tacon, F. ( 2007 ). 13 C and15N isotopic fractionation in trees, soils and fungi in a natural forest stand and a Norway spruce plantation. Annals of Forest Science, 64 ( 4 ), 419 – 429. https://doi.org/10.1051/forest:2007019
Cerling, T. E. ( 1992 ). Use of carbon isotopes in paleosols as an indicator of the P(CO 2 ) of the paleoatmosphere. Global Biogeochemical Cycles, 6 ( 3 ), 307 – 314. https://doi.org/10.1029/92gb01102
Ainsworth, E. A., & Long, S. P. ( 2005 ). What have we learned from 15 years of free‐air CO 2 enrichment (FACE)? A meta‐analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO 2. New Phytologist, 165 ( 2 ), 351 – 372.
Ambrose, S. H., & Sikes, N. E. ( 1991 ). Soil carbon isotope evidence for Holocene habitat change in the Kenya Rift Valley. Science, 253 ( 5026 ), 1402 – 1405. https://doi.org/10.1126/science.253.5026.1402
Andrzejewski, K. ( 2018 ). Cretaceous dinosaurs and the world they lived in: A new species of ornithischian dinosaur from the early cretaceous (Aptian) of Texas, reconstruction of the brain endocast and inner ear of Malawisaurus Dixeyi, and reconstruction of the paleoclimate and paleoenvironment of cretaceous terrestrial formations in Texas and Oklahoma using pedogenic minerals (PhD Dissertation). Southern Methodist University.
Arens, N. C., & Jahren, A. H. ( 2000 ). Carbon isotope excursion in atmospheric CO 2 at the cretaceous‐tertiary boundary: Evidence from terrestrial sediments. Palaios, 15 ( 4 ), 314 – 322. https://doi.org/10.1669/0883-1351(2000)015<0314:cieiac>2.0.co;2
Balesdent, J., Mariotti, A., & Guillet, B. ( 1987 ). Natural 13 C abundance as a tracer for studies of soil organic matter dynamics. Soil Biology and Biochemistry, 19 ( 1 ), 25 – 30. https://doi.org/10.1016/0038-0717(87)90120-9
Bateman, R. M. ( 2020 ). Hunting the snark: The flawed search for mythical Jurassic angiosperms. Journal of Experimental Botany, 71 ( 1 ), 22 – 35. https://doi.org/10.1093/jxb/erz411
Beverly, E. J., Lukens, W. E., & Stinchcomb, G. E. ( 2018 ). Paleopedology as a tool for reconstructing paleoenvironments and paleoecology. In D. A. Croft, D. F. Su, & S. W. Simpson (Eds.), Methods in paleoecology (pp. 151 – 183 ). Cham: Springer.
Billings, S. A., & Richter, D. D. ( 2006 ). Changes in stable isotopic signatures of soil nitrogen and carbon during 40 years of forest development. Oecologia, 148 ( 2 ), 325 – 333. https://doi.org/10.1007/s00442-006-0366-7
Bol, R. A., Harkness, D. D., Huang, Y., & Howard, D. M. ( 1999 ). The influence of soil processes on carbon isotope distribution and turnover in the British uplands. European Journal of Soil Science, 50 ( 1 ), 41 – 51. https://doi.org/10.1046/j.1365-2389.1999.00222.x
Bonafini, M., Pellegrini, M., Ditchfield, P., & Pollard, A. M. ( 2013 ). Investigation of the ‘canopy effect’ in the isotope ecology of temperate woodlands. Journal of Archaeological Science, 40 ( 11 ), 3926 – 3935. https://doi.org/10.1016/j.jas.2013.03.028
Bown, T. M., & J. Kraus, M. ( 1981 ). Vertebrate fossil‐bearing paleosol units (Willwood Formation, Lower Eocene, Northwest Wyoming, U.S.A.): Implications for taphonomy, biostratigraphy, and assemblage analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 34, 31 – 56. https://doi.org/10.1016/0031-0182(81)90057-2
Breecker, D. O., Sharp, Z. D., & McFadden, L. D. ( 2009 ). Seasonal bias in the formation and stable isotopic composition of pedogenic carbonate in modern soils from central New Mexico, USA. Geological Society of America Bulletin, 121 ( 3–4 ), 630 – 640. https://doi.org/10.1130/b26413.1
Broadmeadow, M. S. J., Griffiths, H., Maxwell, C., & Borland, A. M. ( 1992 ). The carbon isotope ratio of plant organic material reflects temporal and spatial variations in CO 2 within tropical forest formations in Trinidad. Oecologia, 89 ( 3 ), 435 – 441. https://doi.org/10.1007/bf00317423
Canuel, E. A., Freeman, K. H., & Wakeham, S. G. ( 1997 ). Isotopic compositions of lipid biomarker compounds in estuarine plants and surface sediments. Limnology & Oceanography, 42 ( 7 ), 1570 – 1583. https://doi.org/10.4319/lo.1997.42.7.1570
Caudill, M. R., Driese, S. G., & Mora, C. I. ( 1996 ). Preservation of a paleo‐Vertisol and an estimate of Late Mississippian paleoprecipitation. Journal of Sedimentary Research, 66 ( 1 ), 58 – 70.
Cerling, T. E., Solomon, D. K., Quade, J., & Bowman, J. R. ( 1991 ). On the isotopic composition of carbon in soil carbon dioxide. Geochimica et Cosmochimica Acta, 55 ( 11 ), 3403 – 3405. https://doi.org/10.1016/0016-7037(91)90498-t
Cerling, T. E., Wang, Y., & Quade, J. ( 1993 ). Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene. Nature, 361 ( 6410 ), 344 – 345. https://doi.org/10.1038/361344a0
Chabbi, A., Kögel‐Knabner, I., & Rumpel, C. ( 2009 ). Stabilised carbon in subsoil horizons is located in spatially distinct parts of the soil profile. Soil Biology and Biochemistry, 41 ( 2 ), 256 – 261. https://doi.org/10.1016/j.soilbio.2008.10.033
op_rights IndexNoFollow
op_doi https://doi.org/10.1029/2020PA00415810.1890/1051-0761(2000)010[0399:aosoma]2.0.co;210.1641/0006-3568(2003)053[0941:atrote]2.0.co;210.1016/j.palaeo.2007.04.00910.1029/92gb0110210.1093/jxb/erz41110.1175/jcli3884.110.1371/journal.pone.008644010.1126/science.
container_title Journal of Geophysical Research: Oceans
container_volume 127
container_issue 4
_version_ 1774713614540734464
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/167532 2023-08-20T04:03:12+02:00 Soil Carbon Isotope Values and Paleoprecipitation Reconstruction Stein, Rebekah A. Sheldon, Nathan D. Smith, Selena Y. 2021-04 application/pdf https://hdl.handle.net/2027.42/167532 https://doi.org/10.1029/2020PA004158 unknown Southern Methodist University Wiley Periodicals, Inc. Stein, Rebekah A.; Sheldon, Nathan D.; Smith, Selena Y. (2021). "Soil Carbon Isotope Values and Paleoprecipitation Reconstruction." Paleoceanography and Paleoclimatology 36(4): n/a-n/a. 2572-4517 2572-4525 https://hdl.handle.net/2027.42/167532 doi:10.1029/2020PA004158 Paleoceanography and Paleoclimatology Smiley, T. M., Hyland, E. G., Cotton, J. M., & Reynolds, R. E. ( 2018 ). Evidence of early C 4 grasses, habitat heterogeneity, and faunal response during the Miocene Climatic Optimum in the Mojave Region. Palaeogeography, Palaeoclimatology, Palaeoecology, 490, 415 – 430. https://doi.org/10.1016/j.palaeo.2017.11.020 Tipple, B. J., & Pagani, M. ( 2007 ). The early origins of terrestrial C4 photosynthesis. Annual Review of Earth and Planetary Sciences, 35, 435 – 461. https://doi.org/10.1146/annurev.earth.35.031306.140150 Torn, M. S., Lapenis, A. G., Timofeev, A., Fischer, M. L., Babikov, B. V., & Harden, J. W. ( 2002 ). Organic carbon and carbon isotopes in modern and 100‐year‐old‐soil archives of the Russian steppe. Global Change Biology, 8 ( 10 ), 941 – 953. https://doi.org/10.1046/j.1365-2486.2002.00477.x Townsend, A. R., Vitousek, P. M., Desmarais, D. J., & Tharpe, A. ( 1997 ). Soil carbon pool structure and temperature sensitivity inferred using CO 2 and 13 CO 2 incubation fluxes from five Hawaiian soils. Biogeochemistry, 38 ( 1 ), 1 – 17. https://doi.org/10.1023/a:1017942918708 Trumbore, S. ( 2000 ). Age of soil organic matter and soil respiration: Radiocarbon constraints on belowground C dynamics. Ecological Applications, 10 ( 2 ), 399 – 411. https://doi.org/10.1890/1051-0761(2000)010[0399:aosoma]2.0.co;2 USDA Natural Resources Conservation Service. ( 2017 ). ArcGIS soil survey. Retrieved from https://www.arcgis.com/home/item.html?id=204d94c9b1374de9a21574c9efa31164 Van der Merwe, N. J., & Medina, E. ( 1991 ). The canopy effect, carbon isotope ratios and foodwebs in Amazonia. Journal of Archaeological Science, 18 ( 3 ), 249 – 259. https://doi.org/10.1016/0305-4403(91)90064-v Volkoff, B., & Cerri, C. C. ( 1987 ). Carbon isotopic fractionation in subtropical Brazilian grassland soils. Comparison with tropical forest soils. Plant and Soil, 102 ( 1 ), 27 – 31. https://doi.org/10.1007/bf02370896 von Fischer, J. C., & Tieszen, L. L. ( 1995 ). Carbon isotope characterization of vegetation and soil organic matter in subtropical forests in Luquillo, Puerto Rico (pp. 138 – 148 ). Biotropica. von Fischer, J. C., Tieszen, L. L., & Schimel, D. S. ( 2008 ). Climate controls on C 3 vs. C 4 productivity in North American grasslands from carbon isotope composition of soil organic matter. Global Change Biology, 14 ( 5 ), 1141 – 1155. https://doi.org/10.1111/j.1365-2486.2008.01552.x Wang, G., Li, J., Liu, X., & Li, X. ( 2013 ). Variations in carbon isotope ratios of plants across a temperature gradient along the 400 mm isoline of mean annual precipitation in north China and their relevance to paleovegetation reconstruction. Quaternary Science Reviews, 63, 83 – 90. https://doi.org/10.1016/j.quascirev.2012.12.004 Wang, Y., Kromhout, E., Zhang, C., Xu, Y., Parker, W., Deng, T., & Qiu, Z. ( 2008 ). Stable isotopic variations in modern herbivore tooth enamel, plants and water on the Tibetan Plateau: Implications for paleoclimate and paleoelevation reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology, 260 ( 3–4 ), 359 – 374. https://doi.org/10.1016/j.palaeo.2007.11.012 Weiguo, L., Xiahong, F., Youfeng, N., Qingle, Z., Yunning, C., & Zhisheng, A. N. ( 2005 ). δ 13 C variation of C 3 and C 4 plants across an Asian monsoon rainfall gradient in arid northwestern China. Global Change Biology, 11 ( 7 ), 1094 – 1100. https://doi.org/10.1111/j.1365-2486.2005.00969.x Weltzin, J. F., Loik, M. E., Schwinning, S., Williams, D. G., Fay, P. A., Haddad, B. M., et al. ( 2003 ). Assessing the response of terrestrial ecosystems to potential changes in precipitation. BioScience, 53 ( 10 ), 941 – 952. https://doi.org/10.1641/0006-3568(2003)053[0941:atrote]2.0.co;2 Weltzin, J. F., & McPherson, G. R. (Eds.). ( 2003 ). Changing precipitation regimes and terrestrial ecosystems: A north American perspective. University of Arizona Press. White, J. W. C., Vaughn, B. H., & Michel, S. E. ( 2015 ). Stable isotopic composition of atmospheric carbon dioxide ( 13 C and 18 O) from the NOAA ESRL carbon cycle cooperative global air sampling network, 1990–2014, version: 2015‐10‐26. University of Colorado, Institute of Arctic and Alpine Research (INSTAAR). Retrieved from ftp://aftp.cmdl.noaa.gov/data/trace_gases/co2c13/flask Whittaker, R. H. ( 1970 ). Communities and ecosystems. Macmillan. Wilf, P., Wing, S. L., Greenwood, D. R., & Greenwood, C. L. ( 1998 ). Using fossil leaves as paleoprecipitation indicators: An Eocene example. Geologica, 26 ( 3 ), 203 – 206. https://doi.org/10.1130/0091-7613(1998)026<0203:uflapi>2.3.co;2 Wynn, J. G. ( 2007 ). Carbon isotope fractionation during decomposition of organic matter in soils and paleosols: Implications for paleoecological interpretations of paleosols. Palaeogeography, Palaeoclimatology, Palaeoecology, 251 ( 3–4 ), 437 – 448. https://doi.org/10.1016/j.palaeo.2007.04.009 Wynn, J. G., & Bird, M. I. ( 2007 ). C 4 ‐derived soil organic carbon decomposes faster than its C 3 counterpart in mixed C 3 /C 4 soils. Global Change Biology, 13 ( 10 ), 2206 – 2217. https://doi.org/10.1111/j.1365-2486.2007.01435.x Wynn, J. G., Bird, M. I., & Wong, V. N. L. ( 2005 ). Rayleigh distillation and the depth profile of 13 C/ 12 C ratios of soil organic carbon from soils of disparate texture in Iron Range National Park, Far North Queensland, Australia. Geochimica et Cosmochimica Acta, 69 ( 8 ), 1961 – 1973. https://doi.org/10.1016/j.gca.2004.09.003 Wynn, J. G., Harden, J. W., & Fries, T. L. ( 2006 ). Stable carbon isotope depth profiles and soil organic carbon dynamics in the lower Mississippi Basin. Geoderma, 131 ( 1–2 ), 89 – 109. https://doi.org/10.1016/j.geoderma.2005.03.005 Yoneyama, T., Nakanishi, Y., Morita, A., & LIYANAGE, B. C. ( 2001 ). δ 13 C values of organic carbon in cropland and forest soils in Japan. Soil Science and Plant Nutrition, 47 ( 1 ), 17 – 26. https://doi.org/10.1080/00380768.2001.10408364 Youfeng, N., Weiguo, L., & Zhisheng, A. ( 2008 ). A 130‐ka reconstruction of precipitation on the Chinese Loess Plateau from organic carbon isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 270 ( 1–2 ), 59 – 63. https://doi.org/10.1016/j.palaeo.2008.08.015 Zeller, B., Brechet, C., Maurice, J.‐P., & Le Tacon, F. ( 2007 ). 13 C and15N isotopic fractionation in trees, soils and fungi in a natural forest stand and a Norway spruce plantation. Annals of Forest Science, 64 ( 4 ), 419 – 429. https://doi.org/10.1051/forest:2007019 Cerling, T. E. ( 1992 ). Use of carbon isotopes in paleosols as an indicator of the P(CO 2 ) of the paleoatmosphere. Global Biogeochemical Cycles, 6 ( 3 ), 307 – 314. https://doi.org/10.1029/92gb01102 Ainsworth, E. A., & Long, S. P. ( 2005 ). What have we learned from 15 years of free‐air CO 2 enrichment (FACE)? A meta‐analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO 2. New Phytologist, 165 ( 2 ), 351 – 372. Ambrose, S. H., & Sikes, N. E. ( 1991 ). Soil carbon isotope evidence for Holocene habitat change in the Kenya Rift Valley. Science, 253 ( 5026 ), 1402 – 1405. https://doi.org/10.1126/science.253.5026.1402 Andrzejewski, K. ( 2018 ). Cretaceous dinosaurs and the world they lived in: A new species of ornithischian dinosaur from the early cretaceous (Aptian) of Texas, reconstruction of the brain endocast and inner ear of Malawisaurus Dixeyi, and reconstruction of the paleoclimate and paleoenvironment of cretaceous terrestrial formations in Texas and Oklahoma using pedogenic minerals (PhD Dissertation). Southern Methodist University. Arens, N. C., & Jahren, A. H. ( 2000 ). Carbon isotope excursion in atmospheric CO 2 at the cretaceous‐tertiary boundary: Evidence from terrestrial sediments. Palaios, 15 ( 4 ), 314 – 322. https://doi.org/10.1669/0883-1351(2000)015<0314:cieiac>2.0.co;2 Balesdent, J., Mariotti, A., & Guillet, B. ( 1987 ). Natural 13 C abundance as a tracer for studies of soil organic matter dynamics. Soil Biology and Biochemistry, 19 ( 1 ), 25 – 30. https://doi.org/10.1016/0038-0717(87)90120-9 Bateman, R. M. ( 2020 ). Hunting the snark: The flawed search for mythical Jurassic angiosperms. Journal of Experimental Botany, 71 ( 1 ), 22 – 35. https://doi.org/10.1093/jxb/erz411 Beverly, E. J., Lukens, W. E., & Stinchcomb, G. E. ( 2018 ). Paleopedology as a tool for reconstructing paleoenvironments and paleoecology. In D. A. Croft, D. F. Su, & S. W. Simpson (Eds.), Methods in paleoecology (pp. 151 – 183 ). Cham: Springer. Billings, S. A., & Richter, D. D. ( 2006 ). Changes in stable isotopic signatures of soil nitrogen and carbon during 40 years of forest development. Oecologia, 148 ( 2 ), 325 – 333. https://doi.org/10.1007/s00442-006-0366-7 Bol, R. A., Harkness, D. D., Huang, Y., & Howard, D. M. ( 1999 ). The influence of soil processes on carbon isotope distribution and turnover in the British uplands. European Journal of Soil Science, 50 ( 1 ), 41 – 51. https://doi.org/10.1046/j.1365-2389.1999.00222.x Bonafini, M., Pellegrini, M., Ditchfield, P., & Pollard, A. M. ( 2013 ). Investigation of the ‘canopy effect’ in the isotope ecology of temperate woodlands. Journal of Archaeological Science, 40 ( 11 ), 3926 – 3935. https://doi.org/10.1016/j.jas.2013.03.028 Bown, T. M., & J. Kraus, M. ( 1981 ). Vertebrate fossil‐bearing paleosol units (Willwood Formation, Lower Eocene, Northwest Wyoming, U.S.A.): Implications for taphonomy, biostratigraphy, and assemblage analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 34, 31 – 56. https://doi.org/10.1016/0031-0182(81)90057-2 Breecker, D. O., Sharp, Z. D., & McFadden, L. D. ( 2009 ). Seasonal bias in the formation and stable isotopic composition of pedogenic carbonate in modern soils from central New Mexico, USA. Geological Society of America Bulletin, 121 ( 3–4 ), 630 – 640. https://doi.org/10.1130/b26413.1 Broadmeadow, M. S. J., Griffiths, H., Maxwell, C., & Borland, A. M. ( 1992 ). The carbon isotope ratio of plant organic material reflects temporal and spatial variations in CO 2 within tropical forest formations in Trinidad. Oecologia, 89 ( 3 ), 435 – 441. https://doi.org/10.1007/bf00317423 Canuel, E. A., Freeman, K. H., & Wakeham, S. G. ( 1997 ). Isotopic compositions of lipid biomarker compounds in estuarine plants and surface sediments. Limnology & Oceanography, 42 ( 7 ), 1570 – 1583. https://doi.org/10.4319/lo.1997.42.7.1570 Caudill, M. R., Driese, S. G., & Mora, C. I. ( 1996 ). Preservation of a paleo‐Vertisol and an estimate of Late Mississippian paleoprecipitation. Journal of Sedimentary Research, 66 ( 1 ), 58 – 70. Cerling, T. E., Solomon, D. K., Quade, J., & Bowman, J. R. ( 1991 ). On the isotopic composition of carbon in soil carbon dioxide. Geochimica et Cosmochimica Acta, 55 ( 11 ), 3403 – 3405. https://doi.org/10.1016/0016-7037(91)90498-t Cerling, T. E., Wang, Y., & Quade, J. ( 1993 ). Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene. Nature, 361 ( 6410 ), 344 – 345. https://doi.org/10.1038/361344a0 Chabbi, A., Kögel‐Knabner, I., & Rumpel, C. ( 2009 ). Stabilised carbon in subsoil horizons is located in spatially distinct parts of the soil profile. Soil Biology and Biochemistry, 41 ( 2 ), 256 – 261. https://doi.org/10.1016/j.soilbio.2008.10.033 IndexNoFollow isotopes carbon paleoclimate precipitation soil water Geological Sciences Science Article 2021 ftumdeepblue https://doi.org/10.1029/2020PA00415810.1890/1051-0761(2000)010[0399:aosoma]2.0.co;210.1641/0006-3568(2003)053[0941:atrote]2.0.co;210.1016/j.palaeo.2007.04.00910.1029/92gb0110210.1093/jxb/erz41110.1175/jcli3884.110.1371/journal.pone.008644010.1126/science. 2023-07-31T21:07:55Z Anthropogenic climate change has significant impacts at the ecosystem scale including widespread drought, flooding, and other natural disasters related to precipitation extremes. To contextualize modern climate change, scientists often look to ancient climate changes, such as shifts in ancient precipitation ranges. Previous studies have used fossil leaf organic geochemistry and paleosol inorganic chemistry as paleoprecipitation proxies, but have largely ignored the organic soil layer, which acts as a bridge between aboveground biomass and belowground inorganic carbon accumulation, as a potential recorder of precipitation. We investigate the relationship between stable carbon isotope values in soil organic matter (δ13CSOM) and a variety of seasonal and annual climate parameters in modern ecosystems and find a statistically significant relationship between δ13CSOM values and mean annual precipitation (MAP). After testing the relationship between actual and reconstructed precipitation values in modern systems, we test this potential paleoprecipitation proxy in the geologic record by comparing precipitation values reconstructed using δ13CSOM to other reconstructed paleoprecipitation estimates from the same paleosols. This study provides a promising new proxy that can be applied to ecosystems post‐Devonian (∼420 Ma) to the Miocene (∼23 Ma), and in mixed C3/C4 ecosystems in the geologic record with additional paleobotanical and palynological information. It also extends paleoprecipitation reconstruction to more weakly developed paleosol types, such as those lacking B‐ horizons, than previous inorganic proxies and is calibrated for wetter environments.Plain Language SummaryRainfall is very important to plant health and function. When plant material is deposited onto the ground, it becomes soil. This soil retains records of plant chemistry. We tested whether this plant chemistry recorded amount of rainfall over a wide range of environments, and found that soil chemistry does record rainfall. When tested in fossil soils, ... Article in Journal/Newspaper Arctic Arctic and Alpine Research University of Michigan: Deep Blue Journal of Geophysical Research: Oceans 127 4